355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Андрей Задумавшийся » Физика для "чайников" (СИ) » Текст книги (страница 2)
Физика для "чайников" (СИ)
  • Текст добавлен: 16 марта 2017, 10:30

Текст книги "Физика для "чайников" (СИ)"


Автор книги: Андрей Задумавшийся


Жанры:

   

Научпоп

,

сообщить о нарушении

Текущая страница: 2 (всего у книги 12 страниц)

Ладно, все эти заумные предположения про ускорения оставим теоретикам в бакалаврских (или магистерских?) шапках. Последнее, что хотел сказать о силе, – её единица измерения. И здесь не обошлось без товарища Ньютона – она названа его именем. 1 ньютон (Н) – это сила, которая телу массой в 1 кг даст ускорение 1 м/(c^2). Если совсем наглядно (но для школьной физики формулировка уже будет неправильная): это сила, которую нужно приложить, чтобы удержать тело массой 1 кг на одной высоте. То есть ньютон можно выразить в более простых единицах так: Н = кг*м/(с^2).

3) Как пнёшь – так и получишь.

Самый простой закон из этих трёх. Если машина врежется в столб, то не только машина подействует силой на столб, но и наоборот – столб подействует на машину с такой же силой, только противоположной по направлению. Собственно, именно поэтому при сильных столкновениях авто складывается в гармошку именно спереди. То есть столб и машина действуют друг на друга с силами, одинаковыми по величине, но направленными друг против друга. По той же причине становится больно при падении с высоты – не только ты действуешь ногами на поверхность земли со своей силой тяжести, но и земля отвечает тебе точно такой же любезностью – ровно с той же силой отвечает твоим ногам. (Больно становится оттого, что такая механическая нагрузка на организм уже слишком большая, и он "сигналит" тебе таким образом: эй, ты так можешь сломать то, на что я указываю тебе болью, – аккуратнее, мол!)

Как видно, вся соль динамики – в этих самых силах. То есть, зная, какие силы и от чего действуют на многострадальное подвергнутое подсчётам туловище, можно точно сказать, будет оно двигаться или нет. Только сила – это тоже векторная штуковина. Более того, одна действующая сила никак не зависит от всех остальных. Поэтому способ считать такой: векторно складывать все силы и смотреть, что из них получится. Если ноль – значит, изменений не будет. Если не ноль – то будут в ту сторону, в которую получается направлен результат.

Вкратце и поумнее: основные законы динамики – законы Ньютона. Первый: существуют инерциальные системы отсчёта, относительно которых тело движется с нулевым ускорением или покоится, если сумма сил, действующих на него, равна нулю. Второй: ускорение, сообщаемое телу при действии на него силой, прямо пропорционально силе и обратно пропорционально массе. Масса – мера инертности тела, инертность – способность тела сохранять движение (или не движение) с нулевым ускорением. Единица измерения массы – килограмм. Плотность – мера распределения массы в объёме: отношение массы тела к объёму, в котором эта масса сосредоточена. Единица измерения плотности – килограмм на метр кубический. Сила – мера, характеризующая воздействие на тело. Единица измерения – ньютон (Н). 1 Н = 1 кг*м/(c^2). Третий закон Ньютона: тела действуют друг на друга с силами, направленными вдоль одной линии, равными по модулю и противоположными по направлению. Сила, действующая на тело, не зависит от других сил, поэтому результат действия всех сил получается в виде векторного сложения всех сил, действующих на тело.

Дальше начинается, наверное, самая скучная и нудная часть динамики. Есть несколько основных сил, которые могут действовать на тело. Они все были давно посчитаны и проверены, после чего ими начали грузить на уроках физики в школе для решения очередных тонн задач. Вот эти силы:

1) Сила всемирного тяготения. (Эпичное названьице, однако.) Частный случай – сила тяжести.

2) Сила упругости.

3) Сила реакции опоры.

4) Сила трения.

5) Вес. Да, это тоже сила. В физике масса и вес – это не одно и то же.

Теперь поподробнее (и постараюсь попонятней) о каждой.

