355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Физика учит новый язык. Лейбниц. Анализ бесконечно малых » Текст книги (страница 1)
Физика учит новый язык. Лейбниц. Анализ бесконечно малых
  • Текст добавлен: 20 марта 2017, 13:30

Текст книги "Физика учит новый язык. Лейбниц. Анализ бесконечно малых"


Автор книги: авторов Коллектив


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 1 (всего у книги 9 страниц)

Annotation

Готфрид Вильгельм Лейбниц – один из самых гениальных ученых в истории науки. Он жил на рубеже XVII и XVIII веков, в эпоху больших социальных, политических и научных перемен. Его влияние распространяется практически на все области знания: физику, философию, историю, юриспруденцию... Но главный вклад Лейбница, без сомнения, был сделан в математику: кроме двоичного исчисления и одного из первых калькуляторов в истории он создал, независимо от Ньютона, самый мощный инструмент математического описания физического мира – анализ бесконечно малых.

Jose Munoz Santonja

Введение

ГЛАВА 1

ГЛАВА 2

ГЛАВА 3

ГЛАВА 4

Список рекомендуемой литературы

Указатель



Jose Munoz Santonja

Физика учит новый язык. Лейбниц. Анализ бесконечно малых.

Наука. Величайшие теории Выпуск № 12, 2015

Еженедельное издание

©Jose Munoz Santonja, 2013 (текст)

© RBA Collecionables S.A., 2013

© ООО «Де Агостини», 2014-2015

ISSN 2409-0069

Пер. с исп. – М.: Де Агостини, 2015. – 168 с.

Моей дочери Марии, остающейся мужественной в любой ситуации.

Введение

Историк, горный инженер, поэт, конструктор, геолог, дипломат, музыкант, алхимик, политик, агроном, библиотекарь... Неужели всеми этими профессиями может владеть один человек? Да, так как всей вышеперечисленной деятельностью занимался Готфрид Вильгельм Лейбниц. Однако настоящую славу ему принесло другое: он известен нам прежде всего как философ и ученый, а особенно прославился благодаря работам в области математики.

Жизнь Лейбница проходила в бурную эпоху больших политических, военных, культурных, социальных, религиозных и особенно научных перемен. Когда будущий ученый родился, заканчивалась Тридцатилетняя война (1618-1648), которая изменила политическую картину Европы. После заключения Вестфальского мира (1648) начался закат Священной Римской империи германской нации. В борьбе за суверенитет между германским императором и местными князьями победили последние, что привело к созданию многочисленных суверенных независимых государств; часть из них боролись с Францией, а другие при этом вступали с ней в союз. Такое разделение мешало созданию национального государства. Другой причиной, породившей конфликт, было столкновение католиков с протестантами; когда закончилась война, некоторые из князей-выборщиков были католиками, а другие – протестантами.

После правления Людовика XIII, которое связывают с легендарной фигурой кардинала Ришелье, на трон взошел Людовик XIV, известный как Король-Солнце. Он начал глубокую реформу собственной страны: укрепил экономику, способствуя процветанию национальной промышленности и проводя колониальную политику в Америке, создал прекрасную инфраструктуру и, помимо прочего, сильную регулярную армию. Затем он обратил свой взор на остальную Европу. Для начала правитель направился к Нидерландам, которые во время Вестфальского мира подписали сепаратный мир с Испанией. В данном конфликте (1672-1678) он рассчитывал на помощь Англии и некоторых германских княжеств. Именно эта политическая ситуация помогла Лейбницу начать путешествовать и открыть для себя мир. Первая дипломатическая миссия привела его в Париж и затем – в Лондон с целью предотвратить войну с Нидерландами или, по крайней мере, не дать Германии ввязаться в конфликт.

В XVIII веке Франция обратила свой взгляд на Испанию. В этой сложной ситуации мастерское умение Лейбница вести переговоры было весьма востребовано: он участвовал в дипломатических консультациях и даже писал доклады о том, как использовать материальные и человеческие ресурсы в этой войне, которую было невозможно остановить.

