355 500 произведений, 25 200 авторов.

Электронная библиотека книг » авторов Коллектив » Знание-сила, 2001 №04 » Текст книги (страница 3)
Знание-сила, 2001 №04
  • Текст добавлен: 21 октября 2016, 19:35

Текст книги "Знание-сила, 2001 №04"


Автор книги: авторов Коллектив



сообщить о нарушении

Текущая страница: 3 (всего у книги 13 страниц)

Возможно ли «микро» без «мега»?

«Оленька говорила своим подружкам-операторам, что самое важное, самое нужное, самое замечательное на свете – это физика элементарных частиц и атомного ядра, и подлинного наслаждения можно достичь, только считая диаграммы Фейнмана». Маленький фрагмент из крохотной книжечки «Сказки физиков», изданной микроскопическим (сто экземпляров) тиражом в одном из подмосковных наукоградов, – словно слабый ностальгический отсвет славных времен, когда физики-ядерщики были в особой чести и сотен тысяч брошюр с интригующим названием «Физики шутят» не хватало для удовлетворения казавшегося ненасытным читательского спроса. Теперь маятник качнулся в другую сторону, и фокус общественного интереса сместился в иные, не связанные с наукой сферы.

А если что-то в ней и привлекает внимание, то отнюдь ие физика микромира – недавний лидер естествознания. Впрочем, мы бы слукавили, сказав, что в зтом нет и доли вины самого научного сообщества. Объяснить – почему, втолковать – для каких столь важных всем нам целей ученым нужны все большие финансовые вложения и все более мощные установки, им не удалось, по крайней мере старыми приемами и средствами.

Кроме того, и в стане физиков, еще изучающих проблемы микромира, все чаще раздаются скептические голоса сомневающихся в выборе стратегии исследований. Еще свыше десяти лет назад организатор Стэнфордского ускорительного центра Вольфганг Панофски предрекал кризис физики высоких энергий, если на выручку ей не придут новые принципы и новые технологии. К концу же истекшего века сложилась парадоксальная ситуация, когда, по словам самих ученых, не было большего различия во взглядах теоретиков на сущность их работы. На фоне непрекращающегося потока поразительных экспериментальных открытий прямо ставится вопрос о том, что же, собственно, является предметом исследований в физике элементарных частиц? Но, может быть, в поисках ответа стоит оглядеться по сторонам, обозреть бурно развивающиеся сопредельные области, например астрофизику и космологию. Не там ли, где активно обсуждаются первые и последние мгновения нашего Мира, где калейдоскопически быстро меняются сценарии развития Вселенной, реально происходит вожделенное объединение «микро» и «мега»? Не там ли, где без нашего участия действуют циклопические ускорители, востребуется багаж накопленных физикой элементарных частиц опыта и знаний?

Не там ли становится ясным, что обойтись друг без друга исследователи этих полюсов мироздания не смогут? И не на пути ли возведения мостов, преодоления пресловутых «стыков» между расчлененными, пытающимися порой самозамкнуться областями науки видится их общий выход из методологических тупиков и мировоззренческих кризисов?

Публикацией предлагаемых вашему вниманию статей мы пытаемся по-своему поддержать объединяющий призыв профессионального астронома, прозвучавший в начале прошлого года на страницах нашего журнала: «Давайте строить хорошие телескопы и ускорители частиц!»

Александр Волков

Нужны ли физикам ускорители?

Утонченный ум, живший в эпоху Архимеда, основательно изучив современную физику, убедился бы, что для него непостижимо, каким образом кто-либо смеет именовать наукой эти варварские, гротескные и путаные воззрения и считать их неизбежными следствиями очевидных фактов.