1) Всемирное тяготение.

Эта штука обязана своему появлению всё тому же Ньютону. Он решил, что все тела в той или иной степени притягиваются друг к другу. Причём не отчего-то, а просто потому, что у них есть массы. Чтобы подкрепить это предположение математикой, пришлось копать аж вплоть до космоса, где планеты и звёзды тоже притягиваются друг к другу. В итоге получилась заумная формула, полученная чисто из наблюдений без всяких страшных математических выкладок: F = G*m1*m2 / (R^2). Буквы расшифровываются так: F – сила, G – цифирь под названием "гравитационная постоянная", составляет 6.67*10^-11 Н*м^2/(кг^2), m1 – масса первого тела, m2 – масса второго тела, R – расстояние между ними.

И сразу возникает куча непоняток и вопросов. Почему тогда я прямо сейчас не притягиваюсь мордой лица к экрану монитора? Почему тогда вообще вся аппаратура и мебель в комнате не хочет притягиваться друг к другу в один клубок? Почему еда вместе с ложкой сами не притягиваются к голове и рту? И, наконец, вопрос от умничающих людей в очках, ставящих оценки учащимся: а можно ли эту формулу применять для всех случаев, что я описал? Как считать, например, расстояние между мордой лица и монитором? Откуда и докуда? Они же тоже размеры имеют, и из-за этого расстояние может быть разным! Какое именно из расстояний брать – от кончика носа до экрана, от макушки до шарнира экрана, откуда-нибудь из центра головы (можно ли посчитать, где он находится?..) до центра экрана (тот же вопрос)?..

Пока не успели закидать тухлыми помидорами и прочими шарообразными предметами, сразу ответ. Строго говоря, для тел и туловищ заумных форм этот закон не подходит – именно из-за упомянутого возражения умничающих: неточность в расстоянии. Но здесь на помощь приходит одно из самых первых понятий – материальная точка. Вот если смотреть на лицо и монитор совсем-совсем издалека, так, что они будут казаться точками, тогда и расстояние между ними будет однозначно определено. И, к тому же, для тех же помидоров закон тоже сгодится – они шарообразной формы и равномерно заполнены. В этом случае расстояние между ними – это расстояние между их центрами. Планеты и звёзды тоже с натяжкой можно считать равномерно заполненными шарами, так что и для них это тоже годится.

Наконец, вопрос, возникающий по здравому смыслу: почему тогда всё подряд друг к другу не липнет? Ответ простой. Сила-то есть, только она настолько маленькая, что не ощущается. Для примера: два бильярдных шара для игры в пул, максимальная масса – 170 г (0.17 кг). Пускай (я фантазирую) они стоят совсем впритык: 1 мм расстояние (это 0.001 м, или 10^-3 м). Получаем: 0.17*0.17/10^-6 = 0.289*1000000 = 289000 = 2.89*10^5 кг^2/(м^2). Это не в ньютонах! Потому что нужно ещё домножить на G. А эта цифирь составляет вот сколько: 6.67*10^-11 Н*м^2/(кг^2). Итого получается, сила составляет 19.2763*10^-6 Н, то есть примерно 1.9*10^-5 Н. В минус пятой степени – это примерно 2 десятитысячных дольки! Это настолько маленькая сила, что её действие будет просто незаметно. И то я слишком занизил расстояние – радиус шара составляет 5.175 см, то есть расстояние никак не может быть меньше, чем 10.35 см – а в этом случае сила будет ещё меньше, причём ещё раз в 10 000! (10 см больше 1 мм в 100 раз, но расстояние у нас берётся в квадрате и находится в знаменателе – значит, сила будет в 100*100 = 10 000 раз меньше.)

