355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Знание-сила, 2001 №04 » Текст книги (страница 4)
Знание-сила, 2001 №04
  • Текст добавлен: 21 октября 2016, 19:35

Текст книги "Знание-сила, 2001 №04"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 4 (всего у книги 13 страниц)

Большинство космических лучей, попадающих в атмосферу Земли, имеют энергии не больше, чем десять в четырнадцатой степени электронвольт. Эксперименты на ракетах, спутниках и воздушных шарах показывают, что эти лучи состоят в основном из протонов с небольшой примесью более тяжелых элементов вплоть до железа.


Одна из возможных конструкции детекторов космических лучей

Еще Энрико Ферми полвека назад предложил гипотезу о том, что межзвездные ветры порождают заряженные частицы, которые попадают в поля магнитных облаков от взрывов сверхновых и там ускоряются до сверхвысоких энергий. Свою энергию они получают постепенно, однако проверить эту идею трудно, поскольку нет известных источников лучей, да и доходят они до Земли извилистыми путями.

Наблюдения за остатками сверхновых дают косвенные подтверждения, что такой механизм ускорения возможен, правда, лишь до энергий не выше десяти в пятнадцатой степени электронвольт. Это максимум, что можно набрать в магнитных облаках.

Было предложено немало альтернативных гипотез для ускорения до более высоких энергий: электрические поля в пульсарах, ядра галактик и даже столкновения галактик. Но все расчеты показывали, что и здесь не получается более высокой энергии. Кроме того, частицы с энергией выше десять в двадцатой уже совсем слабо заворачиваются галактическими магнитными полями, и направление их прихода на Землю должно указывать на источник. Но этого нет. На схеме, приведенной на стр. 30, видно, что распределены эти точки совершенно хаотично и не связаны ни с какими известными пульсарами или остатками сверхновых звезд.

Получается странное противоречие. Если мы видим частицу с энергией выше десять в двадцатой, значит она родилась где-то в пределах ста мегапарсеков от нас – не успела больше потерять энергии. Раз она родилась так близко и энергия ее велика, то она не могла отклониться от начального направления и должна указывать на источник рождения. Но таких явных источников нет! Значит, частицы пришли издалека. Похоже на логический тупик.

Чтобы найти из него выход, приходится искать новые процессы и источники, которые могут дать более высокие энергии. Список таких возможностей длинен, и одна экзотичнее другой. Среди них загадочные вспышки гамма-лучей, космические струны и магнитные монополи. Это, кстати, самая молодая гипотеза: все лучи с энергией выше десять в двадцатой – магнитные монополи. Гипотезы красивы, но бездоказательны. Они побуждают экспериментаторов к проверкам, но на большее не претендуют.

Для серьезного анализа ситуации необходимо существенно увеличить статистику – количество данных на самом интересном, высокоэнергетичном конце спектра. Для этого планируются и сооружаются детекторы нового поколения. По идее, они должны не только увеличить количество данных, но и повысить их качество. Главное – определять сорт пришедшей частицы.

Обычно детекторы размером в несколько квадратных метров объединяются в наземные массивы, покрывающие десятки квадратных километров. Время прохождения частиц определяется с точностью до миллиардных долей секунды, что позволяет определить направление первоначальной частицы с точностью до градуса. Самый большой наземный массив AGASA работает в Японии. Размеры его достигают ста квадратных километров, и за год он регистрирует одну частицу в интересующей нас области – вот такие масштабы набора статистики.


Так выглядит схема расположения фотоумножителей во льду

Еше один метод для регистрации высокоэнергичных частиц основан на том, что частицы ливня возбуждают азот в атмосфере, который потом флюоресцирует. Свет от этой флюоресценции может быть виден на расстоянии двадцати километров от оси ливня при помощи детекторов на Земле. Группа «Мушиный глаз» была пионером в этой области. Их установка успешно работает в горах пустыни Ута в США. Она состоит из двух частей, разнесенных на двенадцать километров друг от друга, чтобы можно было видеть каждую зарегистрированную частицу в стереопроекции.

