355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Андрей Задумавшийся » Физика для "чайников" (СИ) » Текст книги (страница 6)
Физика для "чайников" (СИ)
  • Текст добавлен: 16 марта 2017, 10:30

Текст книги "Физика для "чайников" (СИ)"


Автор книги: Андрей Задумавшийся


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 6 (всего у книги 12 страниц)

Теперь, как и обещал, расшифровываю. Непонятное слово "парциальное" можно для себя вообще опустить, оно означает всего лишь давление, которое оказывал бы газ, если бы он был один (без воздуха), но в сумме с воздухом он всё равно будет давать такое же давление, только к нему прибавится давление воздуха. Обычно пар ненасыщенный (число прилетающих в него больше числа улетающих из него). При каждой температуре число прилетающих и улетающих, нужное для насыщения (которое уравнивается), будет разным – ясно, что из холодной воды в холодный воздух улетать будет меньше, чем из горячей – в горячий. Для каждой температуры давление, соответствующее данному количеству штук прилетающих-улетающих, уже посчитано. В итоге, разделив одно на второе, получим, насколько наш пар насыщен. То есть если относительная влажность 100%, это не значит, что вместо воздуха будем плавать в воде – это просто означает, что сколько молекул из близлежащей воды вылетает в наш воздух, столько же из него и возвращается обратно в воду. (Совсем строго говоря, молекулы могут вылетать даже из твёрдого тела, тоже превращаясь в пар, – такое называют сублимацией, – но это происходит гораздо более слабо, чем обычное парообразование. Тем не менее, если оставить мокрое бельё на морозе, то оно высохнет – капельки воды заморозится, после чего все ледышки сублимируют; и относительная влажность воздуха существует и при отрицательных температурах по Цельсию.)

Но мы по-прежнему нагреваем нашу воду. Она испаряется сильнее и сильнее, сверху улетают быстрые молекулы, их начинают подпирать соседи снизу, потом разгоняются соседи ещё ниже... В итоге дело дойдёт до того, что парообразование начнёт происходить внутри самой воды – особо быстрые молекулы будут улетать группами, распихивая всех остальных на своём пути (и, кстати, не всегда будут долетать до верха). Внешне это выглядит как пузыри "воздуха" внутри кипящей воды – часть из них доходит до верха, а часть "схлопывается" по пути – шум от этого схлопывания и есть шум, который издаёт вода при кипении. Понятно, что и здесь процесс сам собой идти не будет, кипение нужно поддерживать всё тем же теплом, чтобы выкипело всё. Энергия, которую нужно затратить, чтобы превратить 1 кг жидкости в пар, называется удельной теплотой парообразования – полный аналог теплоты плавления, тоже мерится в Дж/кг, тепло считается так же: Q = L*m, где L – удельная теплота парообразования, m – масса жидкости. Поэтому 100-градусный водяной пар обжигает сильнее, чем 100-градусная кипящая вода: пару необходимо сначала отдать энергию на конденсацию, после чего он превратится в 100-градусную воду и начнёт отдавать тепло дальше, а вода просто начинает отдавать тепло и остывать – то есть ожог хуже потому, что в обжигаемую часть тела передаётся больше тепловой энергии.

Что будет, если нагревать газ ещё дальше? Да, честно говоря, ничего особенного. Молекулы газа просто будут летать всё быстрее и быстрее, но до полностью нового агрегатного состояния вещества тут не дошли (и не факт, что дальше что-то есть). (Для особо любопытных: выделяют ещё два агрегатных состояния вещества, но это уже скорее условно: четвёртое – это плазма; по сути, газ, по которому пропускают электрический ток, либо очень сильно нагретый газ, у неё свои признаки, по которым можно отличить её от простого газа; пятое – так называемый Бозе-конденсат, возникающий, если вещество резко остудить до температуры, очень близкой к абсолютному нулю.)

