Текст книги "Физика учит новый язык. Лейбниц. Анализ бесконечно малых"
Автор книги: авторов Коллектив
сообщить о нарушении
Текущая страница: 4 (всего у книги 9 страниц)
∑rn = 1+r+r2+r3+r4+...
n≥0
знакомы и работают ученики средней школы. Чтобы найти значение суммы, нам нужно сложить п членов геометрической прогрессии, а затем умножить эту сумму на знаменатель прогрессии г. Затем вычитаем одно выражение из другого:
S = (1+r+r2+r3+r4+...+rn)– (r • S = r+r2+r3+r4+r5+...+rn+1)/(S – r • S = 1 – rn+1)
Таким образом мы можем выделить S и получить значение суммы, которое мы искали:
S = (1-rn+1)/(1-r)
Теперь, если принять, что r имеет значение, меньшее 1, и что вместо сложения п членов мы складываем бесконечное количество, значение rn+1 становится нулем, и, следовательно, сумма сводится к:
S = 1/(1-r)
Математики всегда искали формулы, которые бы позволили с легкостью складывать большое число членов. Уже в античности были известны суммы членов рядов первых степеней: n, n2 и n3.
1+2+3+4+5+6+7+...+ = n(n+1)/2 = n2/2+n/2,
12+22+32+...+n2 = n(n+1)(2n+1)/6 = n3/3+n2/2+n/6,
13+23+33+...+n3 = n2(n+1)2/4 = n4/4+n3/2+n2/4.
Но с самого начала математики были очень заинтересованы в изучении конкретного случая, когда сумма бесконечного числа членов дает конечное значение. Над этой проблемой работали, например, Демокрит и Архимед.
На основе геометрического ряда
∑rn
n≥1
в Средние века исследовали ряды степеней, в которых менялись местами основание и показатель степени, например:
∑nr
n≥1
Вскоре было замечено: если показатель степени r положительный, а n – целое число, сумма превращается в бесконечность. Когда показатель степени r отрицательный, получаются степени дробей, меньших единицы, то есть сумма
∑(1/n)r, где r больше единицы.
n≥1
Французский математик Николай Орезмский (1323– 1382) получил много результатов, исследуя ряды, и первым доказал, что гармонический ряд, то есть ряд, составленный из членов, обратных числам натурального ряда, для r = 1 является расходящимся. Следовательно, сумма большого числа членов стремится к бесконечности. В то время доказательства приводили в буквальном виде, описывая шаги, которые нужно сделать, но мы рассмотрим это искусное рассуждение, пользуясь более привычными символами. Орезмский сгруппировал члены, то есть у него был первый член, два следующих, четыре следующих, восемь следующих и так далее:
1/2+1/3+1/4+1/5+1/6+1/7+1/8+...+ = 1/2+(1/2+1/4)+(1/5+1/6+1/7+1/8)+...+ = 1/2+7/12+533/840+...
Так получается ряд дробей, каждая из которых больше 1 /2, то есть сумму ряда можно сделать больше любого указанного числа, просто взяв достаточное число членов ряда.
Индийский математик и астроном Мадхава из Сангамаграма (1350-1425) описал среди прочих бесконечных рядов ряды тригонометрических функций синуса и косинуса. Он также нашел ряд арктангенса:
arct x = x – x3/3 + x5/5 + x7/7 + ,,,
Через несколько лет шотландский математик Джеймс Грегори (1638-1675) первым в Европе открыл этот ряд, о нем узнал Лейбниц и воспользовался им для выведения первого ряда для числа π, недостатком которого было то, что он очень медленно приближается к истинному значению. Он известен как ряд Грегори – Лейбница, хотя другие авторы сегодня его называют рядом Мадхавы – Лейбница:
π/4 = 1 – 1/3 + 1/5 + 1/7 + ... + (-1)n/(2n+1) + ...
И Ньютон, и Лейбниц также вычисляли ряды степеней других тригонометрических функций.
