355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Апостолос Доксиадис » Дядюшка Петрос и проблема Гольдбаха » Текст книги (страница 2)
Дядюшка Петрос и проблема Гольдбаха
  • Текст добавлен: 26 сентября 2016, 17:50

Текст книги "Дядюшка Петрос и проблема Гольдбаха"


Автор книги: Апостолос Доксиадис



сообщить о нарушении

Текущая страница: 2 (всего у книги 9 страниц)

Я приехал через несколько дней, когда мне удалось сочинить для домашних правдоподобную легенду.

Дядя Петрос привел меня на кухню и угостил холодным напитком из собственных вишен. Потом сел напротив с видом торжественным и профессорским.

– Итак, скажи мне, – начал он, – что есть математика, по твоему мнению? – Подчеркнутые слова, казалось, подразумевали, что какой бы ответ я ни дал, он не может не быть неверен.

Я стал сыпать общими местами насчет «царицы наук» и удивительных приложений ее в электронике, медицине и исследованиях космоса.

Дядя Петрос поморщился:

– Если тебя так интересуют приложения, почему бы тебе не стать инженером? Или физиком? Они тоже занимаются математикой определенного рода.

На этот раз подчеркнутые слова значили, что дядя явно невысоко ставит этот «определенный род». Я понял, что дальше буду конфузить себя еще сильнее, потому что не готов спорить с дядей на равных, в чем тут же и сознался.

– Дядя, я не могу объяснить почему. Знаю только, что хочу стать математиком – я думал, ты меня поймешь.

Он помолчал, обдумывая, что сказать, потом спросил:

– Ты в шахматы играешь?

– Немножко, только не предлагай мне сыграть, я сразу могу сказать, что проиграю.

Он улыбнулся:

– Я не предлагал партии, просто хотел найти пример, который ты поймешь. Видишь ли, настоящая математика не имеет ничего общего ни с приложениями, ни с вычислениями, которым тебя учат в школе. Она изучает абстрактные интеллектуальные построения, которые – по крайней мере пока математик ими занят – не имеют никакого отношения к миру физическому, ощущаемому.

– Мне это подходит, – сказал я.

– Математики, – продолжал он, – находят в своей работе ту же радость, что шахматисты в шахматах. На самом деле психологический склад настоящего математика ближе всего к складу поэта или композитора; другими словами, человека, занятого созданием Красоты и поисками Гармонии и Совершенства. Он диаметрально противоположен человеку практическому – инженеру, политику, или… – дядя на миг задумался, подыскивая на шкале сравнения что-нибудь уж совсем невыносимое, – или бизнесмену.

Если этим он хотел остудить мой пыл, то выбрал неправильную дорогу.

– Именно этого я и хочу, дядя Петрос! – воскликнул я. – Я не хочу быть инженером, и работать в семейном бизнесе тоже не хочу. Я хочу погрузиться в настоящую математику, вот как ты… как в проблему Гольдбаха!

Вырвалось! Еще собираясь в Экали, я решил, что всякого упоминания о Проблеме следует избегать, как черта. Но по неосторожности и в пылу разговора сам произнес эти слова.

Выражение дядиного лица осталось столь же бесстрастным, но по руке пробежала еле заметная дрожь.

– Кто сказал тебе о проблеме Гольдбаха? – спросил он спокойно.

– Папа, – пробормотал я смущенно.

– И что именно он тебе сказал?

– Что ты пытался ее решить.

– Только это?

– Ну… и что у тебя это не получилось. Дрожащая рука успокоилась.

– Больше ничего?

– Больше ничего.

– Гм! – произнес дядя. – Хочешь, заключим с тобой уговор?

– Какого рода уговор?

– Вот послушай. По моему мнению, в математике, как в искусстве – и в спорте, кстати, – если ты не лучший, то ты вообще никакой. Инженер, или юрист, или дантист, обладающий средними способностями, может прожить счастливую и наполненную профессиональную жизнь. Но математик среднего уровня – я говорю об ученых, конечно, а не о школьных учителях – это живая ходячая трагедия…

– Так ведь, дядя, – перебил я, – я не собираюсь быть математиком «среднего уровня». Я хочу быть Первым!

Он улыбнулся:

– По крайней мере в этом ты определенно на меня похож. Я тоже был честолюбив до крайности. Но видишь ли, мой мальчик, благих намерений здесь, к сожалению, недостаточно. В этой области в отличие от многих других прилежание не всегда вознаграждается. Чтобы добраться в математике до вершин, необходимо нечто большее, одно абсолютно необходимое условие для успеха.