Освальд Шпенглер. «Закат Европы»

Есть разные способы искать истину. Изобретатели и философы, «взявшиеся не объяснять, а переделывать мир», одержимы желанием обрести светлое будущее, а значит, сотворить его, невольно превращаясь в «человекобога». Теоретики, докапываясь до истоков и пытаясь найти первопричину в сумбуре явлений, ищут путь к начальному акту Творения. Устремляясь от атома к протону, от протона к кварку, они стараются узреть тот первый кирпичик мироздания, что «вылепил Господь Бог».

А если это иллюзия н подобным путем можно двигаться до бесконечности, дробя частицы на распадающиеся части?

С античных времен физика занята поиском элементов, из которых складывается все мироздание. Древние греки верили, что начало всему – «атомы и пустота». Все в нашем мире, убеждал Демокрит, возникает вследствие столкновений и слияний этих атомов или же распада их коалиций.

Идея «основы основ» («первочас* тицы», «атома») постепенно нашла приверженцев и среди ученых нового времени.

Впоследствии обнаружилось, что атомы состоят из протонов, нейтронов и электронов. Картина мира усложнялась. Ученые начали открывать все новые элементарные частицы. Назрела потребность свести все их обилие к нескольким крохотным и неделимым элементам.

В 1964 году это сделал американский физик Марри Гелл-Ман, постулировав понятие «кварка». Поначалу он полагал, что достаточно трех кварков: «up», «down» и «strange». Из них – как в конструкторе «Лего», – очевидно, сложены все известные науке частицы: и те, что таятся внутри атомов, и те, что лишь на миг оставляют свой след в пузырьковой камере.

Итак, первоэлементы мира найдены и посчитаны – пусть лишь теоретически. Как бы не так! Радость ученых длилась недолго. Теперь – «общей простоты ради» – они стали множить сущности, лежавшие в основе мироздания. Уже в 1965 году всем кваркам приписали свой «цвет», то бишь определенное квантовое число, их характеризующее. Однако и этого было недостаточно. В «зоопарке частиц» появились новые постояльцы: кварки, именованные «charmant», «bottom» и «top».


Самый крупный центр исследования элементарных частиц – ЦЕРН – находится в Женеве (Швейцария). Здесь работают около семи тысяч ученых из разных стран мира.

Можно подвести баланс. У нас есть шесть кварков, каждый из которых предстает в трех различных «цветах». Значит, всего разновидностей кварков: 6x3 = 18. Вот как! Сводя мироздание к нескольким простейшим элементам, мы получили 18 частиц, составляющих суть всего мира. Не много ли? Вдобавок, у этой пестрой толпы частиц есть свои античастицы, окрашенные в «антицвета».

Ученые конструируют новые теории, согласно которым кварки состоят из других, более мелких частиц – из преонов, сомонов и хромонов. Ате, в свою очередь, могут состоять из других, более мелких частиц. А те, в свою очередь… За одной «скорлупой», словно в сказочном сюжете, немедленно вырастает другая. Тайна жизни мироздания, как тайна жизни Кощея, спрятана в кварке, кварк – в протоне, протон – в ядре, ядро – в атоме, атом – в каждом из нас, но что спрятано в кварке? Не придется ли ученым «взламывать» все новые частицы, силясь добраться до сути вещей?

Сейчас все внимание физиков обращено к кварк-глюонной плазме – необычному состоянию материи, существовавшему лишь в первые 10 микросекунд после Большого Взрыва. Эксперименты с ней ведутся в Швейцарии, в лаборатории ЦЕРН, и в США, в Брукхейвенской национальной лаборатории.

Физики, работающие в ЦЕРН, по всей видимости, сумели впервые получить это новое состояние материи. Во время пребывания в нем во Вселенной царили такие высокие температуры, что атомные ядра просто не могли возникнуть: триллион градусов! Это в десятки тысяч раз больше температуры, зафиксированной в центре Солнца.

Существование кварк-глюонной плазмы еше десятилетия назад было предсказано Стандартной моделью материи. Согласно этой модели, нейтроны и протоны состоят из кварков, слепленных с помощью глюонов. Глюоны – частицы, которые осуществляют взаимодействие между кварками, а оно является самым сильным из всех фундаментальных взаимодействий.