Вычисление числа k было постоянным предметом поиска математиков всех времен. Это число определяется как отношение между длиной окружности и ее диаметром. Многие пытались найти наибольшее количество десятичных знаков данного числа, и одним из использованных методов был метод числовых рядов. Он подразумевает, что по мере того, как вычисляется больше членов, появляется большее количество точных знаков после запятой.
Ряды не всегда были суммами. Например, математик Франсуа Виет (1540-1603), один из создателей современной алгебры, представил первое бесконечное произведение, приближающееся к значению π, таким образом:
π = 2 • 2/√2 • 2/√(2+√2) • 2/√(2+√(2+√2)) • 2/√(2+√(2+√(2+√2)))
Сам Грегори, в свою очередь, пытаясь вычислить площадь круга, пришел к другому выражению для вычисления я:
π/2 = (2 • 2 • 4 • 4 • 6 • 6 • 8 • 8 ...)/(1 • 3 • 3 • 5 • 5 • 7 • 7 • 9 ...)
XVII век был временем популярности сумм бесконечных рядов степеней, которые служили для поиска квадратуры фигур, ограниченных различными типами кривых, то есть площади сегмента какой-либо кривой.
ЛЕЙБНИЦ И БЕСКОНЕЧНЫЕ РЯДЫ
Когда в 1672 году Лейбниц навестил Гюйгенса в Париже, он рассказал ему о методе, над которым работал. Он использовался для нахождения суммы членов бесконечных рядов чисел и состоял в том, чтобы учитывать разность между членами последовательности. Если у нас есть ряд членов a0<а1<а2<а3<... an, то возьмем разности b1= a1-a0; b2= а2-а1; b3= а3-а2; ..., и тогда нулевая сумма а0-а0 + а1 – а1 + а2 – а2 +...+ an-1 – an-1 + + an – an = а0 + b1 + b2 +...+ bn – an = 0, откуда следует, что сумма разностей равна:
b1 + b2 + b3 + ... + bn = an – a0
Лейбниц утверждал, что его метод разностей может быть применен для нахождения суммы любого ряда чисел, построенного в соответствии с правилом, и даже для бесконечных рядов – при условии, что они сходятся.
На той же встрече Гюйгенс задал Лейбницу задачу, которую он сам уже решил, чтобы тот проверил свой метод, – найти сумму чисел, обратных треугольным, то есть следующий ряд:
1 + 1/3 + 1/6 + 1/10 + ...
Лейбниц разделил на два каждый член, разложив дроби на разность двух:
1/2+1/6+1/12+1/20+...+1/2+(1/2-1/3)+(1/3-1/4)+(1/4-1/5)+...+1/2+1/2 = 1
следовательно, значение искомой суммы членов данного ряда составляет 2(1 + 1).
Также Лейбниц сформулировал то, что известно как теорема сходимости знакочередующихся рядов, то есть рядов, в которых чередуются складываемые и вычитаемые члены. В основном это выражение вида:
∞
∑(-1)n • an = a0 – a1 + a2 – a3 + a4 – ... при an ≥ 0.
n=0
Данный критерий впервые появился в письме, адресованном Иоганну Бернулли (1667-1748) в 1713 году.
Для многих математиков критерии сходимости, которыми они пользовались, были основаны на том, чтобы найти частичные суммы ряда членов, например п членов. Они пытались найти упрощенное выражение, связанное с гг, а затем изучить, что произойдет, если число членов возрастет до бесконечности. Но не все математики были согласны с данным подходом, поскольку появлялись так называемые логические парадоксы, то есть ряды, расходящиеся при одном методе, а при применении других методов – наоборот.
Один из главных парадоксов того времени был связан с нахождением суммы знакочередующегося ряда, в котором an = 1 для любого n. То есть речь идет о ряде:
∞
∑(-1)n = 1-1+1-1+1-1+1-1+...
n=1
Если взять четное число членов, частичная сумма равна 0, в то время как если взять нечетное число, частичная сумма равна 1. Лейбниц в итоге присвоил этой сумме значение 1/2.