И всё бы хорошо, да, помимо температуры, есть ещё объём и давление. В основном всю бочку катит давление – так, на вершине высокой горы вода кипит при более низкой температуре. Почему? Потому, что кипение начинается при такой температуре, где давление насыщенного пара будет равно внешнему давлению. В горах воздух разрежен, его давление меньше – поэтому и давление насыщенного пара для кипения достаточно не такое большое, как на земле (на уровне моря). Соответственно, может быть и наоборот: если загнать жидкость в газ со страшным давлением, то она никогда и не закипит?! А вот и нет. У каждого вещества есть так называемая критическая температура, выше которой вещество не может находиться ни в жидком, ни в твёрдом состоянии уже ни при каких условиях – сколько ни сжимай, будет только газ. У воды, например, критическая температура составляет 647 К (374 по Цельсию). Даже если сжать настолько горячий водяной пар хоть в точку, он всё равно останется газом. Более холодный в конце концов сдастся и сконденсируется в капельки крайне горячей воды.

Вкратце и поумнее: плавление – процесс перехода вещества из твёрдого состояния в жидкое. Кристаллизация, или, более точно, отвердевание – процесс, обратный плавлению. Удельная теплота плавления – энергия, которую необходимо сообщить, чтобы расплавить 1 кг вещества. Единица измерения – Дж/кг, Q = лямбда*m (лямбда – удельная теплота плавления, m – масса вещества, Q – количество теплоты, получаемое при плавлении/отдаваемое при отвердевании). Парообразование – процесс перехода вещества из жидкого состояния в газообразное. Конденсация – процесс, обратный парообразованию. Существует два вида парообразования: испарение и кипение. Испарение – парообразование с поверхности жидкости, кипение – внутри. Насыщенный пар над жидкостью – это пар, находящийся в динамическом равновесии со своей жидкостью. Абсолютная влажность воздуха – это плотность водяных паров в воздухе. Относительная влажность воздуха – это отношение парциального давления водяного пара к давлению насыщенного водяного пара при данной температуре, измеряется в процентах. Температура кипения – это температура, при которой давление насыщенных паров жидкости равно внешнему давлению. Удельная теплота парообразования – это энергия, которую необходимо сообщить 1 кг жидкости, чтобы обратить её в пар. Единица измерения – Дж/кг, Q = L*m (L – удельная теплота парообразования, m – масса вещества, Q – количество теплоты, получаемое при парообразовании/отдаваемое при конденсации). Критическая температура – это температура, выше которой вещество не может существовать в твёрдом или жидком состоянии. Если совсем строго говорить, то в "критической точке" (pкр, Vкр, Tкр) исчезает различие между жидкой и газообразной фазами вещества.

3. Электричество и магнетизм.

Ну что же, начинается ещё одна достаточно сложная и в какой-то степени мутная часть физики. Мутная в первую очередь потому, что наглядно представить, как происходит хотя бы тот же электрический ток, уже сложно – не говоря уже о том, что он делает, и как его используют. Но благодаря тому же электричеству сейчас можно столько, что не разбираться, как работает самое-самое основное, уже как-то и стыдно. Начинают тут, как всегда, издалека и с самого-самого основного. С электростатики. Это раздел физики, изучающий электрические поля неподвижных зарядов (или заряженных тел). И сразу же влипаем в грязь. Какие такие электрические поля? Какие ещё заряды? Попробуем обо всём по порядку.

Что такое "поле" вообще, физика толком сказать не может. Это вторая форма материи (первая – вещество), а материя – это тупо всё, что нас окружает. Считается, что всё вокруг находится под воздействием так называемых полей взаимодействий, которые ничем не ощущаются, но могут передавать энергию или действовать с какой-то силой на что-нибудь. Одно из таких полей уже было в механике – это гравитационное поле, которое притягивает нас к планете. Второй вид поля, похожий по действию, но отличающийся по своей природе (по своему происхождению) – его назвали электромагнитным полем. А величину, характеризующую способность тела участвовать в таком взаимодействии, назвали электрическим зарядом. "Электричество" потому, что образовано от слова "янтарь" – первый материал, у которого нашли такие свойства: если янтарь потереть о шерсть, то последний начнёт непонятно почему притягивать мелкие лёгкие предметы. И понеслось... После всё это хозяйство, конечно же, стало обрастать математикой.