– Какое?

Он поглядел на меня с недоумением – я не видел очевидного.

– Как какое? Талант, разумеется! Природная предрасположенность в самом крайнем ее проявлении. Никогда не забывай: Mathemaiticus nascitur, non fitматематиками рождаются, а не становятся. Если у тебя в генах нет этой особой способности, ты всю жизнь проработаешь напрасно и останешься посредственностью. Можешь ее называть золотой серединой, но посредственность есть посредственность. Я поглядел ему прямо в глаза:

– Дядя, какой ты предлагаешь уговор?

Он задумался, будто в поисках формулировки, а потом сказал:

– Я не хочу видеть, как ты пойдешь по пути, ведущему к поражению и несчастливой жизни. И потому я предлагаю тебе связать себя обещанием: стать математиком в том и только в том случае, если ты в высшей степени одарен. Ты согласен?

Я смешался:

– Дядя, но как же я это определю?

– Ты – никак, – ответил дядя Петрос с лукавой улыбочкой. – Это сделаю я.

– Ты?

– Да. Я поставлю тебе задачу, которую ты попытаешься дома решить. По результату твоих трудов, удачному или неудачному, я смогу с большой точностью оценить твой математический потенциал.

Предложенная сделка вызвала у меня противоречивые чувства: я терпеть не мог контрольных, но обожал задачки, над которыми приходится поломать голову.

– Сколько у меня будет времени? – спросил я.

Дядя Петрос полуприкрыл глаза, рассчитывая.

– М-м-м… Скажем, до начала учебного года, до первого октября. Это почти три месяца.

Я тогда настолько ничего не понимал, что считал, будто за три месяца можно решить не одну, а вообще сколько угодно задач.

– Ого сколько!

– Да, но задача будет трудная, – напомнил дядя. – Такая, что не каждый может ее решить. Но если в тебе есть то, что надо, чтобы быть великим математиком, ты справишься. Конечно, ты дашь слово ни у кого не просить помощи и не искать решения ни в каких книгах.

– Даю слово, – сказал я.

Он посмотрел на меня пристально:

– Значит ли это, что ты согласен на уговор?

Я глубоко вздохнул:

– Согласен.

Не говоря больше ни слова, дядя Петрос ненадолго исчез и вернулся с карандашом и бумагой. Манера его поведения изменилась, сделалась профессиональной – математик говорит с математиком.

– Задача вот какая… Я полагаю, ты уже знаешь, что такое простое число?

– А как же, дядя Петрос! Простое – это такое целое число большее единицы, у которого нет делителей, кроме его самого и единицы. Например, 2, 3,5,7, 11, 13 и так далее.

Ему понравилась точность моего определения.

– Чудесно! Теперь скажи мне, пожалуйста, сколько существует простых чисел?

Я свалился с приятных высот.

– Как это – сколько?

– Сколько их? Вас этому в школе не учат?

– Нет.

Дядя глубоко вздохнул, разочарованный уровнем математического образования в современной Греции.

– Ладно, я тебе это расскажу, потому что тебе это понадобится. Множество простых чисел бесконечно – факт, доказанный Евклидом в третьем веке до нашей эры. Его доказательство – жемчужина красоты и простоты. Используя метод reductio ad absurdum [3]  [3] доказательство от противного (лат.).


[Закрыть]
, он сперва предполагает обратное тому, что хочет доказать, а именно, что множество простых чисел конечно. Далее…

Несколько энергичных движений карандаша по бумаге, скупые пояснительные слова – так дядя Петрос изложил мне доказательство нашего мудрого предка, одновременно дав первый в моей жизни образец настоящей математики.

– …что, однако, противоречит нашему исходному допущению, – заключил он. – Предположение конечности привело к противоречию, ergo [4]  [4] следовательно {лат.).


[Закрыть]
, множество простых чисел бесконечно. Quod erat demonstrandum [5]  [5] что и требовалось доказать (лат.).


[Закрыть]
**.

– Дядя, это просто фантастика! – воскликнул я, восхищенный остроумием доказательства. – Это так просто!

– Да, просто, – вздохнул он, – но никто до Евклида этого не придумал. Вот тебе и мораль: некоторые вещи кажутся простыми только тогда, когда они уже сделаны.