В том же самом веке Россия эпохи Петра I резко модернизировалась и приблизилась к Европе. Она стала своеобразным мостом между Востоком и Западом, в частности между европейской и китайской наукой и культурой. Лейбниц всегда выступал за сближение Германии с Россией и стремился создать условия, благоприятные для взаимопроникновения европейской и китайской культур. В итоге он стал советником Петра I, с которым периодически встречался при разных обстоятельствах.

Эпоха Возрождения характеризуется серьезными изменениями в области мысли, религии и искусства. Это время предполагало большую, чем в Средние века, свободу духа, что, помимо прочего, сделало возможной протестантскую реформу, а с ней и будущие религиозные войны. XVII столетие можно смело назвать Золотым веком в искусстве, достаточно вспомнить хотя бы несколько великих личностей, живших в то время: Мольер, Шекспир, Свифт, Сервантес, Кеведо, Лопе де Вега, Веласкес, Мурильо, Рубенс, Рембрандт, Вивальди, Бах, Гендель... В области философии мы сталкиваемся, среди прочих, со Спинозой, Гоббсом, Локком, Бэконом или Арно. Одним из факторов, который больше всего повлиял на этот расцвет культуры, было изобретение в середине XV века печатного станка. И если выделить самую главную книгу, изданную в первые годы наступающего времени перемен, то это будет труд De revolutionibus orbium coelestium («О вращении небесных сфер») Николая Коперника, опубликованный в 1543 году.

Однако наиболее интенсивные изменения в данный период произошли, без сомнения, в области науки. Научная революция заложила основу для будущей промышленной революции, потому что наука тогда уже не обладала чисто теоретическим характером, как в Древней Греции, а приобрела прикладное значение. Важность происходившего наглядно демонстрируют, помимо прочего, несколько достигнутых вех: закон свободного падения тел Галилея, законы движения планет Кеплера, Закон Бойля – Мариотта, вычисление скорости света Рёмером, волновая теория Гюйгенса, барометр Торричелли, описание кровообращения Гарвеем или открытие одноклеточных организмов Левенгуком. Эти примечательные достижения стали возможны не потому, что ученые XVII века были более способными, чем их предшественники, а потому, что они посмотрели на мир по-новому. В отличие от древнегреческих ученых, они занялись исследованиями, не придавая слишком большого значения доказательству. В то время был популярен девиз «сначала изобрести, потом доказывать».

Философ Фрэнсис Бэкон, ярый защитник эмпирического исследования, по мере сил пропагандировал образ ученого, работающего в лаборатории. В своей работе «Новая Атлантида» (1626) он показал утопическое общество, которым руководили ученые. Джонатан Свифт в «Путешествиях Гулливера» (1726) высмеял эту идею, но ею явно были вдохновлены научные сообщества, которые расцвели в XVII веке.

Другим фактором, который сделал возможной научную революцию XVII века, стал колоссальный прогресс в математике. Древнегреческая геометрическая строгость была оставлена в стороне, и начали стремительно развиваться алгебра и анализ, что произвело революцию в математическом и научном мире в целом. Стало понятно, что математические законы – это основа природы.

Многие области, которые сегодня являются независимыми науками, в XVII веке входили в состав прикладной математики, как мы видим из «Курса ши мира математики», опубликованного в 1674 году Клодом-Франсуа Милье Дешалем. В этой работе рассматривались следующие математические темы: арифметика, тригонометрия, логарифмы, геометрия, алгебра, метод неделимых, механика, статика, география, магнетизм, гражданская и военная инженерия, столярное дело, обработка камней, гидростатика, движение жидкостей, гидравлика, кораблестроение, оптика, перспектива, музыка, астрономия (с построением солнечных часов, астролябий, календарей и гороскопов). Создание Декартом и Ферма аналитической геометрии открыло дорогу самому мощному инструменту, который был в распоряжении математики: он позволил ей стать исключительной наукой. Этот инструмент – анализ бесконечно малых.