Первое же, что сделали, – ввели значение заряда и его знак. Заряд измеряется в кулонах (Кл), знак его обозначается чисто условно – всё та же договорённость. Он может быть положительным, отрицательным или нулём (тело не заряжено). Заряды одинакового знака отталкиваются друг от друга, а разных знаков – притягиваются друг к другу. Ещё предположили (а после доказали), что электрический заряд всегда должен быть представлен как сумма неких элементарных электрических зарядиков. Носителя такого элементарного заряда назвали электроном и приняли, что значение его заряда равно -1.6*10^-19 Кл. Именно с "минусом" – как здесь любят выражаться, так исторически сложилось. А элементарный заряд при этом с "плюсом"! Уже голова начинает кружиться, какой знак когда брать. Пока что электроны трогать не будем – примем за данность, что они есть и являют собой самый маленький заряд, который может быть в принципе. И пока забудем о них. У заряда тоже есть закон сохранения, как и у энергии: суммарный электрический заряд замкнутой системы постоянен. К слову, заряд – не вектор, его складывать черчением не надо – просто складываем всё, как в обычной алгебре, с учётом знаков. И, наконец, последнее допущение, которое почти повторяет ту же механику. Точечный заряд. Это просто материальная точка (та же, что была в механике), обладающая электрическим зарядом.

Ну и зачем весь этот ворох допущений, предположений и тому подобных непонятных вещей? Потому что только при их помощи смогли худо-бедно объяснить, почему происходит электромагнитное взаимодействие. Когда трёшь янтарь о шерсть, каким-то непонятным образом нарушается однородность их зарядов, часть маленьких зарядиков перебегает с шерсти на янтарь, первая становится заряженной положительно, а второй – отрицательно. Более жизненный пример – если причесаться обычной расчёской, то сразу после причёсывания к ней будут прилипать, например, маленькие кусочки бумаги – несмотря на то, что бумага электронейтральна (у неё заряд – 0), по сравнению с отрицательным зарядом расчёски она "кажется" другого знака, поэтому и притягивается. По той же причине после того же причёсывания или трения об одежду при переодевании может легонько "ударить током" при прикосновении к металлической вешалке – лишний заряд, скопившийся на тебе, стремится покинуть тебя и вернуть общую электронейтральность – всё тот же вездесущий принцип "природа стремится к равновесию".

А математика здесь завязана такая, что аналогия с той же гравитацией в механике полная, что заставляет физиков-философов (есть и такие) раскрывать рот и махать руками на тему, какие все фундаментальные (основные) взаимодействия похожие друг на друга, это же так круто! Вывел его товарищ Кулон тоже чисто экспериментальным путём. Остаётся только надеяться, что он не сговорился с Ньютоном. Выглядит он так: F = k*q1*q2/(r^2). F – сила взаимодействия (притяжения или отталкивания) между электрическими зарядами. k – экспериментальный коэффициент, равен 9*10^9 Н*м^2/(Кл^2). (По-хорошему, вместо k здесь надо писать 1/(4пи*эпсилон0), последняя непонятая буква там – электрическая постоянная, равная 8.85*10^-12 Ф/м – о ней речь пойдёт попозже, – но k запомнить проще, да и эта заумная дробь как раз будет равна k.) Q1 и q2 – электрические заряды, которые имеют наши точечные заряды, r – расстояние между ними. Почти тот же закон всемирного тяготения, только цифири другие (k вместо G), и вместо масс – заряды. Легко увидеть, что если сила отрицательна – это значит, что заряды притягиваются (плюс на минус даёт минус), а если положительная – то отталкиваются (минус на минус даёт плюс, плюс на плюс – естественно, тоже).