Собственно, всё именно из-за этого маленького значения G. Зато если взять хотя бы одно тело с действительно большой массой, а второе поставить на маленьком расстоянии от его поверхности, то сила уже будет ощутима. Собственно, если это "одно тело" – наша планета Земля, а второе – мы, то это и будет та самая сила тяжести, в сторону которой начал копать Ньютон, когда ему на голову упало это несчастное яблоко. И именно из этой формулы получилось то самое g (маленькое) – ускорение свободного падения. Если подставить массу Земли – 5.9742*10^24 кг и расстояние от центра Земли до центра тела – при маленьких высотах это будет примерно равно радиусу Земли – 6378.1 км, домножить на G, а вторую массу оставить как букву, то и получится F = m*g. Автоматически следует и очевидный факт: сила тяжести направлена всегда к центру Земли – в простонародии, вниз.

Забегая далеко-далеко вперёд (практически в самый конец), гравитационное взаимодействие – самое слабое из всех известных взаимодействий в физике. И забегая уже едва ли не за пределы всей физики в целом: в других взаимодействиях есть похожая сила, которая может и притягивать, и отталкивать. А в гравитации мы видим, что есть только притяжение. А куда делось отталкивание, есть ли оно вообще и как его добиться? Этот вопрос остаётся едва ли не только в мыслях научных фантастов, и называют это "антигравитацией".

Вкратце и поумнее: сила всемирного тяготения обусловлена взаимным притяжением всех тел друг к другу. Сила этого притяжения рассчитывается по формуле F = G*m1*m2/(R^2), где F – сила, G – гравитационная постоянная (6.67*10^-11 Н*м^2/(кг^2)), m1 и m2 – массы первого и второго тел соответственно, R – расстояние между телами (если их можно рассматривать как материальные точки) или расстояние между их центрами (если тела – равномерно заполненные шары). Для остальных форм тел эта формула не применяется. В случае, если в виде первого тела выступает Земля, а второе тело гораздо меньше по размерам и находится близко к поверхности, формула превращается в F = m*g, где g – ускорение свободного падения у поверхности Земли (те самые 9.8 м/(c^2)), и сила называется силой тяжести. Направлена к центру Земли.

2) Упругость.

С силой упругости гораздо проще, не надо представлять себе никаких планет, Вселенных, чёрных дыр и тому подобных непонятных субстанций. Достаточно взять простую пружину и согнуть её, а потом отпустить. Оба свободных конца заставят руки разжаться. Это и есть сила упругости – она возникает при деформации тела; проще говоря, при нарушении его естественной формы. Это вносит своеобразный дискомфорт, и тело (пружина) стремится вернуться в первоначальное, "удобное для себя" положение, попутно задевая всё, что находится рядом. Если объяснять, а с чего вообще пружине вдруг распрямляться – может, ей и так, в согнутом состоянии, хорошо – придётся забежать немного вперёд, поэтому я к этому вернусь несколько позже (здесь же, в механике).

А пока – простая формула, как эту силу посчитать. Вывел её товарищ по фамилии Гук, отчего решили его именем сие выражение и обозвать. F = -k*x. F – это сила, k – это жёсткость пружины (того, что деформируют), x – изменение размера (на сколько миллиметров, сантиметров и т.д. сжимаем пружину). Ах да, и минус. Он тут вовсе не по ошибке. Если вспомнить, то сила – это векторная величина. То есть для неё минус означает всего лишь то, что она направлена "в противоположную сторону". Противоположно чему? Тому направлению, в котором идёт деформация. Сжимаешь пружину сверху вниз – сила идёт снизу вверх, то есть тело как будто сопротивляется сжатию, и чем сильнее сжимаешь, тем сильнее сопротивление.

Самый простой пример, когда используется сила упругости – простенькие ручные пружинные весы ("безмен"). Сила упругости пружины уравновешивает силу тяжести груза, а пружина (естественно, с известной жёсткостью, которую заранее посчитали и померили) удлиняется на несколько миллиметров или сантиметров, в зависимости от массы груза. Зная удлинение и жёсткость, мы знаем силу упругости пружины – значит, знаем силу тяжести груза – значит, знаем массу груза.

Вкратце и поумнее: сила упругости обусловлена возвращением тела в исходное состояние после деформации. Рассчитывается по закону Гука: F = -k*x, k – жёсткость тела, x – изменение размера деформируемого тела. Минус показывает, что сила упругости действует в направлении, противоположном тому, в котором идёт деформация.