Именно тогда появились научные гении Ньютона и Лейбница. Некоторые авторы полагают, что эти гении были основателями анализа, а не первооткрывателями, поскольку многие другие математики предварительно расчистили им дорогу.

Невозможно найти двух более разных ученых. В то время как Ньютон прожил всю свою жизнь достаточно уединенно, Лейбниц посетил несколько стран и часто путешествовал по Германии. Ньютон слыл очень замкнутым человеком, который почти ни с кем не общался вне работы и взаимодействия с Лондонским королевским обществом, а Лейбниц был завсегдатаем праздников и легко ориентировался в различных дворах Германии. Английский ученый часто не публиковался и не отвечал на многие письма, потому что не любил вступать в де-

баты, в то время как Лейбниц спорил со всеми, с кем только мог. Когда Ньютона не стало, его похороны сопровождались такой пышностью и почтением, как будто речь шла о короле. А Лейбниц умер в полном одиночестве: за его гробом шли лишь его секретарь и ближайшие родственники. Оба ученых так и не создали семьи. Ньютон никогда не был заинтересован в женитьбе, Лейбниц же задумался о браке, когда ему уже было 50 лет, однако пока его избранница медлила с ответом, он поразмыслил и переменил свое решение.

Без сомнения, имя Лейбница вписано в историю науки золотыми буквами благодаря открытию анализа бесконечно малых. Ученый сделал это независимо и почти одновременно с Ньютоном, что породило чудовищный спор о приоритете, в который, помимо самих его зачинщиков, оказался втянут весь научный мир. Сегодня считается, что английский ученый пришел к созданию этого метода раньше, но Лейбниц разработал символику столь удобную, что ею пользуются и поныне.

Анализ бесконечно малых – один из самых важных инструментов, которыми располагает математика. С его помощью оказалось возможным решить некоторые научные проблемы, существовавшие еще со времен Древней Греции. Среди них исследование скорости изменения некоторых величин, что было актуально, например, для изучения движения тел. Кроме того, этот метод облегчил вычисление касательной к кривой, что имело практическое применение, например в оптике. Также было облегчено решение задач на оптимизацию, то есть нахождение того, в каких условиях можно получить максимальное или минимальное значение чего-либо; сегодня они очень широко используются в экономике. И четвертая огромная проблема, которую устранило создание этого анализа, – вычисление площадей и объемов элементов, не являющихся геометрически правильными. Сегодня их применяют достаточно широко: в проектировании мобильных телефонов или самолетов, в транспорте, метеорологии... Данный метод используется в любых процессах, в которых присутствует постоянное развитие и изменение, таких как использование энергии, изучение распространения эпидемии или распределение населения.

Однако талант Лейбница был настолько обширен, а его научные интересы настолько разнообразны, что мы можем найти следы его деятельности и в иных областях. Он выступал в роли инженера, изобретая механизмы для подъема руды из шахт или для орошения садов, исследовал свойства недавно открытых химических веществ, таких как фосфор, и так далее.

Некоторые историки считают Лейбница последним универсальным гением – благодаря тому, что он работал в огромном количестве научных областей. Французский философ XVIII века Дени Дидро, несмотря на то что его философские взгляды были противоположны взглядам Лейбница, сказал о нем: «Возможно, никогда не существовало человека, который бы читал, учился, размышлял и писал больше Лейбница... То, что он написал о мире, о Боге, о природе и душе, достойно наивысших похвал». И добавил нечто еще более обескураживающее: «Когда сравниваешь свои таланты с талантами Лейбница, существует соблазн выбросить все свои книги и идти тихо умирать в темноту какого-либо забытого уголка».

Лейбниц написал много книг, воспоминаний и писем. Он создал огромное количество трудов: многие из основных работ ученого были опубликованы уже после его смерти, но до сих пор не вышло полного собрания его сочинений.