Вкратце и поумнее: электростатика – раздел физики, изучающий электрические поля неподвижных зарядов. Электрическое поле – форма материи, порождается электрическими зарядами. Электрический заряд – величина, характеризующая способность тела участвовать в электромагнитном взаимодействии. Единица измерения – кулон (Кл), может иметь знак "+", "-" или не иметь его вообще (0). Любой электрический заряд является суммой элементарных электрических зарядов, последний равен 1.6*10^-19 Кл. Носитель элементарного заряда – электрон, он заряжен отрицательно. Закон сохранения заряда: суммарный заряд замкнутой системы постоянен (сумма зарядов определяется алгебраически, не векторно, так как заряд – скалярная величина). Точечный заряд – заряженное тело, размерами которого можно пренебречь в условиях данной задачи, то есть материальная точка, обладающая электрическим зарядом. Закон Кулона для взаимодействия точечных электрических зарядов: F = k*q1*q2/(r^2), где F – сила взаимодействия между зарядами (положительная – отталкивания, отрицательная – притяжения), k – экспериментальный коэффициент, равен 1/(4пи*эпсилон0) = 9*10^9 Н*м^2/(Кл^2), где эпсилон0 = 8.85*10^-12 Ф/м – электрическая постоянная, q1 и q2 – значения электрических зарядов, которые имеют наши точечные заряды, r – расстояние между ними.

Теперь начинается то, что вне физики любят окрещивать «терминами лженауки». С зарядами вроде худо-бедно разобрались, осталось электрическое поле. Никто его никогда не видел, не слышал и не ощущал, но при этом утверждают, что оно есть. Просто потому, что два зарядика просто так ни с того ни с сего не станут применять силу друг против друга (или друг за друга), это надо как-то объяснить! Вот и приехали, да к такому объяснению, что оно даже выглядит правдоподобным. Ну вот, например, самое простое. Два одинаковых зарядика отталкиваются друг от друга просто потому, что на каждого из них действует электрическое поле, создаваемое другим – именно оно и даёт эту неведомую силу. Открестились, однако, одним неизвестным от второго! Если о силе нам уже что-то известно из механики, то тут тёмный лес. Да он ещё и сгущается: а если поле действует не на один зарядик, а на несколько? А если на целое здоровенное туловище, которое не посчитаешь? Чтобы убрать привязку к точечному зарядику и сделать эту неведомую силу более-менее универсальной для счётов, придумали обозвать её «напряжённость электрического поля». Это сила, которая действует на заряд в 1 Кл, находящийся в этом считаемом поле. (К слову, 1 Кл – это очень большой заряд; как можно заметить, единички в таких определениях означают то, на что мы умножаем или делим.) То есть E = F/q (E – напряжённость, F – сила, q – величина точечного заряда, на который действуют.) Как можно увидеть, мериться она должна в Н/Кл, но обычно используют такую же размерность, обозванную В/м. (Да, В – это вольт. Пошли знакомые слова? То ли ещё будет.) Поскольку сила – это вектор, а заряд – скаляр (число), то напряжённость получается тоже вектором. И вот тут-то математика и начинает радостно потирать ручонками и облизываться. Потому что напряжённость и траектории тех зарядиков, которые она мутузит, расположены друг относительно друга так же, как скорость и траектория при движении по окружности – по касательной друг к другу. Не знаю, специально это так выдумали, или совпало, но факт остаётся фактом: силовые линии электрического поля (то направление, куда поле заставляет «ехать» заряд) направлены так, что касательные к ним совпадают по направлению с вектором напряжённости этого же поля в той точке, в которой касаются. Да, звучит очень заумно. Глазами это можно представить так: вокруг положительного зарядика можно описать большое количество полуокружностей, причём каждая из них «держится» за зарядик только самым краешком – например, верхним или нижним. А дальше эта полуокружность уходит в бесконечность, так и не выросши до окружности. Если зарядик отрицательный – то он, наоборот, собирает на себе все «пришедшие» чёрт-те откуда такие же линии. Опять-таки, это всё договорённость – линии начинаются на положительных зарядах и заканчиваются на отрицательных. Причём всегда их много-много, но так, что они не пересекаются! И чем больше напряжённость, тем ближе эти линии расположены друг к другу, тем поле сильнее. Аура? Биополе? Ну да, это что-то в том же духе, только их не любят описывать математикой – а то якобы никто не поймёт. Без математики, впрочем, их тоже не понимают (только это уже в основном технари, привыкшие всё считать).