Лаборатория Ферми в Чикаго (США). Здесь находится самый эффективный ускоритель мира – теватрон.

Сейчас в природе не существует свободных кварков. Все они стали компонентами каких-либо элементарных частиц. Как правило, те составлены из двух или трех кварков, которые могут высвободиться лишь при экстремально высоких температурах.

Вот тогда вместе с глюонами они и образуют особую смесь, которую именуют кварк-глюонной плазмой.

На страницах журнала «Сайенс» метко было замечено: кварк-глюонная плазма стала «новой увлекательной игрушкой физиков», ради которой они готовы забыть обо всем. Не похоже ли их увлечение на странную страсть средневековых ученых, решивших отыскать «философский камень»? В самом деле, в маниакальном желании теоретиков разложить все существующие ныне частицы на кварки есть что-то от давно забытого намерения алхимиков превратить все химические элементы в золото.

Современная теоретическая физика становится «вещью в себе». Здесь затевают один грандиозный эксперимент ради другого. Подобные опыты оставляют огромную брешь в «святая святых» любой страны – в ее бюджете. Вот небольшой дебет эксперимента в Брукхейвенской лаборатории. Новый ускоритель обошелся в 600 миллионов долларов. Главные детекторы, регистрирующие частицы в хаосе треков, стоили по 100 миллионов долларов каждый. Стоимость суперкомпьютеров, помогавших обрабатывать полученные результаты, – около семи миллионов долларов.

Вправе ли мы расходовать столько времени, сил и средств на эту полюбившуюся «игрушку», в то время как нас одолевает множество других серьезных проблем? Быть может, разумнее потратить деньги на что-то иное? (В скобках заметим, что российские власти в решении этой проблемы оказались «впереди планеты всей». В последнее десятилетие они оставили теоретическую науку без всякой поддержки, обрекая ее на гибель, а ученых – на эмиграцию. Что ж, и впрямь все больше российских физиков, участвуя в грандиозных экспериментах за рубежом, постепенно «подрывают экономику западных стран».)

Однако опустим политические резоны, отстаивать которые, как и любое мнение большинства, дело ошибочное. Наука всегда заслуживает больше времени, сил и средств, чем мы способны ей дать. Вопрос в другом. Почему любая идея, любой каприз физика– теоретика должны быть непременно реализованы на практике?

Современная физика, «ортодоксально» интерпретируя квантовую механику и теорию кварков, создала своего рода катехизис, нарушить который – значит превратиться в «еретика» со всеми вытекающими отсюда последствиями и опасностями. Недаром иные скептики говорят, что физика все более напоминает католическую церковь, повелевающую всеми мирскими науками. В ней есть свои кардиналы (исследователи элементарных частиц, знатоки теории относительности, приверженцы «теории струны»), есть свои папы, рассылающие грозные буллы (издатели авторитетных научно-популярных журналов). Есть и вероотступники, коих отлучают от церкви за взгляды, отличные от общих, и уничтожают, пресекая впредь любые попытки проникнуть в науку. В последние десятилетия физики воздвигли даже собственные соборы: гигантские ускорители.

В свое время средневековые схоласты гадали, сколько ангелов может пуститься в пляс на острие иглы. Перефразируя их гипотезы, лауреат Нобелевской премии по физике Леон Ледерман сказал, что «Бог скрывается на острие протонового луча». Разница лишь в том, что ученые средних веков удовлетворяли свою потребность в гипотетических исчислениях почти бесплатно; в наше же время поиск исходного принципа мироздания поглотает миллионы долларов, а проку – что в перечне ангелов, что в череде кварков и иже с ними – никакого нет и не предвидится.

Подобные сомнения одолевают даже одного из открывателей top– кварка Ханса Грассмана. Пытаясь разрубить сей гордиев узел современной науки, он как-то сказал, что все ускорители надо попросту закрыть. Иначе теоретическая физика превратится в алхимию наших дней.