Некоторое представление о разнообразии интересов Лейбница дает, например, перечень предложений, подготовленных им для аудиенции с императором Священной Римской империи Леопольдом I. Это открытие исторического колледжа, денежная реформа, реорганизация экономики, улучшение торговли и текстильной мануфактуры, создание страхового фонда и налогов на роскошные платья, создание всеобщей библиотеки, а также предложение освещать улицы Вены лампами с рапсовым маслом.

Лейбниц был убежденным оптимистом и считал, что мы живем в лучшем из миров. Ученый никогда не отчаивался из– за того, что некоторые из многочисленных проектов, в которые он погружался, по каким-то причинам не продвигались. Всю свою жизнь он полностью посвятил исследованиям на благо человечеству.

1646 1 июля родился Готфрид Вильгельм Лейбниц в Лейпциге, Германия.

1661 Начал обучение в Лейпцигском университете, где его специальностью была философия. Проведя один семестр в Йенском университете, вернулся в Лейпциг и начал специализироваться на праве.

1666 Опубликовал свою первую философскую работу De arte combinatoria («Об искусстве комбинаторики»), возможно написанную под влиянием Ars magna Раймунда Луллия.

1667 Получил степень доктора права в Альтдорфском университете.

1668 Начал работать на курфюрста Майнца.

1672 Направился в Париж, чтобы представить проект, разработанный вместе с бароном Иоганном Христианом фон Бойнебургом.

1673 Поехал в Лондон, где присутствовал на собрании Королевского общества и представил свой арифмометр.

1676 Назначен советником герцога Брауншвейг-Люнебургского. Эта должность сохранится за ним до самой смерти.

1679 Начал проект эксплуатации шахт в Альт-Гарце, для чего разработал ряд насосов и ветряных мельниц.

1684 В журнале «Акты ученых» появилась статья Лейбница, в которой он изложил новый анализ бесконечно малых.

1685 Получил заказ написать историю Брауншвейг-Люнебурга, чем и занимался до конца жизни, так и не закончив работу.

1692 Ганновер стал курфюршеством, и Лейбниц активно участвовал в этом процессе.

1698 После смерти герцога Эрнста Августа его сын Георг Людвиг занял место курфюрста Ганновера. У Лейбница не сложились с ним отношения.

1700 Создана Прусская академия наук. Лейбниц стал ее первым президентом.

1710 Опубликовал «Опыты теодицеи о благости Божией, свободе человека и начале зла», где собраны многие разговоры ученого с королевой Пруссии Софией Шарлоттой во дворце Литценбурге (позднее переименованном в Шарлоттенбург).

1714 Написал «Монадологию», излагающую его философские взгляды.

1716 Опубликовал свою главную работу о Китае – «Рассуждение о естественной теологии китайцев». После нескольких приступов подагры умер 14 ноября в Ганновере.

ГЛАВА 1

СОЗДАТЕЛЬ АРИФМЕТИЧЕСКОЙ МАШИНЫ

С давних времен человек пользовался математикой, чтобы считать и вычислять. По мере того как процесс вычисления становился все более сложным, появилась необходимость в том, чтобы упростить его и сделать более эффективным. Так, например, возникли счеты и логарифмические линейки. А в XVII веке появился ряд механических машин, которые улучшали скорость и точность математических операций, – такие как арифмометр Лейбница.

Родители маленьких детей, как правило, склонны «мучить» гостей историями о своих отпрысках, стремясь продемонстрировать их ум, смекалку, воображение и даже гениальность. Со временем такие истории становятся годны только для того, чтобы на любой встрече родственников или друзей заставить покраснеть от стыда бывшего «гениального» ребенка.