Две эти методики дополняют друг друга. Первая работает постоянно, но она фиксирует ливень частиц лишь в один-единственный момент, когда он соприкасается с поверхностью Земли. Вторая позволяет проследить за процессом развития ливня от верхних слоев атмосферы. Но этот метод работает лишь десять процентов времени: для него необходима ясная, безоблачная и вдобавок безлунная ночь, чтобы ничто не мешало регистрировать достаточно слабый свет от ливня.

Есть уже несколько амбициозных проектов детекторов будущего поколения. Джон Линсли из университета в Нью-Мексико предложил расположить на спутнике камеру с сорокаметровым зеркалом, чтобы она наблюдала за поверхностью Земли. Есть надежда улавливать не только флюоресценцию от лучей, но и черенковский свет, отраженный от наземного лада или воды. Несмотря на большие технические и финансовые сложности, проект выглядит очень привлекательно потому, что позволит просматривать десяток тысяч квадратных километров, что превышает современные возможности в сотню раз.

Масахиро Тешима со своими коллегами из Токио планирует создать колоссальную систему оптических телескопов, чтобы резко повысить скорость набора данных и качество информации в методе флюоресценции.

Джим Кронин из Чикаго руководит международным сотрудничеством, в которое входят 150 человек из таких стран: Аргентина, Армения, Австралия, Боливия, Бразилия, Чили, Китай, Франция, Грузия, Германия, Греция, Япония, Мексика, Россия, Словения, Испания, Великобритания, США и Вьетнам. Нет времени рассуждать о размахах сотрудничества, но впечатляет уже сам список стран, которые мирно работают друг с другом. Проект назван «Оже» в честь Пьера Оже, открывшего широкие атмосферные ливни. Он будет состоять из двух массивов детекторов: один – в Аргентине, другой – в Северной Америке. В центре каждого массива будет стоять флюоресцентный детектор. Его будут окружать 1600 водяных черенковских детекторов, образуя шестиугольную сеть со стороной в полтора километра.

Кроме космических частиц, на Землю из космоса прилетают и энергичные гамма-лучи. Их испускают заряженные частицы. Изучают гамма-лучи с двоякой целью. Во-первых, чтобы понять процессы, идущие в далеком космосе, и узнать о строении тамошних обитателей. Во-вторых, чтобы узнать, как же все-таки ускоряются частицы.

Первый кандидат на роль небесного ускорителя – гравитационный коллапс звезд. Большинство звезд существует не поодиночке, а парами. Один из способов заметить гравитационный коллапс звезды – изучать излучение, которое она испускает, захватывая своим колоссальным гравитационным полем вещество своего компаньона. Это «высасывание» вещества из окружающей среды называется аккрецией.

В случае падения на компактный небесный объект выделение энергии идет гораздо энергичнее. Происходит оно в разных интервалах длин волн – в ультрафиолетовых лучах, рентгеновских и гамма-лучах. Это очень радует астрономов, поскольку, имея в своем распоряжении широкий спектр информации, можно достаточно подробно исследовать процессы аккреции. К сожалению, большая часть лучей высокой энергии не может прорваться сквозь атмосферный заслон (спасибо ему за это, мы можем спокойно жить), и изучать их приходится на спутниках.

Спутниковые наблюдения семидесятых и восьмидесятых годов показали, что большинство активных галактических ядер излучают гамма-лучи с энергиями от двух до десяти тысяч электронвольт. Это примерно в тысячу раз больше, чем энергия лучей видимого света. Яркость таких объектов очень переменчива даже в течение дня. По скорости изменения интенсивности можно оценить размеры области излучения: она не может быть больше того, сколько успеет облететь световой сигнал за время смены интенсивности. Таким образом получается, что размеры некоторых галактических ядер не превышают размеры Солнечной системы, а излучают они в миллиарды раз больше Солнца. Такая вот арифметика.

Активные галактические ядра на сегодня считаются одним из доказательств того, что существуют черные дыры. Их масса в миллиарды раз больше солнечной. Ничем иным, кроме черной дыры, такая масса быть не может, во всяком случае, астрономы пока не изобрели ничего другого.

Но как же попадает материал на черную дыру в центре ядра? Из анализа наблюдений получается, что из плотного диска вещества, вращающегося вокруг центра. Эта модель была создана еще в начале семидесятых годов Николаем Шакурой и Рашидом Сюняевым из Москвы. Скорость вращения на внутренних частях диска гораздо больше, чем на его краях. Вещество постепенно перетекает с внешних окрестностей внутрь.