Эта странная конструкция, установленная близ лаборатории Ферми, символизирует стремление физиков к идеальной симметрии.

Александр Семенов

Астрофизика элементарных частиц

Заголовок этой статьи не совсем точно передает название той отрасли науки, о которой пойдет рассказ. На английском языке он звучит как «AstroparticLe physic», то есть «астрочастичная физика». Решив, что буквальный перевод не слишком благозвучен, я слегка причесал его на свой вкус.

Долгие годы у физики элементарных частиц и астрофизики было не много общего, разве что дороговизна исследований. Физики микромира строили огромные ускорители и открыли целый зоопарк частиц, а потом придумали Стандартную модель, чтобы объяснить все намеренное. Астрофизики атаковали небо при помощи спутников и телескопов, чтобы познакомиться с не менее выразительным паноптикумом экзотических созданий: квазаров, пульсаров, черных дыр и галактических ядер. Но в наши дни эти отрасли знания слились в едином порыве, чтобы узнать, как был устроен мир в первые свои мгновения. На свет появилась астрофизика элементарных частиц.

У этой науки три главных вопроса. Как возникла существующая структура объектов во Вселенной? Какова природа темного вещества? Что лежит за пределами Стандартной модели элементарных частиц? И все эти три проблемы оказываются тесно увязанными друг с другом. Темное вещество играет очень важную роль в образовании структур Вселенной, а состоит оно (предположительно) из неизвестных пока науке частиц.


Крупнейший оптический телескоп имени Кека

Космология – основа астрофизики, поэтому мы и начнем наш разговор с нее. Раньше в статьях о космологии часто цитировали ироническую фразу известнейшего нашего теоретика Льва Ландау: «Космологи часто ошибаются, но никогда не сомневаются». Я собираюсь поколебать это утверждение. Астрофизика частиц все прочнее опирается на экспериментальную базу, теория все крепче стоит на ногах и получает мошный импульс для развития.

Сорок лет назад космология была областью науки для ограниченного круга экспертов. Двумя основными проблемами тогда были постоянная Хаббла, определяющая расширение Вселенной, и параметр замедления. Современная эра началась в 1964 году, когда американские астрономы Арно Пензиас и Роберт Вильсон из лаборатории Белла обнаружили реликтовое микроволновое излучение. Хоть и датируется модель Большого Взрыва 1929 годом, когда Эдвин Хаббл обнаружил разбегание галактик, лишь открытие «эха Большого Взрыва» превратило космологию в науку.

В семидесятые годы спектр микроволнового фона был тщательно промерен на разных д линах волн, и научное сообщество убедилось, что ничем иным, кроме расширяющегося газа фотонов, это излучение быть не может. Тогда же было точно измерено относительное содержание дейтерия и других легких элементов в веществе Вселенной, и оно было как раз таким, как предсказывает теория Большого Взрыва.

Каковы же основные ее положения?

1. В начале Вселенной была плазма из элементарных частиц, кварков, лептонов, фотонов и, может, чего-то еще, нам пока не известного. Вселенная расширялась и остывала. Первые триста тысяч лет энергия была так высока, что постоянно происходило превращение излучения в вещество и обратно.

2. Кварки стали объединяться в частицы через десятитысячную долю секунды после взрыва. Ядра дейтерия, гелия и лития возникли в первые десять – сто секунд, а вот образования атомов пришлось ждать сотни тысяч лет. Тогда температура газа фотонов упала настолько, что они уже не могли больше разбивать атомы. С тех пор вещество и излучение стали расширяться независимо.

3. После отделения вещества от излучения на небольших флуктуациях плотности вещества стали нарастать будущие зародыши галактик, галактических кластеров и других структур.