Но у меня не было настроения философствовать.

– Давай теперь, дядя, сформулируй задачу, которую я должен решить!

Он сперва записал ее на листе бумаги, а потом прочел мне вслух.

– Я хочу, чтобы ты попытался доказать, что любое четное число, большее 2, является суммой двух простых чисел.

Я минутку подумал, лихорадочно молясь, чтобы на меня тут же снизошло озарение. Поскольку этого не случилось, я спросил:

– И это все?

Дядя Петрос предостерегающе помахал пальцем в воздухе.

– Э, задача не так уж проста! В каждом частном случае, который можно рассмотреть, например, 4 = 2 + 2, 6 = 3 + 3, 8 = 5 + 3, 10 = 3 + 7, 12 = 7 + 5, 14 = 7 + 7 и т.д. – это очевидно, хотя чем больше число, тем больше приходится вычислять. Но поскольку четных чисел – бесконечное множество, перебирать их по одному невозможно. Ты должен найти общее доказательство этого факта, и я боюсь, это окажется труднее, чем ты думаешь.

Я встал:

– Трудно или нетрудно, а я это сделаю! И собираюсь начать прямо сейчас.

Я уже шел к воротам, когда он окликнул меня из кухни:

– Эй, ты лист с задачей не возьмешь?

Дул холодный ветер, от влажной земли поднимался аромат. Никогда в жизни – ни до, ни после этого краткого мига – не чувствовал я себя таким счастливым, таким исполненным надежд, предвкушений и радостного ожидания.

– Он мне не нужен, дядя, – отозвался я. – Отлично все помню: «Каждое четное число, большее 2, является суммой двух простых чисел». Первого октября покажу тебе решение!

Его суровое напоминание настигло меня на улице:

– Не забудь наш уговор! Только если ты решишь задачу, можешь становиться математиком!

Меня в этот год ждало трудное лето.

К счастью, родители всегда отправляли меня на жаркие месяцы – июль и август – в Пилос, к дяде со стороны матери. Это значило, что я, будучи вне досягаемости отца, хотя бы не имел дополнительной проблемы (будто мне не хватало той, что поставил дядя Петрос) – вести работу втайне. Приехав в Пилос, я сразу разложил бумаги на столе в столовой (летом мы всегда обедали на улице) и сообщил кузенам, что до дальнейших извещений прошу не приставать ко мне с глупостями вроде плавания, игр или походов в летний кинотеатр. Я трудился над задачей с утра до ночи почти без перерывов.

Моя тетя, добрая женщина, добродушно причитала:

– Милый мальчик, ты слишком много работаешь. Сейчас ведь каникулы, отложи хоть ненадолго книги. Ты же отдыхать приехал.

Но я твердо решил не отдыхать до окончательной победы. Я сидел за столом, не разгибая спины, и исписывал лист за листом, подходя к задачке то так, то этак. Иногда, усталый настолько, что абстрактно-дедуктивные рассуждения мне больше не давались, я начинал проверять конкретные числа на случай, если дядя Петрос поставил мне ловушку, попросив доказать утверждение заведомо неверное. После бесконечных делений я сделал таблицу нескольких сотен первых простых чисел (примитивное самодельное решето Эратосфена [6]  [6] Метод поиска простых чисел, изобретенный греческим математиком Эратосфеном. – Примеч. автора.


[Закрыть]
) и складывал их по всем возможным парам, проверяя, работает ли принцип. Напрасно я искал в этих рамках четное число, для которого не выполнялось бы утверждение задачи: все как один выражались в виде суммы двух простых.

Где-то в середине августа, после многих вечеров работы и бесчисленных чашечек кофе по-гречески, я на несколько счастливых часов решил, что вот оно, найденное доказательство! Заполнив своими рассуждениями несколько страниц, я отправил их заказным письмом дяде Петросу.

Не успел я насладиться своим триумфом и двух дней, как почтальон принес мне телеграмму:

ЕДИНСТВЕННОЕ ЧТО ТЫ ДОКАЗАЛ ЭТО ТО ЧТО ЛЮБОЕ ЧЕТНОЕ ЧИСЛО ПРЕДСТАВЛЯЕТСЯ В ВИДЕ СУММЫ ПРОСТОГО И НЕЧЕТНОГО ЧТО ТРИВИАЛЬНО ТЧК

Неделю я приходил в себя после первого провала и удара по самолюбию. Но все же оправился и начал работу заново, на этот раз используя reductio ad absurdum:

«Допустим, что существует такое четное число n, которое не может быть представлено в виде суммы двух простых. Тогда…»

Чем больше работал я над задачей, тем очевиднее для меня становилось: это утверждение выражает некую фундаментальную истину о натуральных числах, materia prima [7]  [7] первичной материи (лат.).