Простое рассуждение для получения этого решения следующее:
5=1-1 + 1-1 + 1-1 + 1 -... = 1 – (1-1 + 1-1 + 1-1 +...) = 1-S,
откуда после упрощения получается 2S = 1, и, следовательно, искомая сумма равна S = 1/2.
Во время визита к Роберту Бойлю Пелл указал Лейбницу на то, что математик Франсуа Рейно уже опубликовал общий метод прерывания рядов с помощью разностей. Ученый ознакомился с данным исследованием, выяснил, что его метод отличается от метода Рейно, и написал свою работу для представления в Королевском обществе. Однако эта работа была встречена довольно холодно, и его даже обвинили в плагиате. Сам Лейбниц позже признал, что там действительно не содержалось никакого нового результата, а вся изюминка заключалась в новом представленном методе.
Провал работы заставил ученого понять, что ему очень не хватает математических сведений: он не знал о многом из того, что уже было опубликовано. Поэтому Лейбниц потратил почти год на самосовершенствование в этой области.
НОВОЕ ЗАНЯТИЕ
Когда Лейбниц покидал Париж, он уже был советником герцога Ганновера, то есть занимал должность, оставшуюся за ним до конца жизни. С 1677 года Лейбниц стал тайным советником герцога Иоганна Фридриха: это была наиболее ответственная и оплачиваемая должность. Решив свои финансовые проблемы, ученый смог использовать возможности, которые давало ему его новое положение, для исследования интересующих его научных проблем. Сначала Лейбниц нехотя согласился на эту должность, но позднее выражал свое удовлетворение ролью, которую играл.
Став библиотекарем герцога, он начал расширять библиотеку, заполняя ее книгами из всех самых важных областей знания, больше заботясь о качестве, чем о количестве, для чего использовал собственный опыт и связи в ученом мире. Новое
занятие позволяло ему ездить в другие города в поисках интересных книг для герцогской библиотеки. Например, в 1678 году Лейбниц посетил Гамбург, чтобы купить библиотеку Мартина Фогеля, последователя немецкого ученого Иоахима Юнга.
По возвращении он написал для герцога ряд сочинений на такие разнообразные темы, как улучшение государственного управления, организация архивов, практика сельского хозяйства и работа на фермах. В них Лейбниц доказывал, что, заботясь об увеличении благосостояния народа, нужно иметь четкое представление об имеющихся в распоряжении ресурсах, как человеческих, так и природных. Кроме того, он изложил герцогу идею, которая только начинала зарождаться в его голове: создать в Германии академию наук. Лейбниц даже представил ряд изобретений, предназначенных для повышения эффективности горнодобывающей промышленности, таким образом намереваясь получить средства на создание этого учреждения.
Несмотря на то что Лейбниц обосновался в Ганновере, он не потерял связи с образованными людьми и учеными Лондона и Парижа. Он продолжал получать информацию о достижениях науки и вел переписку с влиятельными людьми своего времени. Например, в то время ученый переписывался с Анри Жюстелем (1620-1693), который был секретарем короля Франции, хотя позже и переехал в Англию. Для Жюстеля Лейбниц осуществил небольшое исследование истории графского рода Ловенштайн. Это была первая написанная им историческая работа.
ПОД НОВЫМ РУКОВОДСТВОМ
Герцога Иоганна Фридриха сменил его брат Эрнст Август (1629-1698), герцог Брауншвейг-Люнебургский, который позже стал первым курфюрстом Ганновера, то есть одним из тех, кто имел право участвовать в выборах императора Германии.