Однако, если человек в какой-либо сфере деятельности добился выдающихся результатов, то подобные детские истории становятся частью его общеизвестной биографии: они служат доказательством того, что он был вундеркиндом, и в большинстве случаев так оно и есть. Самым известным примером из мира математики стал немецкий ученый Карл Фридрих Гаусс. В 1787 году, когда ему было только десять лет, он решил сложную задачу, предложенную в классе. Его учитель попросил сложить первые 100 натуральных чисел. Гаусс представил решение на своей доске за несколько секунд.

Его метод был следующим. Гаусс понял, что если написать числа в порядке от 1 до 100, а внизу снова от 100 до 1, то при сложении каждого верхнего и нижнего элемента всегда получается 101:

1 2 3 4 97 98 99 100

100 99 98 97 4 3 2 1

Поскольку есть 100 слагаемых, сумма этих двух рядов чисел равна 10100, а так как у нас два ряда, получается, что сумма первых 100 чисел равна:

(100 • 101)/2 = 5050

Гаусс понял, что первое число (1) и последнее (100) в сумме дают то же значение (101), что и второе и предпоследнее, и можно без проблем продолжить это рассуждение, то есть 1 + + 100 = 2 + 99 = 3 + 98 =...= 50 + 51 = 101. Таким образом, получается 50 пар чисел. Если каждая пара равна 101, то сумма всех пар – 5050.

Как мы увидим в следующей главе, сложение больших рядов чисел очень интересовало математиков XVII века.

Хотя истории о детстве Лейбница нельзя назвать столь впечатляющими, некоторые авторы тоже считают его вундеркиндом. В возрасте двух лет, когда с ним осталась тетя, мальчик забрался на высокий стол и, внезапно потеряв равновесие, упал со значительной высоты. Оказавшись внизу, маленький Лейбниц сидел на полу совершенно невредимый и смеялся над случившимся. Из этого его отец сделал вывод, что ребенок защищен небесами, и немедленно послал гонца в церковь, чтобы выразить благодарность высшим силам.


РОЖДЕНИЕ ГЕНИЯ

Готфрид Вильгельм Лейбниц родился 1 июля 1646 года в немецком городе Лейпциге, в курфюршестве Саксонии, одном из главных торговых центров Европы начиная с XII века. Этот город был знаменит тем, что в нем находилось большое количество типографий, благодаря чему в XVIII веке он даже мог конкурировать с Франкфуртом в искусстве печатного дела, и, следовательно, достать здесь хорошие книги не представляло особого труда.

Начиная с эпохи Возрождения Лейпциг был важным центром образования и науки, в городе проходила интенсивная культурная жизнь. Местный университет, основанный в 1409 году, считается вторым – после Гейдельбергского – самым древним вузом Германии. В момент рождения Лейбница его отец, Фридрих Лейбниц, был заместителем декана факультета философии и, кроме того, преподавал философию морали (этику) в университете. Также он работал делопроизводителем, адвокатом и нотариусом. Фридрих Лейбниц был родом из Альтенбурга, небольшого населенного пункта примерно в 40 км от Лейпцига. Его мать, Анна Деверлин (бабушка Готфрида), принадлежала к лейпцигской знати.


ВЕЛИКИЙ САМОУЧКА

С 1653 по 1661 годы Готфрид Вильгельм получал среднее образование в школе Святого Фомы в Лейпциге. В эти годы он удовлетворял жажду знаний в библиотеке отца и самостоятельно выучил латынь, читая произведения классиков и труды Отцов Церкви. В возрасте 12 лет Лейбниц уже владел латынью и с запинками говорил на греческом языке, который он пару лет изучал в школе.

В последние школьные годы Готфрид открыл для себя аристотелеву логику и овладел ею до такой степени, что смог применять правила к частным случаям,– его одноклассники не могли это делать. Именно благодаря этому умению расцвел огромный талант Лейбница-изобретателя, и, открыв границы формальной логики, Готфрид увлекся новыми идеями, приходившими ему в голову. Он погрузился в изучение теологии и метафизики, проблемы которых сопровождали ученого на протяжении всей его деятельности. Особенно он интересовался великими полемистами – как католиками, так и протестантами.