Чтобы хоть как-то попонятнее объяснить всю эту муть, пойдём всё по тем же аналогиям. Если насыпать на ровную простынь несколько шариков, то на простыни при их падении образуются складки, которые тоже как бы исходят из каждого шарика. Это и будут «силовые линии поля» шарика. Естественно, чем больше и тяжелее шарик, тем больше будет складок, тем сильнее будет «напряжённость» этого «поля». Только электрическое поле, в отличие от этого «шарикового», распространяется практически повсюду.

Но это всё не значит, что силовые линии – всегда кривые! Как раз-таки самый простой вид поля, который можно обсчитать, имеет прямые силовые линии. Да не просто прямые, а параллельные прямые! Такое поле называется однородным, в каждой его точке вектор напряжённости будет одинаков по величине и по направлению. Как пример однородного поля постоянно приводят две разноимённо заряженные пластинки, параллельные друг другу. (По аналогии, например, с водой это может быть обычный водопад с прямоугольной ступеньки: все "силовые линии" в падающей воде будут идти параллельно друг другу.) Потом они нам ещё встретятся.

Ну а если попытаться посчитать поле обычного заряда-точечки, то его напряжённость будет считаться так: E = k*q/(r^2) – что вполне логично, если в законе Кулона убрать второй заряд (разделить на него). Но и здесь же встречаем жирный минус: напряжённость можно посчитать только в одной точке (на расстоянии r). Ну хорошо, на окружности с радиусом r. А во всех остальных точках?.. Руками это точно не посчитаешь. Максимум на компьютере и если сильно приспичит.

И самое страшное, но обычно и самое реальное. А если полей несколько? Тут встаёт и машет рукой принцип суперпозиции, до этого шлявшийся где-то в механике: нам нужно векторно сложить все напряжённости от всех полей, которые действуют в той точке, в которой смотрим – опять-таки, это уже только для одной точки, даже без окружности! Потому что поля друг с другом не взаимодействуют, каждая из напряжённостей тянет в свою сторону со своей силой – практически так же, как и в механике, результат можно узнать, лишь сложив все с учётом их направлений. Во какой "аппарат" выдумали – описывать-то описывает, но посчитать – руки практически связаны. Что там по одной точечке колупать... Но, с другой стороны, с этим особо сильно и не морочатся – считают все нужные цифири только в "ключевых" точках, где что-то кардинально меняется, а на остальное забивают, дабы не ударяться головой о юношеский максимализм – тут он не везде уместен.

Вот мы всё говорим: поле, поле. А про то, на что оно действует, забыли. Точнее, маленькие точечные зарядики обсосали уже со всех сторон, а вот про реальные туловища забыли. Условно все вещества можно разделить на проводники и диэлектрики. В проводниках есть так называемые свободные заряды, летающие внутри них и способные дать полю подействовать на себя, в диэлектриках можно считать, что таких зарядов нет – вообще они есть, но их очень-очень мало. Строго говоря, есть ещё полупроводники – это нечто среднее; заряды там вроде бы и есть, но они не совсем свободны – их сначала нужно прикормить и выудить. Но о них ближе к самому концу.