После прибытия в Ганновер Лейбниц познакомился также с Софией (1630-1714), супругой Эрнста Августа. Она была дочерью Фридриха V, короля Богемии, и Елизаветы Стюарт, принцессы Баварии, Шотландии и Англии, а также внучкой Якова I, короля Англии (он же Яков VI, король Шотландии). Следовательно, София являлась претенденткой по прямой линии на трон Великобритании как самая прямая протестантская наследница королевы Англии, и только ее смерть за два месяца до кончины королевы Анны Стюарт помешала ей взойти на трон. Ее сын Георг Людвиг позже стал королем Англии под именем Георга I и основателем Ганноверской династии.
Отношения между Лейбницем и Софией становились с годами все более близкими и в итоге вылились в крепкую дружбу. Принцесса очень интересовалась интеллектуальной деятельностью во многих сферах, которые она часто обсуждала с Лейбницем, что подтверждает существующая обширная переписка.
Должности Лейбница были сохранены. Он написал доклад для нового герцога, где сообщал о деталях своей карьеры и о ряде проектов, которые задумал. Лейбниц предложил дополнить герцогскую библиотеку лабораторией и музеем, а также создать герцогскую типографию. В документе, направленном первому министру Францу Эрнесту фон Платену (1631– 1709), он предложил свои услуги для составления истории династии Брауншвейг-Люнебург. Лейбниц явно не представлял себе, в какие дебри забирается, поскольку это исследование будет преследовать его всю оставшуюся жизнь.
НОВЫЕ ПРОЕКТЫ
Несмотря на многочисленные задания, которые он получал от герцога, у Лейбница были силы и способность заниматься исследованиями во многих областях науки. В 1681 году Отто Менке посетил Ганновер и встретился с Лейбницем, чтобы поговорить об издании журнала "Акты ученых". Менке также попросил коллегу прислать одну из своих работ для публикации в журнале. Кроме собственных исследований, Лейбниц также писал рецензии на другие сочинения, как, например, на труд Джона Уоллиса по алгебре или на работу математика Жака Озанама, в которой он представлял свои тригонометрические таблицы.
Он продолжал писать сочинения для герцога в абсолютно разных сферах. Например, Лейбниц исследовал методы улучшения организации армии и повышения ее боевого духа и продумывал способы сохранения физического и психического здоровья солдат. Для этого ученый предлагал снабдить их продовольствием, одеждой и подходящими лекарствами, а также использовать их в мирное время на общественных работах, таких как строительство сооружений, дренаж болот и проведение канализации, что сделало бы более сносной рутину военных тренировок. Кроме того, Лейбниц представил проект профилактических средств для борьбы с эпидемией, которая в то время терзала Европу, поскольку врачам не удалось найти никаких средств против нее. Он предложил помешать перемещению зараженных людей и изолировать их.
По поручению герцогского советника Отто Гроте Лейбниц подготовил меморандум об увеличении числа курфюршеств в Германии. В то время существовало восемь курфюршеств – пять католических и три протестантских. В своей работе ученый отстаивал необходимость создания девятого, протестантского. Через несколько лет, в 1692 году, герцог Эрнст Август был объявлен курфюрстом. Лейбниц участвовал в проекте от начала и до конца и после предоставления герцогу избирательного права создал памятную медаль, а также подготовил речь, содержащую исторический обзор, которую зачитал Отто Гроте на процедуре получения титула от императора.
По сути Лейбниц принимал участие в любом политическом деле в Ганновере. Во время одной из поездок в Италию ученый по просьбе принцессы Софии добился политического альянса посредством брака между Шарлоттой Фелицитас, старшей дочерью герцога Иоганна Фридриха, с герцогом Ринальдо из Модены, а также помолвки младшей дочери герцога, Вильгельмины, с королем Венгрии и будущим императором Иосифом I Габсбургским.
Кроме научных исследований самой важной задачей Лейбниц в эти годы была, как мы уже сказали ранее, разработка истории династии Брауншвейг-Люнебург для герцога. Лейбниц считал, что история и генеалогия стали науками и поэтому для них необходима достоверная документация, основанная на первичных источниках и работах авторов эпохи. Таким образом, ученый добился у герцога пожизненной пенсии и освобождения от обычных обязанностей, чтобы посвятить себя исключительно этому делу.