Сила реакции опоры, сила трения, вес.

Пункты 3) и 4), а также 4) и 5) связаны между собой. Сила реакции опоры и вес – это две силы, которые действуют по третьему закону Ньютона между телом и опорой. А именно: вес – это сила, с которой тело давит на опору (или вертикальный подвес, если висит). А сила реакции опоры – это противоположная (по направлению) весу сила, с которой опора действует на то, что на неё давит. То есть, опять-таки – туловище давит на стул, на котором сидит, а стул в ответ давит вверх, на туловище, не давая тому провалиться ещё ниже.

Отсюда можно сделать простой вывод: если нет никаких специально выдуманных условий, то и вес, и реакция опоры (слово "сила" можно опустить) будут равны m*g, только направлены в противоположные стороны: вес действует на опору и направлен вниз (если задача про тело, а не про опору, то на вес просто забивают), а сила реакции опоры действует на тело и направлена вверх. Разница между силой тяжести и весом в том, что сила тяжести действует на тело, а вес – на опору, которая под ним. И это не единственное различие: в то время как сила тяжести всегда равна m*g, вес может быть и больше m*g (это называется перегрузкой), и меньше, и даже быть равным нулю (а это уже невесомость). Вообще говоря, вес считается так: P = m*(g-a), где P – вес, m – масса давящего тела, g – ускорение свободного падения, a – ускорение, с которым движется опора. То есть если опора неподвижна, то всё хорошо. А вот если она начнёт подниматься или опускаться, вот тогда придётся считать... Самый простой пример – лифт. Если он резко пойдёт вверх, то ускорение будет тоже направлено вверх, то есть противоположно g (которое всегда смотрит вниз). Итого получаем, что минус ускорения на минус в выражении даёт плюс: ускорения надо складывать – получается перегрузка. Если же лифт резко пойдёт вниз, то ускорение a вычитаем и получаем пониженный вес. Наконец, самый печальный и фантастический случай: если лифт срывается и свободно падает, то ускорение, с которым он падает, равно g, и получается, что несчастный пассажир последние секунды своей жизни проведёт в состоянии невесомости – его вес станет равным нулю. В таком же состоянии будет и свободно падающая пружина с грузиком – в падении пружина не будет разжата, а вернётся в "спокойное" состояние, как будто на ней ничего не висит.

Ладно, это всё оставим научным фантастам. О весе я сказал достаточно, а вот про его вечного противника и союзника – силу реакции опоры – не всё. Эта сила сама по себе мало что значит, но имеет прямое отношение к такой до боли известной вещи, как трение.

Сила трения имеет какое-то сходство с силой реакции опоры. Вообще говоря, трение существует трёх видов. Первое – это когда одно тело скользит по поверхности другого – например, при спуске с горы на санках или при беге на коньках (обычных, которые тоже по льду), оно же трение скольжения. Второе – когда одно тело катится по поверхности другого (любое колесо или шарообразное тело по земле), оно же трение качения. И третье – трение покоя, когда одно тело (уже неважно, какое именно) находится в таком состоянии, когда оно в принципе может сдвинуться с места, но что-то ему мешает. Это "что-то" и есть трение. То есть, например, если человек стоит на достаточно крутой горке и не двигается, то он не будет падать – мешает сила трения покоя, которая возникает между ногами и землёй и не позволяет ногам соскальзывать вниз. Точно так же трение покоя мешает, например, сдвинуть тяжёлый предмет с места – пока сила рук не превысит силу трения покоя шкафа, шкаф не подвинется.

Итого, в общем случае получается одно и то же: сила трения направлена в сторону, противоположную направлению движения (или возможного движения, если это трение покоя), причём направлена вдоль поверхности, по которой тела соприкасаются. А считается она как минус произведение силы реакции опоры на коэффициент трения. Последний зависит от поверхности, по которой катишься или скользишь. У льда этот коэффициент меньше, чем у асфальта или грунта, поэтому на льду лучше отталкиваться и хуже тормозить. Минус означает, что сила трения направлена против движения – тело снова как будто сопротивляется движению. И маленькое важное наблюдение: коэффициент трения качения всегда ниже коэффициента трения скольжения, если брать одни и те же материалы, которые трутся друг о друга – то есть трение качение всегда слабее. Собственно, поэтому все на колёсах и ездим.