Вкратце и поумнее: напряжённость электрического поля – это сила, с которой поле действует на единичный точечный заряд, в нём находящийся. E = F/q, где E – напряжённость электрического поля, F – сила, с которой оно действует; q – заряд, на который оно действует. Единица измерения – В/м. Силовые линии электрического поля – это линии, касательные к которым совпадают по направлению с вектором напряжённости в точке касания. Электрические силовые линии не пересекаются, начинаются на положительных зарядах и оканчиваются на отрицательных. Однородное электрическое поле – поле, в каждой точке которого вектор напряжённости одинаков по величине и направлению. Силовые линии однородного электрического поля – параллельные прямые. Напряжённость поля, создаваемого точечным зарядом: E = k*q/(r^2), где k – тот же экспериментальный коэффициент, что и в законе Кулона (1/(4пи*эпсилон0) = 9*10^9 Н*м^2/(Кл^2)), q – заряд, поле которого считаем, r – расстояние от заряда до той точки, в которой считаем значение напряжённости. При действии нескольких полей их напряжённости векторно складываются (принцип суперпозиции) – результирующая напряжённость является векторной суммой всех составляющих напряжённостей. С точки зрения действия поля вещества можно разделить на проводники и диэлектрики. У проводников имеются свободные заряды, которые могут реагировать на электрическое поле, у диэлектриков таких зарядов крайне мало (можно считать, что нет вообще).

Вот уже столько всего заумного понаписывал, а зачем? Всё тот же вопрос вертится в голове: ну зачем всё это надо?! Ответ кроется в том, что обзывают основной задачей электростатики: раз уж мы предполагаем, что у нас всё электрическое летает в электрическом поле, то в идеале нужно знать, какое это поле будет в каждой из всех точечек пространства. А чтобы знать, «какое будет поле», надо знать, выражаясь умным языком, две его характеристики: силовую и энергетическую составляющую: то есть знать, с какой силой поле будет гонять зарядики туда-сюда, и какую энергию зарядики при этом будут иметь. Зная две эти вещи, можно считать уже всё остальное. Силовая характеристика – это напряжённость, а энергетическая будет в этом абзаце.

Где-то в начале я обронил словцо на тему, что электрическое поле может не только действовать грубой силой, но ещё и переносить энергию. Силовую часть я обсосал до косточек и скрутил в трубочку в предыдущем абзаце, теперь то же самое с энергетической частью. Которая, тьфу-тьфу, попроще – тут не будет этих страшных векторов и непонятных линий, ведущих не то наполовину из ниоткуда, не то наполовину в никуда. Вообще говоря, силы электрического взаимодействия тоже могут совершать работу, притом электрическое поле потенциально (работа электрических сил не зависит от траектории движения, а определяется только начальным и конечным положением тела – так, например, если вернуть зарядик в ту же точку, из которой он стартовал, то "электрическая" работа будет равна нулю). Вообще говоря, именно поэтому у любого заряда, на который действует электрическое поле, имеется энергия, вне зависимости от того, стоит он на месте или летит. Если вспомнить механику, то можно сообразить, что эта энергия – всего лишь потенциальная, то бишь энергия взаимодействия. Но – опять-таки – разные заряды (и необязательно точечные – снова вспоминаем, что в жизни есть и заряженные туловища) могут иметь одну и ту же энергию. Чтобы и здесь убрать зависимость от заряда, ввели вторую характеристику поля – потенциал. Обозначают буквой фи, равен он Eп/q. Eп – потенциальная энергия, которой обладает заряд в поле (опять-таки, не имеет значения, движется он или стоит – на кинетическую энергию тут начхать, судя хотя бы по названию величины), делённая на значение этого заряда. Единица его – Дж/Кл – названа очень знакомым словом. Вольт. Как раз отсюда легко сообразить, что Н/Кл, в которых якобы должны мерить напряжённость, – это и есть В/м: Н/Кл = Дж/(м*Кл) = В/м.