Кроме того, в то время Лейбниц уже совершил открытие, с которым вошел в историю как один из самых выдающихся математиков: анализ бесконечно малых.
МАТЕМАТИКА В ДРЕВНЕЙ ГРЕЦИИ
Ученые Древней Греции создали математику как науку. Предыдущие цивилизации использовали ее для решения практических проблем повседневной жизни. Например, египтяне пользовались теоремой Пифагора для построения прямого угла и с ее помощью могли восстанавливать границы полей, затопленных Нилом. Для греков занятие математикой было самоцелью, их не волновало ее практическое применение. Это не означает, что они также не использовали свои знания для нахождения решений в конкретных ситуациях, но они четко разграничивали, как мы могли бы сказать, теорию и практику. Например, древнегреческие ученые различали арифметику, то есть абстрактную теорию чисел, и логистику, что по– гречески означало "счетное искусство", то есть прикладную арифметику. Они считали важным изучение математики как таковой и посвящали этому свои работы, но в известной степени презирали прикладную математику, с помощью которой решались каждодневные задачи.
В более позднюю эпоху, во время расцвета Александрии, греческие ученые, продолжая культивировать чистую науку, начали развивать и ее прикладную часть. Александрийцы изобрели насосы, чтобы поднимать воду из колодцев, шкивы и системы зубчатых передач, чтобы передвигать большие грузы; они использовали силу воды и пара для движения машин, огонь, чтобы заставить статуи двигаться, или сжатый воздух, чтобы бросать предметы на большие расстояния.
В то время как в предыдущих цивилизациях знания приобретались с помощью опыта, индукции или экспериментов, древнегреческие ученые развивали дедукцию. На основе ряда понятий выводились новые умозаключения при применении строгих дедуктивных правил рассуждения. Например, Аполлоний (ок. 262-190 до н. э.) в своей книге "Конические сечения" представил 487 пропозиций, выведенных из аксиом, собранных в "Началах" Евклида. Главной целью ученых Древней Греции было желание понять физический мир, они считали математические законы основой природы и полагали, что эти законы необходимы для изучения Вселенной. Это был критический и рациональный способ познания природы.
Древнегреческие математики должны были доказывать свои рассуждения исчерпывающе, не оставляя возможности для каких-либо лазеек. К такому подходу математика вновь обратилась только в XIX веке, и именно благодаря ему древнегреческие работы были настолько совершенны, что невозможно было понять, как получались столь удивительные результаты. Считалось, что определенную роль сыграла изобретательность древнегреческих ученых, некая счастливая мысль, которая помогала им прежде прийти к заключению, а уже потом исчерпывающим образом его доказать. Многие математики начиная с эпохи Возрождения были убеждены в том, что ученые Древней Греции владели каким-то секретным методом. Это видно из следующего комментария Декарта:
«Так же как многие ремесленники скрывают секрет своих изобретений, Папп и Диофант, возможно опасаясь, что из-за простоты и легкости своего метода он потеряет ценность, предпочли, чтобы вызвать всеобщее восхищение, представить нам плод своей деятельности как чистую истину, очень тонко выведенную, вместо того чтобы показать метод, которым пользовались».
ПАЛИМПСЕСТ АРХИМЕДА
Палимпсест – это текст, написанный на пергаменте поверх другого текста. Благодаря такой рукописи мы знаем одно из самых важных сочинений Архимеда. Многие работы гения из Сиракуз сохранились для потомков благодаря арабским и латинским копиям. Однако математикам XVI века хотелось понять, каким методом он пользовался, чтобы прийти к своим открытиям. Книги ученого содержали схематические и полные доказательства, но было неизвестно, как он пришел к этим результатам до того, как их доказать. Думали, что у него не было никакого метода открытия своих блестящих идей, а если и был, то он не оставил его для потомков.