Каким-то образом звезда ускоряет некоторые частицы до очень высоких энергий, а они уже излучают энергичные гамма-кванты. Этот процесс рассчитали в 1980 году все те же Сюняев и Лев Титарчук в Москве, а потом и ipynna Франческо Харда из Триеста. На самом деле, частицы не излучают фотоны, а сталкиваются с низкоэнергетичными фотонами, постепенно увеличивая энергию последних. Остается понять, как ускоряются частицы до колоссальных энергий.

Есть две гипотезы. Первая основана на том, что магнитное поле в диске аккреции может быть перекручено причудливым образом из-за сложных спиральных путей падающей на звезду материи. Крис Тут и Джив Прингл из Кембриджа показали, что в принципе подобная конфигурация магнитных полей может ускорять частицы.

Вторая гипотеза связана с тем, что при переходе вещества через звуковой барьер возникают ударные волны, и они могут ускорять протоны, дающие потом множество вторичных частиц. Изучая спектр излучения от диска аккреции, ученые надеются понять, как выглядит гравитационное поле вблизи черной дыры и как идет процесс падения на нее вещества.

Таковы главные направления астрофизики высоких энергий. Область молодая, развивающаяся, неустоявшаяся, но очень интересная. Ее тематика, с одной стороны, охватывает всю Вселенную, а с другой – уходит на уровень мельчайших квантов вещества – нейтрино. Да и по времени – от рождения космоса до наших дней. Попросту говоря, наука обо всем пространстве и обо всем времени. У вас не захватывает дух?


«Вселенная – дыхание вечности» – называлась «тема номера» в № 1 за 2000 год. Продолжаем рассказ об изучении нашего большого мира.

Рафаил Нуделъман

Судьбы Вселенной

Впору давать объявление: «Потерялась теория. Нашедшего просят вернуть…» и так далее. Нет, в самом деле, я еще живо помню, как на лекциях в университете нам излагали теорию тепловой смерти Вселенной и как затруднялись наши лекторы по марксизму вколотить в наши недоверчивые головы, что теория эта неверна.

Теория, как назло, выглядела весьма убедительно. Тепло само собой переходит от нагретых тел к менее нагретым, так что их температура выравнивается – стало быть, спустя некое время во Вселенной должна наступить «тепловая смерть», ибо все процессы во Вселенной происходят в конечном счете в силу разности температур. К примеру, все, что происходит на Земле, включая процессы жизни, имеет источником энергии Солнце, а если бы Солнце и Земля были одинаковой температуры, то никакого потока энергии между ними не было бы никогда.

Теория, повторяю, выглядела убедительно, и беспомощный лепет наших марксистов никак не мог поколебать ее авторитет в наших глазах. Они нам говорили, что рассуждения насчет разностей температур и потоков энергии верны только в замкнутой системе, а поскольку Вселенная бесконечна, то она никак не может считаться замкнутой, а мы недоверчиво смотрели на них с высоты наших амфитеатров и думали: как же она незамкнутая, раз она – Вселенная, то есть за ее пределами все равно ничего нет? Самым забавным во всем этом, как я теперь понимаю, была полная бессмысленность нашего непримиримого противостояния: дело происходило спустя десятки лет после открытия (Эдвином Хабблом) расширения Вселенной, каковое попросту перечеркнуло все споры о тепловой смерти, поскольку рассуждения, приводившие к этой теории, применимы лишь к равновесным состояниям; расширяющаяся же Вселенная не является равновесной. Мы, однако, об этом даже не задумывались, потому что не знали, а наши лекторы и знать не хотели, ибо втиснуть расширение Вселенной, а с ним (поневоле) и релятивистскую космологию Эйнштейна в марксистскую схему природы им было еще труднее, чем втиснуть туда ее, природы, тепловую смерть.