И всё бы хорошо, да обычно потенциал какой-то одной точки считать особого смысла нет – мы и так можем знать и энергию, и заряд, нафига нам париться чем-то ещё? А вот когда этот заряд перетаскивается полем из одной точки в другую, вот тут уже потенциал становится важнее. Только уже не он сам, а разность потенциалов между конечной и начальной точками. Это будет работа, которую совершила электрическая сила, чтобы переместить заряд из одной точки в другую, делённая на величину этого заряда. Более простыми словами разность потенциалов обозначается ещё одним до боли знакомым словом – электрическое напряжение. Только, правда, его используют не в абстрактных рисунках с точечками и линиями, а в реальных электрических цепях (и с маленькой поправочкой), но, по сути, разность потенциалов и напряжение – это одно и то же. Напряжение можно связать с напряжённостью (теперь бы не перепутать одно с другим! Напряжённость – вектор, по касательной к ней идут все эти страшные силовые линии, а напряжение – это просто безобидное число, говорящее о том, насколько большую энергию тратит поле на переезд зарядика с одного места в другое): в самом простом случае, если поле однородно, E = дельтафи/d. E – напряжённость в одной из точек, дельтафи – разность потенциалов между двумя точками (E будет одинакова в обеих, так как поле однородное), d – расстояние между точками (в самом простом случае; а так это проекция перемещения на силовую линию... лучше всего забыть эти страшные слова, их произношение ни к чему хорошему не приведёт). Но, вообще говоря, одно с другим связывается гораздо сложнее, просто в школьной физике этим стараются голову не забивать – и без того уже мозги кипят.

По-моему, это всё слишком отвлечённые вещи, попробую снова привести жизненный пример, похожий на то, о чём тут разговор. Вот у нас есть обычный шарик для настольного тенниса. Ракетки его дубасят по очереди, отчего он летает туда-сюда. Дак вот, напряжённость – это будет мера того, насколько сильно его дубасят ракетками: чем сильнее удары, тем больше напряжённость между игроками и тем быстрее летает шарик. С потенциалом посложнее – это будет мера того, насколько высоко над столом шарик летает – то есть, грубо говоря, насколько большую энергию взаимодействия (именно взаимодействия, простой полёт здесь не считается!) мы сообщаем шару, например, делая "свечу" – насколько высоко после этого он отскочит, и насколько мощно можно после этого ("потенциально") сделать "режущий" удар, ведущий к выигрышу очка в свою пользу. То есть чем выше подскакивает шарик, тем больше напряжение между игроками – сумеет противник сделать фатальный для тебя удар, или нет? Действительно, штуки достаточно мутные, и их непросто не перепутать. Но есть и хорошая новость: дальше, в электрических цепях, пользуются только напряжением, а о напряжённости практически и не вспоминают. Потому что люди жадные, их интересует только использование энергии в своих целях. Какие силы? Какие заряды? Да кому из товарищей не-учёных это надо...

Последний штрих, касающийся "отвлечённых" величин. Все предыдущие величины, начиная с самого-самого начала, предполагали, что заряды находятся где-то, где поле распространяется совершенно свободно, и ему ничего не мешает. А если мешает? Допустим, тот же воздух – насколько помешает? Степень того, насколько сильно среда "мешает" полю в ней, называется относительной диэлектрической проницаемостью. (Есть ещё и абсолютная, но её в школе не трогают.) Это отношение напряжённости поля, которое имеется при наших условиях в нашей среде, к той напряжённости, которая была бы при тех же условиях в вакууме – в космической пустоте, где полю ничего не мешает. Опять-таки, строго говоря, назначение этой штуки объясняется более скрупулезно, но в школе разрешают так – и на том спасибо. Она измеряется в разах, или в штуках, иначе говоря – ни в чём не меряется, это величина безразмерная. И все величины, связанные с полем, если считаем их в той или иной среде, нужно разделить на эпсилон (такой буквой обозначается проницаемость) этой среды: в законе Кулона (сила), в подсчёте напряжённости и потенциала. Сразу же кину хорошую новость: у воздуха эпсилон не сильно отличается от единицы – значит, на неё смело забиваем. А вот у воды, например, она гораздо больше: 81. То есть в воде те же электрические зарядики будет тащить друг к другу почти в 80 раз слабее, чем в воздухе.