В 1661 году Лейбниц начал свою учебу в Лейпцигском университете, сосредоточившись на философии, особенно на Аристотеле, параллельно изучая Евклида. До этого времени он не сталкивался с тем, что сегодня мы называем наукой.

Философию ему преподавал Якоб Томазий, исповедовавший научный подход к исследованию истории философии. Лейбниц уважал его всю свою жизнь. Томазий руководил работой Лейбница на соискание степени бакалавра философии, которую тот получил в 1663 году. Его эссе под названием «Метафизические рассуждения о принципе индивидуации» заложило основы для дальнейших философских поисков ученого.

Хотя Лейбниц приобщался к миру философии посредством общепризнанных классиков, тем не менее он прикоснулся и к новой философии, как он сам об этом вспоминал за несколько лет до смерти в письме Николя Ремону, первому министру герцога Орлеанского:

«Будучи еще ребенком, я изучал Аристотеля и самих схоластов [...]. Затем, уже свободный от тривиальной схоластической философии, я перешел к современным философам. Помню, как я в возрасте 15 лет гулял один в Розентальском лесу рядом с Лейпцигом и размышлял, не остановиться ли мне на материальном. В конце концов победил механицизм, и это привело меня к занятию математикой».

Итак, интерес Лейбница к механицизму заставил его уделять больше внимания математике. Он провел один семестр 1663 года в Йенском университете, где общался с Эрхардом Вейгелем, признанным преподавателем математики, а также знатоком этики и сторонником естественного права. За несколько лет до этого Вейгель опубликовал работу, в которой пытался примирить Аристотеля с современными философами, такими как Фрэнсис Бэкон (1561-1626), Томас Гоббс (1588– 1679) или Пьер Гассенди (1592-1655), то есть с теми, чьи философские взгляды были тесно связаны с математикой.

В Лейпциге Лейбниц обычно ходил на встречи с другими студентами, чтобы обмениваться идеями и обсуждать книги. Находясь в Йене, он стал членом общества Societas Quarentium, которое проводило еженедельные собрания под руководством Вейгеля. В течение всей свой жизни Лейбниц поддерживал и продвигал подобные научные общества по всей Европе.


ПУТЬ К ДОКТОРСКОЙ СТЕПЕНИ

Лейбниц вернулся в Лейпциг, чтобы изучать право, и в феврале 1664 года стал магистром философии, написав работу «Философские вопросы права». В ней он утверждал, что без философии большинство вопросов, поставленных в области права, не имеют решений. Кроме того, Лейбниц хотел способствовать тому, чтобы студенты, изучающие право, перестали испытывать презрение к философии.

Через девять дней после защиты этой работы умерла его мать. Готфрид разделил наследство с сестрой и тетей, которая была замужем за широко известным в то время юристом Иоганном Штраухом. Последний разглядел незаурядные способности юноши и поддержал его, предоставив ему законодательные документы. Это помогло Лейбницу в подготовке его диссертации «Об условиях», с помощью которой он получил степень бакалавра права. В этой работе ученый рассматривает юридические аспекты через призму математики и физики. Он формулирует закон, подчиненный условию, и изучает различные случаи. Если условие невозможно, то закон является нулевым и ему присваивается значение 0. Если не ясно, может ли оно осуществиться, то закон считается условным и с ним связывается дробь от 0 до 1, допустим 1/2. Если, наоборот, условие обязательно выполняется, то оно определяется как непременное условие, закон точен, и ему назначается значение 1. Значения данного закона приведены в следующей таблице.

Conditio (Условие)

Impossibilis

Contingens

Necesaria

(Невозможное)

(Случающееся)

(Необходимое)

0

V2

1

Jus (Закон)

Nullum

Conditionale

Purum (Чистый)

(Нулевой)

(Условный)

В вышесказанном легко найти связь с вычислением вероятностей. Вообще математика и другие науки будут постоянно присутствовать в философских трудах Лейбница.