[Закрыть]
математической вселенной. Вскоре я подошел к вопросу о том, как распределены простые числа среди других натуральных, а также о процедуре, которая позволит по данному простому числу найти следующее. Я знал, что эта информация, окажись она в моих руках, была бы крайне полезна в моем поиске, и раза два или три у меня было искушение поискать ее в книгах. Но я, верный своему обязательству работать без посторонней помощи, этого не сделал.

Дядя Петрос, продемонстрировав доказательство Евклида бесконечности множества простых чисел, сказал, что дал мне единственно необходимый для моей работы инструмент. И все же я не мог продвинуться вперед.

К концу сентября, за несколько дней до начала моего последнего в школе учебного года, я снова оказался в Экали, мрачный и сломленный. Поскольку телефона у дяди Петроса не было, мне предстояло сообщить ему весть лицом к лицу.

– Ну? – спросил он, как только мы сели и я гордо отказался от его вишневого напитка. – Ты решил задачу?

– Нет, – ответил я. – Честно говоря, не решил. Меньше всего мне теперь хотелось прослеживать путь своих ошибок или чтобы их анализировал за меня дядя Петрос. Более того, мне абсолютно неинтересно было узнать решение, доказательство утверждения. Хотелось только одного: забыть все, хоть как-то связанное с числами – четными или нечетными, не говоря уже о простых.

Но дядя Петрос не собирался отпускать меня так легко.

– Ну что ж, – сказал он. – Ты помнишь наш уговор?

Я понял, что ему нужно официально закрепить свою победу (почему-то я был уверен, что он именно так рассматривает мой провал), и мне это было очень неприятно. Но я не собирался делать его победу еще слаще, показывая свои задетые чувства.

– Конечно, помню, дядя, как и ты. Мы договорились, что я не буду пытаться стать математиком, если не решу задачу…

– Нет! – прервал он меня с неожиданной горячностью. – В договоре было сказано, что если ты не решишь задачу, ты дашь обещание никогда не быть математиком!

– Именно так, – подтвердил я хмуро. – И поскольку задачу я не решил…

– Ты сейчас дашь обещание, – прервал дядя, заканчивая предложение и снова подчеркивая слова так, будто его (или скорее моя) жизнь от этого зависела.

– Конечно, – сказал я, заставляя себя не быть невежливым. – Если это тебе приятно, я даю обещание.

Он заговорил суровым и даже свирепым голосом:

– Дело не в том, молодой человек, что мне приятно или неприятно, дело в соблюдении соглашения. Ты поклянешься держаться подальше от математики!

Моя досада тут же развернулась в полноценную ненависть.

– Хорошо, дядя, – холодно сказал я. – Я клянусь держаться подальше от математики. Теперь ты доволен?

Я встал, но он грозно поднял руку:

– Не так быстро!

Он резким движением выхватил из кармана лист бумаги, развернул и сунул мне под нос. Вот что там было:

Я, нижеподписавшийся, находящийся в здравом уме и твердой памяти, не выдержав экзамена на способности в высшей математике и в соответствии с соглашением, заключенным мной с моим дядей, Петросом Папахристосом, никогда не буду добиваться диплома математика в каком-либо высшем учебном заведении, равно как не буду и каким-либо иным образом стремиться к профессиональной карьере математика.

Я уставился на дядю.

– Подпиши! – приказал он.

– Какой в этом толк?! – заревел я, уже не пытаясь скрывать свои чувства.

– Подпиши, – сказал дядя неколебимо. – Уговор есть уговор!

Я оставил без внимания его руку, державшую в воздухе авторучку, вытащил из кармана шариковую, вбил свою подпись в этот лист, и не успел дядя сказать хоть слово – как я бросил ему эту бумагу и выбежал прочь, к калитке.

– Погоди! – крикнул он мне вслед, но я уже был за оградой.

Я бежал, бежал, бежал, пока его крики не затихли вдали, а тогда остановился, запыхавшийся, согнулся пополам и заплакал, как маленький, слезами гнева, досады и унижения.