Но вот со времени открытия Хаббла прошло более семидесяти лет, о тепловой смерти, якобы угрожающей Вселенной, все уже и думать забыли, однако заботы о будущем нашего огромного космического дома по-прежнему не оставляют ученых и заставляют их время от времени возвращаться к соответствующим размышлениям и расчетам. Жизнь ведь идет, открываются все новые факты и закономерности, уточняются прежние представления, и на каждом новом этапе приходится пересматривать старые прогнозы: то, что казалось верным и надежным вчера, сегодня уже таким не видится. Как там говорила поэтесса? «Вчера еще в ногах лежал…» Вот именно. Вчера.

Расширение тоже грозит Вселенной (и жизни в ней) многими осложнениями, и не далее как в 1979 году замечательный физик Фримэн Дайсон из Института высших исследований в Принстоне (это тот институт, где в свое время работали Эйнштейн и Гедель) опубликовал статью, в которой впервые привлек внимание коллег к этим осложнениям. Года четыре спустя был предпринят следующий, соответственно осовремененный анализ этих перспектив, а третий, совсем недавний, появился в конце 1999 года. Попробую прежде всего пояснить, чем вызваны эти периодические «переэкзаменовки». Та или иная судьба расширяющейся Вселенной зависит в первую очередь от того, достаточно ли в ней массы (создаваемой веществом и энергией), чтобы преодолеть инерцию первоначального «толчка» (того Большого Взрыва, который примерно 14 миллиардов лет назад швырнул будущую Вселенную во все стороны сразу). Если достаточно, то Вселенная должна в конце концов остановиться и затем начать сжиматься вспять к первоначалу, и тогда всему, что в ней есть, суждено погибнуть в огненной печи той «особой точки», в которую Вселенная стянется на исходе своего очередного «цикла расширение – сжатие». Если же притяжения этой массой самой себя не хватит д ля самоостановки, Вселенной суждено расширяться вечно, и тогда сценарий ее будущего становится еще занятней. Казалось бы – что может быть занятней сжатия «всего» в сверхраскаленную сверхплотную Точку? Противоположное, разумеется, – бесконечное расширение того же «всего» в сверхледяное, сверхразреженное Ничто.

Авторы нового анализа судеб Вселенной, американские университетские физики Краусс и Штаркман, начинают свое изложение словно в сериале – с краткого пересказа предшествующих событий. В данном случае эти события таковы. В начале, когда Вселенная только родилась, она целиком состояла из излучения, порожденного Большим Взрывом. По мере расширения она остывала, пока наконец не достигла температур, при которых могли уже устойчиво существовать частицы вещества. Этот переход легко понять. Если бы мы налили немного воды в закупоренную колбу и поставили ее на огонь, вся вода со временем превратилась бы в пар и не могла бы существовать в ином виде: если бы какие-то молекулы даже и сложились случайно в каплю жидкой воды, то их собственное движение – чудовищно быстрое при такой температуре – сразу разорвало бы эту каплю обратно на отдельные молекулы пара. Однако затем, по мере остывания колбы, скорость движения молекул стала бы намного меньше, и среди них появились бы такие медленные, которые могли бы сложиться в устойчивые капли. Разумеется, это всего лишь грубая аналогия, во Вселенной дело происходило много сложней, но в целом – с тем же результатом: излучение стало остывать (то, что от него осталось, было недавно обнаружено в виде так называемого реликтового, или остаточного, радиационного фона Вселенной); появилось вещество; возникли огромные, космических размеров облака газа; в них образовались многочисленные центры сгущения – будущие звезды; со временем на месте этих облаков образовались первые галактики, а затем и скопления галактик, и вот так в конце концов сложилась та Вселенная, какой мы ее сегодня видим.

Все это время Вселенная продолжала расширяться и остывать. Но если верны наблюдения последних лет, скорость этого расширения не только не уменьшается, но и не остается постоянной – она явно стала возрастать (не вчера, не позавчера, конечно, но с какого-то времени в прошлом), а это значит, что в действие вступили какие– то доселе неизвестные силы, ускоряющие разлет галактик. Недавно ( см. N° 10 за 2000 год) я рассказывал о гипотезе Андреаса Альбрехта, согласно которой эти силы отражают воздействие на нашу Вселенную процессов, идущих в других ее пространственных измерениях, недоступных нашему восприятию. Существуют и другие гипотезы на этот счет, но все они сводятся к тому, что в нашей Вселенной обнаружилось какое-то скрытое энергетическое поле, которое проявляется в виде силы, ускоряющей расширение Вселенной (по аналогии с невидимым «темным веществом» эту энергию тоже иногда называют «темной»). Поле это слабое: пока галактики были близко друг к другу, гравитационное притяжение между ними намного превосходило это слабое отталкивание, но сейчас, когда расстояния стали достаточно большими и гравитация, соответственно, уменьшилась, она уже не в состоянии скомпенсировать «расширяющее поле», и оно постепенно начинает брать верх.