У стандартной космологии есть четыре главных экспериментальных подтверждения. Первое – разбегание галактик, обнаруженное Хабблом. Он заметил, что свет от удаленных галактик, приходящий на Землю, смешен в сторону длинных волн, и сделал вывод, что происходит это из-за эффекта Доплера. Смещение это измерено у десятка тысяч галактик – все согласуется с Большим Взрывом.

Второе подтверждение – микроволновый реликтовый фон. Аппаратура на спутнике СОВЕ (Cosmic Background Explorer) измерила его с высочайшей точностью: 2,728 градуса Кельвина плюс-минус две тысячных. Кроме того, распределение этого излучения по длинам волн очень точно соответствует спектру абсолютно черного тела, как и должно быть для газа горячих фотонов.

Третье – анизотропия этого самого излучения. Ее удалось обнаружить только в 1992 году с помощью сверхчуткого прибора – дифференциального радиометра, установленного на спутнике СОВЕ. Оказалось, что есть крошечные колебания в плотности вещества на самых ранних стадиях Вселенной, которые необходимы для возникновения галактик.

И наконец, четвертое – относительное содержание легких элементов в космосе. Оно показывает, что синтез гелия шел в первичном «котле» Вселенной, так его много.

Однако, несмотря на несомненные успехи, к Большому Взрыву есть немало вопросов. Главный – темное вещество. Лишь несколько процентов плотности Вселенной сосредоточено в светящемся веществе звезд. А по движению галактик и скоплений галактик астрономы чувствуют, что есть немало «темного вешества». Причем оно бывает двух типов: из обычных протонов и нейтронов и из неизвестных частиц.

Второй вопрос: откуда взялись первичные флуктуации плотности вещества, на которых потом «наросли» все космические структуры? Как это происходило? Этот вопрос тесно связан с предыдущим, поскольку именно в темном веществе сосредоточена основная масса Вселенной.

Третья проблема – отсутствие антиматерии. В первые мгновения жизни Вселенной, когда температура была очень велика, должно было рождаться одинаковое количество частиц и античастиц. Куда же делись все античастицы?

Еще одна проблема – однородность Вселенной на больших расстояниях (это показывает нам реликтовый фон). Обычно все сравнивается, когда разные части могут взаимодействовать, но далекие части Вселенной не могли этого сделать: слишком велики расстояния между ними. Даже свет не успел бы дойти от одной до другой за время жизни космоса.

Непонятно и само начало: почему произошел Большой Взрыв? Были ли другие подобные взрывы? Были ли у Вселенной другие измерения? Пришла пора думать над этими фундаментальными вопросами. Многие современные исследователи считают, что ответы на них лежат в самых первых мгновениях жизни Вселенной.

Восьмидесятые годы открыли возможность порассуждать об этих моментах: в физике элементарных частиц утвердилась Стандартная модель. В ее основе лежат кварки, лептоны и калибровочные бозоны – переносчики слабого взаимодействия. Взаимодействия между частицами слабеют при их сближении, поэтому в начальные моменты их можно рассматривать как газ частиц. Раньше десятитысячной доли секунды такое представление не работает, потому что там все переходит на кварковый уровень, а как устроены кварки, пока доподлинно не известно.

Физика элементарных частиц за последние годы обогатилась очень интересными идеями объединения всех взаимодействий в одно – это теории суперсимметрии, супергравитации и суперструн. Из них следуют предсказания для нарушения барионного числа, массы нейтрино, новых долгоживущих частиц, фазовых переходов – как раз то, что напрямую важно для космологии. Некоторые из этих предсказаний могут быть проверены в одном-единственном месте – ранней Вселенной. Поэтому-то некоторые теоретики микромира и переквалифицировались в космологов.


Результаты измерений средней плотности вещества во Вселенной. Нижняя полоса – по светящемуся веществу:

Средняя – по данным о содержании гелия и дейтерия. Верхняя – по движению галактик и их скоплений.