Весь последний школьный год я не видел дядю Петроса и не говорил с ним, а в июне придумал какой-то предлог, чтобы во время традиционной семейной поездки в Экали остаться дома.

Мой опыт предыдущего лета дал именно тот результат, который дядя Петрос, несомненно, предвидел. Независимо от любых обязательств выполнить свою часть «уговора», я начисто утратил желание становиться математиком. К счастью, этот побочный эффект моей неудачи не дошел до крайностей, я не отверг науки полностью и продолжал успевать в школе по всем предметам. В результате я был принят в один из лучших университетов в Соединенных Штатах. При регистрации я заявил главной областью своих интересов экономику, и этого выбора держался до третьего курса [8]  [8] В американской системе высшего образования студент может на первых двух курсах университета не объявлять о специализации, по которой он хочет получить диплом, а если объявит, то может изменить эту специализацию до начала третьего (Junior) года обучения. – Примеч. автора.


[Закрыть]
. Если не считать обязательных курсов элементарного анализа и линейной алгебры (между прочим, высшие оценки там и там), я за первые два года никакой математики не изучал.

Успех (по крайней мере первоначальный) интриги дяди Петроса был основан на применении к моей жизни абсолютного детерминизма математики. Конечно, он шел на риск, но риск хорошо рассчитанный: вероятность того, что я в университетском курсе элементарной математики узнаю о том, что это была за задача, была пренебрежимо мала. Она (задача) относится к теории чисел, которую читают лишь немногим, избравшим своей специальностью математику. И потому вполне естественно было предположить, что, пока я держу обещание, я закончу университетский курс (и жизнь, насколько можно судить), не узнав правды.

Но реальность не так предопределена, как математика, и все вышло иначе.

В первый день моего третьего года мне сообщили, что Судьба (потому что кто же еще так умеет подстраивать совпадения?) назначила мне в соседи по комнате Сэмми Эпштейна – тщедушного паренька из Бруклина, известного среди студентов как феноменальный математический талант. Сэмми должен был уже в этом году получить диплом в возрасте семнадцати лет, и хотя он формально считался еще студентом, все курсы, которые он слушал, были для аспирантов. Он даже начал работать над диссертацией по алгебраической топологии.

Я в это время полагал, что раны от моего краткого периода математических надежд уже затянулись, и мне стало приятно и даже интересно, когда я узнал, кто будет моим соседом. В первый вечер, когда мы сидели в университетской столовой для лучшего знакомства, я небрежно сказал:

– Поскольку ты, Сэмми, математический гений, я уверен, что ты легко сможешь доказать вот что: каждое четное число, большее 2, представимо в виде суммы двух простых.

Он разразился хохотом.

– Если бы я мог доказать это, друг мой, я бы тут с тобой не сидел, а уже был бы профессором. Может, даже Филдсовскую медаль получил бы – это для математиков как Нобелевская!

Он еще не договорил, как мне уже внезапно открылась страшная истина. Сэмми подтвердил ее следующими словами:

– Утверждение, которое ты сейчас сформулировал, – это проблема Гольдбаха, одна из самых трудных нерешенных задач во всей математике!

Моя реакция состояла из Четырех Стадий Горя, называемых (если я правильно помню, чему меня учили в элементарном курсе психологии) Отторжением, Гневом, Подавленностью и Принятием. Первая оказалась самой краткосрочной.

– Это… Этого не может быть! – выговорил я, как только Сэмми произнес эти страшные слова. Я надеялся, что ослышался.

– Как это – «не может быть»? Может, потому что так оно и есть! Проблема Гольдбаха, или гипотеза Гольдбаха – потому что это всего лишь гипотеза, которую никто еще не доказал, – состоит в том, что любое четное число есть сумма двух простых. Впервые она была сформулирована математиком по фамилии Гольдбах в письме к Эйлеру [9]  [9] На самом деле в письме Христиана Гольдбаха от 1742 года содержится предположение, что любое натуральное число представимо в виде суммы трех простых. Но поскольку (в предположении, что гипотеза верна) одно из этих трех слагаемых в представлении четного числа должно быть равно 2 (сумма трех нечетных простых чисел необходимо будет нечетной, а единственным четным простым числом является 2), непосредственным следствием гипотезы будет то, что любое четное число является суммой двух простых. Ирония здесь в том, что не Гольдбах, а Эйлер сформулировал гипотезу, которая носит другое имя, – факт, не слишком известный даже среди математиков. – Примеч. автора.