В отличие от событий на Земле, которые мы привыкли оценивать с точки зрения того, «хорошо ли это для евреев», события в космосе уместнее все-таки оценивать с точки зрения того, хорошо ли это для человечества в целом. Раньше о расширении Вселенной в этом плане как-то не задумывались. Так задумаемся наконец. Плотность вещества и энергии в ускоренно расширяющейся Вселенной будет ускоренно уменьшаться: при каждом удвоении линейных размеров плотность вещества будет падать в восемь раз (ибо плотность обратно пропорциональна объему, а объем растет как куб, то есть третья степень, линейных размеров: два в кубе это восемь). Энергия же, то бишь излучение, будет изреживаться еще быстрее, ибо кроме того что та же энергия излучения будет приходиться на все больший объем, само это излучение, в силу «растягивания» Вселенной, будет «растягицдться» тоже: его волны будут становиться длиннее, а частота (которая, по закону Планка, определяет собой энергию волны), наоборот, меньше; в целом, при каждом удвоении линейных размеров плотность энергии будет уменьшаться в 16 раз. Между тем, если кто-то хочет завоевывать Вселенную, как в победоносном сериале «Star Wars», или даже просто выжить в ней, как простые люди, не герои, ему надлежит обеспечить себя соответствующими материальными резервами, – а где же их взять, когда они прямо из-под руки улетучиваются во все стороны и притом со все большей скоростью, буквально на глазах?

Переведем все это на более строгий язык науки. Скорость расширения Вселенной определяется скоростью относительного удаления галактик друг от друга; эта скорость, как показал Хаббл, пропорциональна расстоянию между ними, стало быть, по достижении определенного расстояния эта скорость превзойдет скорость света. Закону Эйнштейна (о невозможности превзойти скорость света) это не противоречит; так как закон Эйнштейна говорит о скорости движения материальных тел или информации в пространстве, меж тем как в случае разлета галактики речь идет об их удалении друг от друга за счет расширения самого пространства (ведь Вселенная расширяется не «в пространстве», а вместе «с пространством»). Так что галактики будут разлетаться и далее, даже превзойдя скорость света, а вот свет от них уже никогда не будет доходить к другим галактикам. Эго значит, что с течением времени на нашем небе исчезнут все галактики, кроме тех ближайших, что входят в наше местное скопление. Подсчитано, что это произойдет «уже» через 2000 миллиардов лет. Но дальше дело пойдет еще хуже: в силу старения Вселенной и все более быстрого распыления ее вещества образование новых звезд будет происходить все более медленно, пока – через 100 тысяч миллиардов лет – не погаснут последние звезды даже в нашем местном скоплении. Печальное зрелище. Как сказал поэт, «если звезды зажигают, значит, это кому-нибудь нужно»; но кому может быть нужно, чтобы они гасли? Тем не менее природа захотела именно так, хотя мы и не понимаем, почему.

Разумеется, по мере дальнейшего расширения распадутся не только скопления галактик, галактики и отдельные звезды (включая белые, красные и коричневые карлики, а также нейтронные пульсары), но и сами атомы, а под конец – и те элементарные частицы, которые их составляют. В бесконечном пределе Вселенная станет, как мы и сказали выше, бесконечным ледяным Ничто. Даже религия не додумалась до такого «конца света».