Вкратце и поумнее: вес – это сила, с которой тело давит на опору или подвес. Считается по формуле P = m*(g-a), где P – вес, m – масса давящего тела, g – ускорение свободного падения, a – ускорение, с которым движется опора. При нулевом ускорении вес равен силе тяжести давящего тела, при противоположно направленном a и g возникает перегрузка, при свободном падении опоры с телом (a = g) имеем невесомость. Вес действует на опору, а не на тело, поэтому при решении задач о телах обычно его не рассматривают. Сила реакции опоры действует на тело со стороны опоры и равна минус силе тяжести (-m*g). Сила трения – это сила, возникающая в результате перемещения одного тела по поверхности другого. Различают силы трения скольжения, качения и покоя. Все они считаются одинаково: F = -мю*N, где мю – коэффициент трения, N – сила реакции опоры. Направлена сила трения в сторону, противоположную направлению движения (или возможного движения, если это сила трения покоя).

Ну, в общем-то, на этом и приближается к концу вся динамика. Остаётся кусочек, который снова заносит в космос. А именно – космические скорости. Не знаю, почему их запихнули в динамику – наверное, потому, что космос – это тоже такая инерциальная система отсчёта, где космический корабль бороздит просторы Вселенной в гордом одиночестве, никто ему не мешает, и он никуда не поворачивает, не тормозит и так далее.

Так вот, первый "оплот", при котором такое возможно, – это если вывести корабль на орбиту Земли так, чтобы он стал спутником Земли – то бишь так, чтобы он не летел дальше, а приостановился где-то недалеко от планеты. В итоге сила притяжения Земли вместе с космической "атмосферой" (которой почти нет – значит, ничего не должно мешать движению) заставят его крутиться вокруг нашей планетки. Соответственно, чтобы какой-то предмет смог так летать вокруг, надо ему дать такую скорость, чтобы он преодолел земное притяжение ровно настолько, чтобы оно же остановило его ровнёхонько на орбите планеты. Чтобы понять, как её надо посчитать, достаточно представить, как будет выглядеть весь процесс: со страшной скоростью подопытное туловище стартует с поверхности, в полёте гравитация и воздух тщетно пытаются его затормозить, и, наконец, на орбите он должен остановиться. Ничего не напоминает? Правильно – это будет замедленное движение. Чтобы совсем не заморачиваться на тему подсчётов – равнозамедленное. Расстояние, на которое летит туловище, – радиус Земли. Ускорение, противостоящее нам – g. Расстояние, пройденное при торможении, будет равно (v^2)*t по кинематике. А нам отсюда нужна скорость. Итого в цифрах это будет корень квадратный из произведения g на радиус Земли. Поскольку и то, и другое – числа известные и постоянные, то и скорость будет для всех одинаковая. Если посчитать, то первая космическая скорость получится примерно 7.9 км/с. Вторая космическая скорость – летим ещё дальше, её хватит на то, чтобы вообще преодолеть притяжение Земли и улететь бороздить просторы Солнечной системы. Для Земли она составляет 11.2 км/с. Считается она уже из закона, которым наверняка уже прожужжали все уши, – из закона сохранения энергии. (О нём – ближе к концу механики, сейчас пока не грузимся.) Третья космическая скорость позволяет ухнуть ещё дальше – вылететь вообще за пределы Солнечной системы, то есть преодолеть притяжение Солнца. Она может меняться, потому что космический корабль должен будет уворачиваться от вертящихся планет и тому подобных других посторонних предметов, пролетающих мимо в космосе. В среднем она составляет где-то около 42 км/с, но вообще может быть от 16.6 до почти 73 км/с. Наконец, есть ещё четвёртая космическая скорость. Она нужна на тот случай, если фантазия разыграется до таких вселенских масштабов, что захочется вышибить наш предмет с Земли настолько сильно, чтобы он преодолел притяжение самой нашей галактики Млечный путь. Её подсчёты ведут уже в какие-то заумные дебри современной физики; говорят, что она непостоянна и зависит от положения тела в галактике. Известно только, что в районе Солнечной системы нужно разогнаться аж до 550 км/с, чтобы иметь хоть какую-то надежду на полный улёт в настолько открытый космос, что и представить трудно.