[Закрыть]
. Ее проверили для неимоверного количества четных чисел, и она выполняется, но общего доказательства до сих пор никто не смог дать.

Следующих слов Сэмми я уже не слышал, потому что вошел в стадию Гнева.

– Старая сволочь! Сукин сын! – заорал я по-гречески. – Чтоб его черти взяли! Чтоб ему в аду гореть!

Мой новый сосед, никак не думавший, чтобы какая-нибудь гипотеза теории чисел могла вызвать такой бешеный взрыв средиземноморских страстей, попросил меня объяснить, что случилось. Но я был не в том состоянии, чтобы что-нибудь объяснять.

Мне было девятнадцать лет, и до тех пор я вел очень упорядоченную жизнь. Если не считать одну рюмку виски с отцом, чтобы отпраздновать, «как подобает взрослым мужчинам», мое окончание школы, и обязательный глоток вина на родственных свадьбах, я не знал вкуса алкоголя. Следовательно, огромное количество, поглощенное в этот вечер (я начал с пива, перешел на бурбон и закончил ромом) необходимо умножить на достаточно большой коэффициент n, чтобы правильно оценить эффект.

На третьем или четвертом стакане пива, когда я еще что-то соображал, я написал письмо дяде Петросу. Потом, войдя в фазу фаталистического ожидания неминуемой смерти, но до того, как полностью отключился, я передал это письмо бармену вместе с остатками стипендии, попросив выполнить мое последнее желание и отправить письмо. Частичная амнезия, затемняющая подробности этого вечера, навеки скрыла точное содержание письма. (У меня не хватило духу разыскивать его, когда я через много лет унаследовал архив дяди.) Судя по обрывкам памяти, нет такого ругательства, вульгарного или оскорбительного выражения, проклятия или злобного пожелания, которого не было бы в этом письме. Смысл состоял в том, что дядя разрушил мою жизнь, а потому я, когда вернусь в Грецию, его убью, но только после долгих пыток самыми извращенными способами, которые только может придумать человеческое воображение.

Не знаю, сколько времени я пробыл без сознания, борясь с потусторонними кошмарами. Наверное, был уже конец следующего дня, когда я начал осознавать, где нахожусь. Находился я в своей кровати, а Сэмми сидел за своим столом, склонившись над книгами. Я застонал. Сэмми подошел и объяснил, что меня принесли студенты, нашедшие меня в бессознательном виде на газоне перед библиотекой. Они отнесли меня в амбулаторию, и доктор без труда поставил диагноз. Ему даже не пришлось меня осматривать, поскольку вся одежда у меня была облевана и от меня разило алкоголем.

Мой новый сосед, явно озабоченный перспективами нашего дальнейшего совместного проживания, спросил, часто ли это со мной бывает. Я со стыдом промямлил, что такое было в первый раз.

– Это все из-за проблемы Гольдбаха, – успел прошептать я и снова провалился в сон.

Еще два дня я отходил от мучительной головной боли. Потом (кажется, поток алкоголя перенес меня через Гнев насквозь) я вошел в следующую стадию горя: Подавленность. Двое суток я сидел мешком в кресле в гостиной, бессмысленно глядя на черно-белые образы, танцующие в телевизоре.

Из этой летаргии, в которую я впал по собственной инициативе, меня вытащил Сэмми, выказав чувство товарищества, никак не соответствующее ходячему карикатурному представлению об эгоцентричном и не от мира сего математике. На третий вечер после того, как я сломался, Сэмми подошел и посмотрел на меня сверху вниз.

– Ты знаешь, что завтра – крайний срок регистрации? – спросил он сурово.

– М-м-м…

– Так ты зарегистрировался? Я вяло мотнул головой.

– Ты хотя бы выбрал курсы, которые будешь слушать?

Я еще раз мотнул головой, и Сэмми нахмурился.

– Не мое, конечно, дело, но не лучше ли тебе было бы заняться этими довольно срочными делами, чем сидеть и пялиться в ящик для идиотов?