В золотые восьмидесятые годы в физическом сообществе царила эйфория всемогущества, и в этой атмосфере родилось немало интересных моделей, например инфляционный сценарий развития космоса, различные гипотезы о природе темного вещества, идея о рождении Вселенной из квантовых флуктуаций.

При инфляционном растягивании пространства неизбежно должны были возникнуть гравитационные волны, следы от которых (подобные реликтовому излучению) есть надежда отыскать сегодня. Это планируют делать на лазерных интерферометрах с большими базами. Эксперимент LIGO готовится в США, a VIRGO – в Европе. Из спектра гравитационных волн можно будет узнать, была-таки инфляция или нет.

Порой теоретики и экспериментаторы спорят, кто главнее и кто кого ведет по тернистому пути познания. В космологии сегодня такого конфликта нет, работа идет кооперативная. Экспериментаторы проверяют теоретические идеи, и теория получает возможность двигаться дальше.

Количество же экспериментальных данных все нарастает. Самый большой десятиметровый телескоп на [авайях измерял содержание дейтерия в далеких облаках водорода. Дэвид Титлер из Сан-Диего по этим измерениям уточнил плотность обычного вещества во Вселенной, теперь она известна с точностью до десяти процентов. Кроме того, наличие дейтерия в самых удаленных межгалактических облаках подтверждает, что был Большой Взрыв – только в нем мог этот дейтерий образоваться.

Все активнее экспериментаторы ищут и само темное вещество. Возможно, скрытая масса (иное название темного вещества) содержится в неизвестных пока частицах. Наиболее яркие кандидаты на эту роль – нейтрино с массой около тридцати электронвольт, совсем легонький аксион с массой в десятитысячную долю электронвольта и экзотическое нейтралино с массой между десятью и пятью сотнями протонных масс.

Легонький аксион может превратиться в фотон с малой энергией. Такие фотоны ищут в Ливерморской национальной лаборатории, в большой микроволновой полости. Там должны возбудиться крошечные колебания, которые надеются увидеть экспериментаторы.

Нейтралино ищет группа Бернарда Садуля в Калифорнии. Залетев в очень холодный кристалл кремния или германия, эта частица может чуток подогреть его, а экспериментаторам остается лишь заметить этот «чуток». Сюзанна Купер из Оксфорда наблюдает за куском сапфира, а Петер Смит – за кристаллами йодистого натрия. Все эксперименты проводятся глубоко под землей, чтобы заслониться от потоков космических лучей, в ливнях которых просто не разглядишь редких и долгожданных гостей.

Ищут нейтралино и на больших подземных нейтринных детекторах – Суперкамиоканде в Японии, в тоннеле 1ран Сассо в Италии, ищут их и на ускорителях. Планируют запустить измеритель космической анизотропии в 2001 году (проект НАСА) и европейский проект в 2004 году. Они определят анизотропию реликтового фона с точностью в тридцать раз лучше СОВЕ. Тогда можно будет гораздо точнее ограничить параметры моделей. В ближайшие пять – десять лет многое должно проясниться.

Здесь в самый раз перейти к нейтринной астрономии. Уже в ее названии кроется тесное родство астрофизики и физики микромира, где нейтрино – самый таинственный обитатель.

Астрономы всю жизнь строили телескопы где-нибудь на вершинах гор, чтобы воздух был почище, а городские фонари не мешали свету звезд. Нейтринные астрономы поступают иначе: они забираются как можно глубже – под землю, под воду, а то и под лед на Южном полюсе. И несмотря на совершенно астрономические трудности, эта область уже сформировалась как самостоятельная экспериментальная дисциплина. Ей принадлежат интереснейшие физические результаты последних полутора десятилетий: убедительное доказательство массы нейтрино и наблюдение нейтрино от сверхновой звезды 1987 года.