«Метод»
В 1906 году датский филолог Йохан Людвиг Гейберг получил новость о палимпсесте математического содержания, хранящемся в монастыре в Константинополе. При помощи фототехники ему удалось скопировать оригинальный спрятанный текст, и то, что он обнаружил, оказалось сочинениями Архимеда. Оригинальный текст – это копия некоторых работ древнегреческого ученого, сделанная в X веке. Поверх него впоследствии были нанесены религиозные тексты. Большинство из найденных работ Архимеда были известны, но среди них также обнаружена единственная известная копия сочинения «О механическом методе доказательства теорем», более известного как «Метод». Данная работа – письмо Архимеда Эратосфену, в нем ученый объясняет метод получения результатов, которые потом он доказывал с максимальной строгостью. При этом Архимед пользуется смесью рассуждений о бесконечно малых и механики для нахождения площадей и объемов. Многие из идей, изложенных в этой работе, появились в математике только через две тысячи лет, в XVII веке. В целом считают, что если бы «Метод» стал известен вместе с прочими сочинениями Архимеда, анализ бесконечно малых был бы создан намного раньше.
Наибольшего расцвета в области вычислений математика добилась в александрийскую эпоху, когда такие математики, как Архимед, Эратосфен и Гиппарх, получили много результатов вычисления длин кривых, площадей и объемов разных фигур. Тем не менее в течение еще многих веков говорили о квадратуре, если речь шла о площади, и о кубатуре для объема. Согласно Паппу, александрийскому математику III—IV веков, кривые можно классифицировать следующим образом.
– Плоские, которые строятся из прямых и окружностей.
– Конические, которые состоят из точек конуса.
– Линейные, то есть все остальные кривые, которые невозможно создать предыдущими методами, такие как спирали, конхоиды, циссоиды и так далее. Эти кривые обычно не рассматривали.
Многие греческие математики были предшественниками современного математического анализа. Например, Папп упоминал математика Зенодора, который в своей книге об изопериметрических фигурах выводил следующие теоремы.
– Среди многоугольников с п сторонами одинакового периметра правильный многоугольник имеет наибольшую площадь.
– Среди правильных многоугольников одинакового периметра тот, у которого больше сторон, имеет наибольшую площадь.
– У круга – большая площадь, чем у правильного многоугольника того же периметра.
– Из всех твердых тел одинаковой площади поверхности наибольший объем – у шара.
АРХИМЕД СИРАКУЗСКИЙ
Нельзя начинать разговор об анализе бесконечно малых, не поговорив о главном математике античности. Архимед (ок. 287– 212 до н. э.) родился в Сиракузах, греческой колонии на Сицилии, и был сыном астронома Фидия. Он учился в Александрии и вернулся в Сиракузы, где развивал свой талант до самой смерти. Архимед обладал необычайным умом и большим кругом интересов, ему нравилось заниматься как теоретическими, так и прикладными проблемами. Его значимость доказывает фраза философа и писателя Вольтера: "В голове Архимеда было больше воображения, чем в голове Гомера".
Кроме математики, ученый также занимался исследованиями рычага. Известна его фраза: "Дайте мне точку опоры, и я переверну Землю". Архимед был первооткрывателем основного закона гидростатики, известного также как закон Архимеда, согласно которому на любое тело, погруженное в жидкость, действует выталкивающая сила, равная весу вытесненной жидкости.
Тот, кто поймет Архимеда и Аполлония, будет меньше восхищаться достижениями самых известных людей своего времени.