Потом он признался, что не только желание помочь собрату по человечеству в тяжелую минуту заставило его взять на себя этот труд – его одолевало искушение узнать, какая связь между его соседом по комнате и всемирно известной математической проблемой. Какими бы ни были его мотивы, ясно одно: долгий разговор, который у нас с Сэмми был в этот вечер, изменил мою жизнь. Без понимания и поддержки Сэмми я, быть может, и не шагнул бы за черту. И еще, быть может, важнее то, что вряд ли я когда-нибудь простил бы дядю Петроса.

Разговор мы начали за ужином в столовой и продолжали всю ночь в комнате за кофе. Я рассказал ему все: о нашей семье, о том, как завораживал меня в детстве далекий образ дяди Петроса, как постепенно я стал узнавать о его ярких достижениях, о его блестящих шахматных успехах, о его книгах, о приглашении в Греческое математическое общество и о должности профессора в Мюнхене. Я изложил краткий рассказ отца о жизни дяди, о его ранних успехах и мистической (на мой взгляд по крайней мере) роли проблемы Гольдбаха в его отчаянном падении. Я рассказал о своем первоначальном намерении стать математиком, о разговоре с дядей Петросом три года назад у него на кухне в Экали. И наконец – о нашем «уговоре».

Сэмми слушал, ни разу не перебив, внимательно глядя узкими, глубоко посаженными глазами. И только когда я подошел к концу рассказа и сформулировал задачу, поставленную мне дядей, чтобы решить ее за три месяца – она должна была выявить, могу ли я стать настоящим математиком, – вот тут он взорвался, охваченный внезапной яростью.

– Что за мудак! – выкрикнул он.

– Полностью согласен, – сказал я.

– Он садист! – не мог успокоиться Сэмми. – Да нет, он просто маньяк! Каким надо быть извращенцем, чтобы заставить школьника все лето решать проблему Гольдбаха, да еще сделать вид, что это простая тренировочная задачка! Ну и скотина!

Чувство вины за ненормативные выражения, которые я использовал в письме к дяде Петросу, заставило меня сделать попытку его защитить и найти логическое оправдание его поведению.

– Может, у него были совсем не плохие намерения, – попытался сказать я. – Может, он думал, что предотвратит гораздо худшие разочарования.

– По какому праву? – заорал Сэмми, хлопнув ладонью по столу. (Он в отличие от меня вырос в обществе, где от детей не требовалось оправдывать ожидания родителей и старших родственников.) – У каждого человека есть право идти на риск любого разочарования, – пламенно объявил он. – И что это еще за фигня насчет «быть лучшим», «золотой посредственности» и прочего? Ты мог стать настоящим…

Сэмми замолчал посередине фразы, разинув рот.

– Постой, постой! Что значит – «мог»? – просиял он. – Ты все еще можешь стать настоящим математиком!

Я пораженно поглядел на него:

– Сэмми, ты о чем? Уже поздно, и ты это знаешь!

– Ничего подобного! Крайний срок объявления специализации только завтра.

– Я же не о том. Я уже столько времени потерял на всякое другое, и…

– Чушь, – твердо заявил Сэмми. – Будешь работать – сможешь наверстать время. Важно лишь, чтобы ты вернул себе энтузиазм, страсть, которые у тебя были, пока твой бессовестный дядя их не уничтожил. Можешь мне поверить, это вполне возможно – и я тебе помогу!

На улице занимался рассвет, когда настал момент четвертой и последней стадии: Принятие. Цикл завершился. Я начну свою жизнь сначала, с той точки, где дядя Петрос с помощью грязного трюка свернул меня с того пути, который я снова считаю правильным.

Мы с Сэмми плотно позавтракали в столовой, а потом сели за список курсов, предлагаемых математическим факультетом. Сэмми объяснил мне содержание каждого, как опытный метрдотель, описывающий блюда в меню. Я записывал и в тот же вечер пошел в офис регистратора и заполнил свой выбор курсов на начавшийся семестр: введение в анализ, введение в комплексный анализ, введение в современную алгебру и общую топологию.

Да, и, конечно, я указал свою специализацию: Математика.

Через несколько дней после начала занятий, в самое трудное время, когда я вгрызался в новую дисциплину, пришла телеграмма от дяди Петроса. Увидев извещение, я сразу понял, от кого она, и тут же подумал, что ее и читать не стоит. Любопытство, однако, пересилило.