Новое поколение детекторов для солнечных нейтрино было настроено искать нарушение Стандартной модели или же экзотического поведения Солнца – третьего не дано. А первое поколение больших нейтринных телескопов планирует заглянуть далекодалеко в космос…

В двадцатые – тридцатые годы физики и астрономы предложили модель термоядерных реакций внутри Солнца, из которых наше светило черпает свою энергию. Расчеты шестидесятых годов показали, что около двух процентов энергии уносит нейтрино. Так вот, до Земли долетало меньше половины того, что предсказывали расчеты.

В Стандартной модели есть три сорта нейтрино: электронное, мюонное и тау-лептонное. У них нет заряда, массы, и все они очень слабо взаимодействуют с веществом. По этой причине их сложно зарегистрировать. Мало того, если вы работаете на поверхности Земли, редкие сигналы от нейтрино потонут в потоке событий от космических лучей, поэтому приходится забираться под землю. А из-за слабости взаимодействия объем установки должен быть очень большим. Теория предсказывает, что более шестидесяти миллиардов нейтрино пронизывают каждый квадратный сантиметр поверхности Земли за секунду, но первым детекторам удавалось поймать лишь по несколько штук за неделю.

Титанические усилия ловцов нейтрино были вознаграждены в 1987 году, когда именно они поймали 19 штук нейтрино от сверхновой за несколько часов до прихода света от этого события. Дело в том, что нейтрино начинают прорываться из центра сверхновой, пока оболочка еше не прозрачна для света. После этого события во всем мире резко возрос интерес к поискам космических источников нейтрино. Огромное преимушество этого вида частиц перед другими излучениями в том, что оно беспрепятственно проходит толщи вещества и может донести до нас совершенно уникальную информацию.


На этом участке неба, сфотографированном космическим телескопом имени Хаббла, удалось разглядеть шесть галактик, по свету от которых мы можем изучить процессы во Вселенной, не достигшей и миллиарда лет.

Три из четырех нейтринных экспериментов использовали технику радиохимического анализа. Долетевшее до Земли нейтрино взаимодействует с ядром хлора в шести сотнях тонн перхлорэтилена в американской установке «Homestake». В результате получаются атомы радиоактивного аргона, которые пересчитывают. Установка расположена в золотой шахте на глубине полутора километров. В двух других экспериментах пересчитывают атомы радиоактивного германия, рождающегося во взаимодействии с галлием. Установка GALLEX в подземной лаборатории «Гран Сассо» содержит тридцать тонн галлия. В советско-американском эксперименте SAGE в Баксанской лаборатории под горой Андырчи на Кавказе используется 60 тонн металлического галлия.

Четвертая установка – Камиоканде – расположена в цинковой шахте Камиока на глубине в километр в Японских Альпах. В ней используется семьсот тонн сверхчистой воды и регистрируются лишь нейтрино высокой энергии – более семи миллионов электронвольт – по черенковскому свету от мюонов или электронов, выбитых из ядер (хлорный метод чувствителен к нейтрино энергичнее восьмисот килоэлектронвольт, а галлиевый позволяет достичь двухсот килоэлектронвольт). Черенковское излучение возникает при движении частицы со скоростью больше скорости света в среде. Аналогичные ударные волны расходятся от самолета, летящего быстрее звука. В отличие от радиохимических экспериментов, Камиоканде измеряет направление пришедшей частицы и ее энергию.

Все четыре эксперимента регистрировали меньше нейтрино от Солнца, чем должно быть по предсказаниям Стандартной модели. Единственная возможность объяснить этот дефицит – предположить, что у нейтрино есть совсем крошечная масса порядка трех тысячных электрон вольта. Если это так, то они могут превращаться в нейтрино другого сорта, что строго-настрого запрещено им в Стандартной модели, где его масса нулевая. Это превращение (называемое на научном языке осцилляциями ) приводит к тому, что до Земли долетает меньше электронных нейтрино, что и чувствуют установки.