В 1666 году Готфриду отказали в получении степени доктора права из-за того, что он был слишком молод: докторская степень способствовала назначению доцентом, а на получение этого ученого звания рассчитывало много кандидатов более старшего возраста, претендовавших на двенадцать свободных мест. В октябре 1666 года Лейбниц отправился в Альтдорфский университет, где представил свою работу, написанную в Лейпциге («О запутанных судебных случаях»), а через пять месяцев уже получил степень доктора. Он отказался от предложения остаться в университете, поскольку не хотел запирать себя в его стенах.

Здесь стоит упомянуть некоторые аспекты университетского обучения той эпохи. Сегодня появляется все больше новых образовательных программ с узкой специализацией, где каждый может найти для себя область по душе, если это позволяют итоговые оценки. Но в XVII веке возможности ученых были куда более скромными. В эпоху Возрождения признавались и преподавались в университетах лишь несколько наук: теология, философия, право и медицина. Поэтому интеллектуалы того времени поступали на факультеты медицины, поскольку именно она была наиболее близка к их интересам и в данной сфере они могли получить самое лучшее по тем меркам научное образование. Так как Лейбниц, несмотря на его интерес к метафизике и математике, изучал право, его познания в области физики нельзя было назвать блестящими: он убедился в этом, как только начал общаться с образованными людьми из других стран.


ФИЛОСОФСКИЕ КОМБИНАЦИИ

Хотя в этой книге мы преимущественно собираемся осветить деятельность Лейбница в сфере точных наук, мы не можем полностью оставить в стороне его философские взгляды.


РАЙМУНД ЛУЛЛИЙ

Раймунд Луллий, или Рамон Льюль, (ок. 1232-1315) – майоркский философ, теолог, мистик и миссионер. Он считается изобретателем розы ветров и прибора для определения времени по положению звезд на ночном небе под названием ноктурлабиум. Когда Луллий родился, Майорка была только что присоединена к Королевству Арагон правителем Хайме I. В это время на острове без проблем соседствовали представители трех великих цивилизаций – христианской, еврейской и арабской,– так что Луллий вырос в обстановке терпимости к чужим взглядам и имел возможность обогатиться культурно. Он занимал разные должности при Арагонском дворе, в частности был мажордомом и сенешалем будущего короля Хайме II Майоркского. В 30 лет Луллий оставил должность и семью, чтобы проповедовать на дорогах, изучая теологию и арабский язык. Позже он закрылся в монастыре с целью изучать латынь, грамматику и философию. У него были три навязчивые идеи: крестовый поход в Святую Землю, обращение неверных и разработка метода рационального доказательства истин веры.


Францисканский орден

В 1295 году Луллий вступил во францисканский орден, стремясь обрести знания, недоступные для светского человека. Он практически безуспешно проповедовал у дверей мечетей и синагог, а также присутствовал на Вьеннском соборе, созванном в 1308 году папой Климентом V. Далее Луллий отправился миссионером в Африку, где ему пришлось пережить немало неприятностей. Умер он на площади в Тунисе в 1315 году, будучи побит камнями толпой мусульман, и после смерти был причислен к лику святых. Луллий написал много книг на самые разнообразные темы, такие как грамматика, образование, наука и философия.

Дело в том, что первые в его работах довольно тесно переплетаются со вторыми: ученый использует в своих философских рассуждениях и математические, и физические аспекты. Не стоит забывать, что Лейбниц решил заниматься механистической философией, неотъемлемой частью которой является наука.

Одним из философов, повлиявших на Лейбница в молодости, был Раймунд Луллий. Разберем некоторые нюансы его работы, которые помогут нам составить представление о том, как развивалась его философия. Но сначала рассмотрим появляющийся в ней математический аспект.