Я заключил сам с собой пари: будет он пытаться оправдаться или просто обрушится на меня за мой тон. Поставив на второй вариант, я проиграл. Дядя писал:

ПОЛНОСТЬЮ ПОНИМАЮ ТВОЮ РЕАКЦИЮ ТЧК ЧТОБЫ ПОНЯТЬ МОЕ ПОВЕДЕНИЕ ТЕБЕ СЛЕДУЕТ ОЗНАКОМИТЬСЯ С ТЕОРЕМОЙ КУРТА ГЕДЕЛЯ О НЕПОЛНОТЕ ТЧК

Я в то время понятия не имел, что это такое – теорема Курта Гёделя о неполноте. И желания узнавать это у меня тоже не было – изучение теорем Лагранжа, Коши, Фату, Больцано, Вейерштрасса, Гейне, Бореля, Лебега, Тихонова и др. в тех курсах, что я слушал, требовало достаточно труда. И вообще к тому времени я уже более или менее принял суждение Сэмми, что поведение дяди Петроса по отношению ко мне носило определенную окраску слабоумия. Телеграмма это подтверждала: он пытался объяснить сыгранную со мной дурацкую шутку математической теоремой! Эта старая развалина и ее сумасшедшие фантазии меня больше не интересовали.

Телеграмму я своему соседу по комнате не показал и вообще о ней забыл.


***

Рождественские каникулы в тот год я просидел вместе с Сэмми в Математической библиотеке [10]  [10] Мой рассказ – не автобиография, поэтому я не буду обременять читателя дальнейшими подробностями моего прогресса в математике. (Кому любопытно, могу сообщить, что он шел «медленно, но верно».) В силу этого факты моей жизни будут упоминаться только в тех пределах, в которых они имеют отношение к истории дяди Петроса. – Примеч. автора.


[Закрыть]
.

В канун Нового года он позвал меня встречать праздник с его семьей в Бруклине. Мы сидели, пили и веселились, когда он отвел меня в сторонку.

– Можешь выдержать небольшой разговор о своем дяде? – спросил он. С того первого ночного разговора эта тема, будто по молчаливому согласию, не поднималась ни разу.

– Могу, конечно, – рассмеялся я, – только что тут еще можно сказать?

Сэмми вынул из кармана сложенный лист бумаги и развернул его.

– Я тут недавно предпринял некоторое тайное расследование по теме, – сказал он.

Я был удивлен.

– Какое «тайное расследование»?

– Да нет, не воображай себе ничего такого полицейского; в основном я занимался библиографией.

– И?

– И пришел к выводу, что твой дорогой дядя Петрос – обманщик!

– Обманщик?

Такое я меньше всего ожидал о нем услышать, и так как кровь не вода, тут же встал на его защиту.

– Как ты можешь такое говорить, Сэмми? Все знают, что он был профессором кафедры анализа в Мюнхенском университете. Он не обманщик!

Сэмми стал объяснять:

– Я прошелся по библиографическим указателям всех статей, опубликованных в этом столетии в математических журналах. Я нашел всего три работы, подписанные его именем, но ничего – ни единого слова – ни о проблеме Гольдбаха, ни вообще о чем-нибудь, имеющем к ней отношение!

Я не мог понять, как это связано с обвинением в обмане.

Сэмми снисходительно улыбнулся.

– Это потому, что ты понятия не имеешь о работе математика, – сказал он. – Знаешь, что ответил великий Давид Гильберт, когда коллеги спросили его, почему он никогда не пытался доказать так называемую Последнюю теорему Ферма – это такая знаменитая нерешенная проблема?

– Не знаю. Просвети меня.

– Он сказал: «Зачем мне резать курицу, которая несет золотые яйца?» А имел он в виду вот что: когда сильный математик пытается решить крупную проблему, на свет появляется множество фундаментальных результатов – так называемых промежуточных, и это даже если главная проблема останется не решенной. Вот тебе пример, который ты поймешь: теория конечных групп возникла в результате попыток Эвариста Галуа решить уравнение пятой степени в общей форме…

Суть аргументов Сэмми сводилась к следующему: не может быть, чтобы великий математик (все признаки которого были в молодости у дяди Петроса) всю жизнь провел, копая такую величайшую задачу, как проблема Гольдбаха, и не получил ни единого промежуточного результата, имеющего хоть какую-то ценность. Однако он никогда ничего не публиковал, и потому мы с необходимостью должны заключить (тут Сэмми воспользовался одним из видов доказательства от противного), что он лжет. Он никогда не пытался решать проблему Гольдбаха.


    Ваша оценка произведения:

Популярные книги за неделю