Распределение космических лучей высоких энергий

В апреле 1996 года заработала еще одна японская установка – Суперкамиоканде, которая содержит уже более двадцати тысяч тонн сверхчистой воды. За несколько месяцев работы она зарегистрировала больше нейтринных событий, чем все остальные приборы за двадцать пять лет наблюдений, и именно с ее помощью в прошлом году была обнаружена масса нейтрино и разрешена загадка дефицита солнечных частиц.

В начале 1997 года была пушена установка в никелевой шахте на глубине более двух километров в провинции Онтарио. В ней уже используется тяжелая вода, которая дает возможность различать разные сорта нейтрино. Под ударами различных нейтрино ядро дейтерия, входяшее в состав тяжелой воды, разваливается на разные части. Установка должна просто пересчитывать все сорта нейтрино.

Три новых детектора запускаются и в тоннеле Гран Сассо. В общем, видно, что нейтринная астрономия из экзотического хобби немногих чудаков превращается в мощную отрасль науки.

Следуя за традиционной астрономией, работающей в очень широком диапазоне длин волн – от метровых радиоволн до гамма-лучей в миллионную долю микрона, – нейтринная астрономия стремится расширить спектр энергий, ще ведется наблюдение.

Современные нейтринные телескопы ставят своей целью покрыть как можно большую площадь своими детекторами. Два из них уже начали работать. Это «Байкал» – в нашем сибирском озере и AMANDA – на Южном полюсе. Третий детектор – NESTOR – будет размешен в Средиземном море, неподалеку от Греции.

Нейтрино в небесах могут рождаться, как и обычные космические лучи, при столкновении быстрых частиц. Но могут они возникать в центрах коллапсирующих звезд или центрах галактик, а оттуда никому, кроме них, выбраться не суждено. Поэтому с помощью нейтринных телескопов планируется изучать все возможные источники этих частиц, но все же главная их задача – готовность к чему-то неожиданному. К примеру, их «старшие братья», детекторы гамма– лучей, были построены для слежения за Луной и Солнцем, а увидели новое небо с неизвестными источниками гамма-лучей – горячими нейтронными звездами, квазарами и черными дырами. Оптимисты полагают, что нейтринные телескопы имеют хорошие шансы обнаружить источники суперэнергичных космических лучей, продвинуть поиски холодного темного вещества и понять суть загадочных гамма-вспышек.

Нейтринная астрономия поистине вступает в героическую эпоху. За первыми открытиями следует период кропотливых планомерных исследований. Похоже, что самая неуловимая частичка хранит ключи от многих тайн природы и наступивший век может стать веком нейтринной астрономии.

А теперь – о космических лучах. Оказывается, и с ними не все ясно. Мировой рекорд энергии для частиц вещества держит один протон с энергией четыреста тысяч миллиардов электронвольт, залетевший когда-то в атмосферу Земли. Но из косвенных данных мы знаем, что Землю ежеминутно бомбардируют частицы с энергией в миллионы раз больше. Откуда они берутся и как получают энергию, до сих пор остается загадкой, хотя ученые бьются над этой проблемой полвека.

Космические лучи с энергией больше, чем десять в двадцатой степени электронвольт, были зарегистрированы по вторичным частицам. Такая частица несет в себе энергию, равную энергии теннисного мяча Пита Сампраса при подаче. Скорость ее настолько близка к скорости света, что в собственной системе координат время почти останавливается, и за четверть часа частица пролетает тридцать миллионов световых лет. Энергия таких частиц во много миллиардов раз превышает ту, что удалось достичь на Земле путем колоссальных усилий на самых больших ускорителях. Одна из самых впечатляющих загадок природы – как это удается сделать. Очень хочется узнать секреты такого ускорения. Но сложность в том, что таких частиц невероятно мало – штуки, а для мало-мальски научного их изучения необходимо иметь хотя бы десятка три-четыре событий. Поэтому и строятся все более и более крупные детекторы.


    Ваша оценка произведения:

Популярные книги за неделю