Готфрид Вильгельм Лейбниц
С этим законом связана одна из знаменитых историй об Архимеде. Гиерон, тиран Сиракуз, заказал себе корону и выдал ювелиру определенное количество золота. Когда корона была ему вручена, он засомневался: использовал ювелир все золото или смешал его с серебром? Архимед, к которому обратился Гиерон, начал думать над этой задачей и нашел решение... принимая ванну. Согласно легенде, он выскочил из ванной и голым побежал по улицам Сиракуз, крича: «Эврика!» («Нашел!»). Теперь ему было достаточно погрузить в жидкость по очереди слиток золота и слиток серебра, равных по весу короне, и взвесить вытесненную слитками жидкость, а потом проделать то же самое с короной. Так он узнал, что в корону было добавлено серебро.
Винт Архимеда. Хотя обычно данное изобретение приписывают древнегреческому ученому, есть мнение, что его применяли уже в Древнем Египте.
Работы Архимеда были очень короткими, и в них очень строго доказывались и решались задачи. В названиях автор прямо указывал тематику: «О квадратуре параболы», «О шаре и цилиндре», «О спиралях», «Об измерении круга», «О плавающих телах», «О равновесии плоских фигур» и так далее. Некоторые его сочинения были потеряны, например его работы о тяготении, рычагах и оптике.
Но именно талант изобретателя сделал Архимеда известным среди его современников. В молодости он сделал устройство, которое с помощью гидравлического механизма воссоздавало движение планет. Также Архимед разработал блочный механизм, позволивший ему спустить на воду огромный корабль царя Гиерона. Кроме того, он создал большое количество разнообразных военных машин, с помощью которых жители Сиракуз два года отражали атаки осаждавших их римлян. Согласно легенде ученый использовал большие зеркала, чтобы сжигать вражеские корабли. И, само собой, он был создателем винта Архимеда (см. рисунок), механического приспособления для поднятия воды из колодцев и цистерн, состоящего из металлической полосы, идущей спирально вокруг центрального стержня и спрятанной внутри цилиндра.
Однако все эти изобретения были, как пишет Плутарх в жизнеописании Марцелла, римского военачальника, завоевавшего Сиракузы, просто "развлечением для геометра". Плутарх объясняет нам, каковы были интересы гения:
«Хотя открытия обеспечили ему имя и славу, не человеческую, а божественную, он не захотел оставить ни одного трактата о них, а считал инженерное дело и любое утилитарное ремесло неблагородным и грубым и претендовал только на области, красота и утонченность которых не связаны с потребностями и не могут сравниться с другими областями; он открыл диспут о материи и доказательстве, где первое предоставляет силу и красоту, а второе – точность и высочайшую силу, потому что невозможно найти в геометрии более сложные и важные пропозиции, изложенные в рамках более чистых и четких понятий».
Архимед пользовался методом исчерпывания для строгого доказательства своих результатов. В работе «О шаре и цилиндре» первая аксиома, которую он выдвигает, заключается в том, что из всех линий, имеющих одни и те же концы, самая короткая – прямая. В нее включены другие аксиомы, связанные с длинами кривых и площадей поверхностей.
НЕ ГЕОМЕТРИЕЙ ЕДИНОЙ
В области геометрии у древнегреческих ученых было правило – рассматривать только те фигуры, которые можно построить с помощью линейки и циркуля. Поэтому они были ограничены знаменитыми задачами на построение: удвоение куба, квадратура круга и трисекция угла.
В греческой математике не было создано общих методов для решения различных задач. Кроме того, после подчинения геометрии математической строгости доказательства стали каждый раз все более сложными. Это мешало двигаться дальше в развитии вычислений.
МЕТОД ИСЧЕРПЫВАНИЯ
Этот метод обязан своим существованием греческому математику Евдоксу Книдскому (ок. 390-337 до н.э.). Он состоит в приближении неизвестной площади, которую нужно вычислить, к большей или меньшей площади. Метод основывается на принципе, который упоминается в «Началах» Евклида:
«Если при данных двух неравных величинах из наибольшей величины вычесть величину, большую ее половины, а из остатка – другую величину, большую ее половины, и последовательно повторять процесс, в итоге останется величина, меньшая наименьшей из заданных величин».