Упомянутых выше авторов последнего (на данный момент) сценария судеб Вселенной, Краусса и Штаркмана, интересует в их статье в основном вопрос, что произойдет с человечеством в такой ситуации «ускоренного конца». Тот же вопрос когда-то интересовал и Дайсона, когда он впервые занялся этой проблемой. Оказывается, он его интересует до сих пор – авторы ссылаются на переписку, в которой Дайсон высказал новые идеи, позволяющие, на его взгляд, выжить даже в условиях этой «ледяной смерти Вселенной». Уже раньше досужие умы пришли к мысли, что собирать необходимые вещество и энергию человечество сумеет, «приручив» так называемые черные дыры, которые самой природой приспособлены для этой цели и весьма успешно занимаются притягиванием и поглощением окружающей материи уже сейчас, «ежедневно, ежечасно и в гигантских масштабах». Однако, когда выяснилось, что Вселенная хитрее досужих умников и расширяется с ускорением, идея использования «черных дыр» сама собой отпала: как пишут наши авторы, они произвели соответствующие расчеты и убедились, что «дыра», способная в своей прожорливости успешно соревноваться с ускоренным разбеганием Вселенной, должна быть больше этой Вселенной. Что есть абсурд и противоречие в определении.

Этот грустный вывод побудил авторов (совместно с Дайсоном) искать пути выживания будущих людей в ином направлении – прежде всего, в сознательном и намеренном понижении ими температуры своих тел (как мы уже говорили вначале, дабы черпать энергию из окружающей среды, надо быть холоднее окружающей среды); затем – когда и этого не хватит – в замораживании своих тел; на следующем этапе – в (фантастическом на сегодняшний день) отказе от тел вообще и передаче своего сознания компьютерам; и наконец – в снижении температуры таких «компьютеризованных сознаний» чуть ли не до абсолютного нуля (до уровня «остаточного космического излучения»), чтобы не терять драгоценных битов информации, составляющих эти сознания. Как показал Дайсон, такое понижение температуры может и в самом деле существенно уменьшить энергию, необходимую «мыслящим компьютерам» для их существования. Но ведь Вселенная и тогда будет продолжать расширяться, а ее «остаточный фон» – остывать. И непременно наступит момент, когда температура этого фона станет ниже того предела, до которого практически возможно охлаждать материальные тела (как установил Хокинг, такой предел существует). С этого момента дальнейшее охлаждение компьютеров станет невозможным. Но поскольку равнодушная к людям Вселенная и тогда будет безжалостно продолжать расширяться, то теперь уже компьютеры станут «горячее» окружающего пространства и начнут отдавать ему энергию. А отдавая энергию, они не смогут больше сохранять заключенную в них разумную «жизнь». Но и то сказать – что эта за «жизнь» внутри компьютера, да еще при том, что лаже и высунуться наружу никогда невозможно?!

Должен, однако, успокоить *– есть все-таки какой-то шанс, что наши дальние потомки еше увидят небо в алмазах. Во-первых, наука илет вперед семимильными шагами и завтра может открыть что-нибудь такое, из– за чего придется переписывать все сегодняшние сценарии. А во-вторых, даже если сценарий «ледяной смерти Вселенной» не сойдет с повестки дня, его реализация настолько далека – что ни говори, но угроза чего-то через сто тысяч миллиардов лет может вызвать лишь тонкую улыбку на лице человека, живущего от зарплаты к зарплате! – что человечество (в лице своих Крауссов и Штаркманов) вполне может позволить себе такую игру воображения, нисколько не участвуя в ней эмоционально.

Иное дело, когда тебе сообщают, как это сделал мичиганский профессор Фред Адамс на недавней конференции Американской ассоциации развития науки, что через какие-нибудь 7 миллиардов лет наше Солнце должно вспыхнуть, как сверхновая звезда, перед тем как сжаться до состояния белого карлика, и при этом безжалостно поглотить и сжечь (или сначала сжечь, а потом поглотить) и нашу Землю, и все прочие планеты. Вот туг поневоле заволнуешься. И уж совсем выбивает простого человека из колеи, когда на той же конференции другой профессор, метеоролог Джеймс Кастинг, вдруг заявляет, что гораздо раньше этого, уже через какой-нибудь миллиард лет, даже через полмиллиарда, Солнце станет таким горячим, что все наши океаны испарятся до последней капли и Земля станет безводной пустыней. Вот это уже кого угодно взволнует. Это же совсем другое дело. Всего полмиллиарда лет, это ж почти что завтра, а у нас еще дела недоделаны и корова не доена, и боже ж ты наш зеленоглазый, за что?!


    Ваша оценка произведения:

Популярные книги за неделю