Вкратце и поумнее: электрическое поле потенциально, то есть работа сил электрического поля не зависит от траектории. Потенциал – энергетическая характеристика поля, это отношение потенциальной энергии, которой обладает заряд в той или иной точке поля, к величине этого заряда. Разность потенциалов между двумя точками – работа, совершённая силами электрического поля по перемещению заряда из одной точки в другую, делённая на величину заряда. Единица измерения потенциала – вольт. В случае однородного поля связь между напряжённостью и разностью потенциалов следующая: E = дельтафи/d, где E – напряжённость электрического поля, d – расстояние между точками, дельтафи – разность потенциалов между точками. Относительная диэлектрическая проницаемость среды – это отношение напряжённости электрического поля в той среде, в которой распространяется поле, к напряжённости электрического поля при таких же условиях в вакууме. Это безразмерная величина; у воздуха она примерно равна 1. При подсчёте сил, напряжённостей или потенциалов в иных средах следует учитывать их диэлектрическую проницаемость, деля на неё.

Разобрались наконец со всеми отвлечёнными понятиями. Теперь наступает что-то более материальное, потихонечку уходим от непонятных линий, векторов и тому подобных математических завихрений. Вот был разговор на тему того, что ещё вспомним про однородное электрическое поле между двумя пластинами. В общем-то, эти самые две пластины уже имеют название. Конденсатор. В самом простом случае это две проводящие пластины, между которыми находится диэлектрик, причём толщина этого диэлектрика много меньше длины пластин. Самый элементарный пример – распрямить пальцы на руках, сжав их в «лопатку», и повернуть ладони тыльными сторонами друг к другу на близкое расстояние в районе сантиметра. Это тоже будет конденсатор: человеческое тело – это тоже проводник, так что в роли обкладок («пластин») будут руки, а диэлектрик – это воздух между ними. Но заряд на человеке держать опасно, поэтому конденсаторы обычно делают в виде металлических пластинок с бумагой или маслом внутри. Зачем такая штука нужна? Она умеет держать в себе заряд. Если на него подействовать электрическим полем, то на одной пластинке образуется положительный заряд, а на другой – такой же отрицательный, он никуда не будет деваться, и его в любой момент можно использовать для разрядки (передачи этого заряда дальше) на чём-нибудь. Это в самом-самом примитивном случае; вообще, конденсаторы очень широко применяются в электрических цепях. Но до них пока не дошли, поэтому в сторону уходить не будем. Дак вот, накапливание заряда происходит просто потому, что на него действуют электрическим полем. И тут сразу непонятки возникают: ну хорошо, заряд мы можем посчитать, но на разных конденсаторах его можно получить разными полями! И что теперь – опять мучить себя непонятными напряжённостями и тому подобной математикой? Нет, здесь проще. Здесь «универсальная» единица, которая используется как «визитная карточка» любого конденсатора, – это его электроёмкость. Обозначается буквой c и означает отношение того заряда, который скапливается в нём, к той разности потенциалов (напряжению), которую нужно приложить для того, чтобы этот заряд на нём возник. Не совсем полная аналогия с обычной ёмкостью, например, тех же чашек или стаканов. Но если представить себе такой старый советский аппарат, который выдаёт газировку сам по себе «через раз» (либо вообще не выдаёт), однако если ударить по нему, то небольшая порция воды вытечет; то ёмкость такого аппарата будет количество воды, которое вытекает при ударе, по отношению к энергии, приложенной этим ударом. Ударил по одному автомату – вытекла одна капелька воды. Ударил так же по другому – налился целый стакан. Второй автомат гораздо более ёмкий, чем первый – энергии тратишь столько же, а нужный «заряд бодрости» накапливается в большем количестве. Что-то вроде того. Единица электроёмкости (Кл/В) названа по имени учёного Фарадея – фарад (Ф). Это очень большая величина, конденсаторы ёмкостью в 1 фарад стоят бешеных денег и имеют размеры больше, чем рост человека. Даже у нашей Земли ёмкость всего лишь 0.71 миллифарад – это настолько же меньше, насколько доля миллиметра меньше метра! Вот если б у неё был бы радиус в 13 раз больше, чем у Солнца – тогда бы да, 1 фарад бы ещё могли наскрести.


    Ваша оценка произведения:

Популярные книги за неделю