Попробуем найти площадь круга (рисунок 1). Для этого впишем в него квадрат (площадью, большей половины круга) и вычтем его площадь из круга. На сторонах квадрата построим равнобедренные треугольники, вписанные в сегменты круга, а затем вычтем площадь данных треугольников. Повторяя последнюю операцию нужное количество раз, мы последовательно подходим к площади круга сколь угодно близко.
РИС. 1
На рисунках видно, что каждый раз происходит вписывание в круг многоугольников с большим числом сторон, площадь которых каждый раз все больше приближается к искомой площади круга. Такие же рассуждения можно применить к описанному квадрату (рисунок 2).
РИС. 2
Изначально развитие греческой арифметики было обусловлено потребностями геометрии, поскольку математики сводили ее к вычислению геометрических или тригонометрических величин. Позже арифметика и алгебра разделились и начали развиваться как независимые дисциплины. Математики христианской эпохи, такие как Герои Александрийский (I в.), Никомах Герасский (II в.) и Диофант Александрийский (III в.), развивали арифметику и алгебру без оглядки на потребности геометрии. Никомах, следовавший пифагорейской традиции и написавший «Введение в арифметику», считал, что его труд имел такое же значение для арифметики, как «Начала» Евклида – для геометрии.
Древнегреческая алгебра добилась огромных успехов благодаря Диофанту. Его "Арифметика" состоит из серии задач с решениями и необходимыми разъяснениями. Это сочинение было написано для обучения алгебре. Здесь мы встречаем задачи, которые, кажется, взяты из современного учебника средней школы. Например: "Найти два числа, сумма которых равна 20, а произведение – 96". Способ, которым ее решает Диофант, если использовать нашу современную терминологию, выглядит следующим образом. Сумма равна 20, а произведение 96; пусть 2х есть разность между наибольшим и наименьшим числом; следовательно, оба числа равны 10 + х и 10 – х, а их произведение (10+х)(10-х) = 100 – х2 = 96, х2 = 4. Следовательно, х = 2, поскольку ученые Древней Греции не учитывали отрицательных решений. Искомые числа – 12 и 8.
К сожалению, большая часть наследия греческой культуры исчезла, уничтоженная христианами. Тысячи рукописей были сожжены, и большая часть научного знания пропала. В течение целого тысячелетия в геометрию не было привнесено ничего нового. Практически до 1600 года в этой области не происходило никакого развития.
В середине XVI века по Европе начали распространяться латинские переводы сохраненных арабскими учеными основных греческих текстов, которые были с энтузиазмом приняты математиками того времени. Началось тщательное изучение решений задач и доказательств, найденных древнегреческими учеными. Восхищение математиков XVI и XVII веков знаниями греков было бесспорным.
РАЗВИТИЕ АЛГЕБРЫ
Геометрия в течение тысячелетия стояла на месте, но алгебра немного развивалась, что сделало возможным создание математического анализа. Алгебра все еще была тесно связана с геометрией. Математик Мухаммад ибн Муса Аль-Хорезми (780– 850) работал в Багдаде. От его имени происходит слово алгоритм. Также благодаря ему появилось слово алгебра, поэтому многие авторы считают Аль-Хорезми отцом алгебры. Однако метод, которым он пользовался для решения своих уравнений, оставался в основном геометрическим.
Одним из наиболее известных ученых XVI века, внесших колоссальный вклад в развитие алгебры, был уже ранее упомянутый Франсуа Виет. Он активно работал над алгебраическими символами, пользуясь буквами для обозначения математических параметров: для неизвестных параметров он использовал гласные, а для всех прочих – согласные. В своих работах Виет давал сначала решение задачи в общем виде и только потом приводил числовой пример. Так он перешел от изучения частных проблем к развитию общих методов, что было очень важно для прогресса анализа бесконечно малых. Именно его работа обеспечила дорогу к появлению аналитической геометрии.