Мы можем считать комбинаторику частью математики, изучающей форму, в которой можно выбирать, группировать и располагать ряд объектов. Комбинаторика присутствует во многих ситуациях нашей жизни. Когда группа друзей или коллег задумывает на Рождество подарок «скрытому другу» – это перестановка порядка выбирающих людей. Три книги, выбираемые нами наугад, чтобы взять с собой в отпуск, – это одно сочетание среди многих возможных. В олимпийском беге, в котором участвуют восемь атлетов, способ нахождения призеров – размещение этих спортсменов, среди которых мы выбираем трех.

Как мы видим из предыдущих примеров, в перестановках мы выбираем все элементы и располагаем их в ином порядке. Чтобы найти количество возможных комбинаций, достаточно найти факториал этой величины. Факториал натурального числа п (который обозначается п) – это произведение натуральных чисел от 1 до этого числа:

n! = n(n-1)(n-2) • ... • 3 • 2 • 1.

Например, если у нас есть пять книг, которые мы располагаем на полке, не устанавливая никакого конкретного порядка, количество способов это сделать будет равно:

5! = 5 • 4 • 3 • 2 • 1 = 120 различных расположений.

Достаточно представить, что на первом месте может оказаться любая из пяти книг. Для каждого из этих пяти вариантов на второе место мы можем поместить любую из четырех оставшихся книг, на следующее – любую из трех оставшихся, и так до последнего места, для которого есть только один вариант, поскольку остается только одна книга.

Случай с размещениями похож на предыдущий: важен порядок, в котором выбираются элементы. Но выбираются не все из них, поэтому для их нахождения нам не нужно доходить до 1 в конечном произведении. Предположим, что нам нужно разместить на полке только две книги из пяти имеющихся. Если мы осуществим рассуждение, подобное предыдущему, число возможных выборов будет равно 5 х 4 = 20. В целом количество размещений п элементов, из которых мы берем только г, задано выражением:

Vrn = n(n-1) • ... • (n-r+1),

где количество множителей равно r, начиная с n.

Наконец, в сочетаниях нас не интересует порядок, мы только хотим знать, сколько существует различных вариантов выбора подмножеств из множества заданных объектов. Допустим, у нас есть набор монет, в котором присутствует только одна монета каждого номинала от 1 евроцента до 2 евро. Если нам дадут три монеты, нас не будет интересовать порядок, в котором они у нас появятся; как известно, от перестановки слагаемых сумма не меняется.

Чтобы найти количество сочетаний п объектов, взятых по г, мы пользуемся таким выражением:

Следующее выражение соответствует частному между факториалами, называемому числом сочетаний:

Итак, если бы мы хотели вычислить, сколько групп из 3 книг мы можем выбрать из возможных 15, нам пришлось бы вычислять число сочетаний 15 элементов взятых по 3, что дало бы:

Но комбинаторика почти с начала времен используется не только в математике, как можно было бы подумать, но и во многих других дисциплинах. Упоминания о перестановках встречаются в древних ассирийских текстах или в греческих источниках. В иудейских документах утверждается, что буквы алфавита расставлены мистическим образом и, если правильно скомбинировать символы и знаки, можно получить любое создание. В самом Талмуде говорится, что с помощью перестановки букв, которым приписывается числовое значение, можно воспроизвести структуру мира. Каббала, которая может быть рассмотрена как система взглядов, раскрывающая аспекты, связанные с человеком, причиной его существования, его предназначением в жизни и так далее, – это наука о числах. В ней раскрывается, помимо прочего, тайный смысл слов, для чего используются три метода: гематрия (наука о числовом значении букв), нотарикон (наука о первой, срединной и последней буквах слов) и темура (наука о перестановке и сочетании букв). Нечто подобное существует и в арабской культуре, где на основе 28 букв, составляющих алфавит, каждая из которых символизирует целое число, открывается бесконечное количество сочетаний.


    Ваша оценка произведения:

Популярные книги за неделю