Вкратце и поумнее: космические скорости – это скорости, которые нужно сообщить телу для того, чтобы оно:

1) стало спутником Земли – это 7.9 км/с;

2) преодолело гравитационное притяжение Земли и улетело в пространство Солнечной системы – 11.2 км/с;

3) преодолело гравитационное притяжение Солнца и улетело за пределы Солнечной системы – от 16.6 до 73 км/с, средняя считается около 42 км/с;

4) преодолело гравитационное притяжение галактики "Млечный путь" и улетело чёрт-те куда – приблизительно 550 км/с в районе Солнечной системы.

Наконец, последняя часть из трёх основных составляющих, наименее мучительная. Статика. Которая отвечает на вопрос, при каких условиях тело будет в равновесии. Или в состоянии покоя. Увы и ах, но здесь нельзя использовать всё ту же материальную точку, которая спасала в кинематике и динамике. Потому что наше тело, выходя из равновесия, скорее всего, будет описывать дугу – то бишь вращаться. Грубо говоря, если теряешь равновесие и падаешь, то как бы вращаешься вокруг оси, находящейся прямо под ногами – до тех пор, пока земля не помешает. А материальная точка исключает всякое вращение – как она вокруг себя вращаться-то будет? Нет того, около чего вращаться. Поэтому здесь делают так: просто твёрдое тело каких-то размеров (неважно, каких), его деформациями при внешних воздействиях можно пренебречь. Чтобы не получилось, что оно при малейшем дуновении ветерка разваливается на несколько частей или сплющивается в лепёшку, тогда уже считать будет нечего – его обратно в твёрдое состояние руками не вернёшь.

Дальше опять следует куча предположений, которые проще всего себе представить так. Вот у нас есть детские качели, на которых садятся два человека – доска на подставке с двумя сидениями на краях. Подставка намертво закреплена – не отдерёшь, – а к ней прикреплена палка, которая может подниматься-опускаться, как рычаг – или, по-умному, это получается всё то же вращение. И на сиденьях сидят дети. Ради прикола прикинем, что они идеальные близнецы – полностью одинаковые по массе, силе и т.д. и т.п. Тогда, если всё это перевести в заумные физические понятия, получается так: подставка, она же точка опоры – это ось вращения. Вокруг неё вращается наш "рычаг". Дети – это твёрдые тела. Господа знатоки, внимание, вопрос: так при каких же условиях дети будут находиться в равновесии? За такую формулировку на экзамене по физике могут заколоть заживо. В равновесии должно находиться то, что может вращаться – то есть в данном случае это наша палка качелей, которая закреплена на подставке. Именно её придётся теребить.

Первое, что идёт прямо из динамики, – сумма сил, действующих на тело, должна быть равна нулю. И это действительно так, но это ещё не всё. Здесь есть ещё второе условие, посложнее. Если наших двух одинаковых детей посадить нормально – так, что они будут сидеть каждый на сиденье, – то они действительно будут в равновесии. А если один из них подсядет ближе – качели тут же наклонит в сторону его товарища. Силы-то остались те же! Но поменялись их моменты. Момент силы – это модуль (только значение, без вектора!) силы, умноженный на её плечо – то есть расстояние от оси вращения до линии, по которой действует сила. Притом это расстояние выбирается кратчайшее – а как подсказывает заумная геометрия, в таком случае нужно брать длину отрезка, перпендикулярного линии силы. По-русски (и более наглядно) это значит, что надо просто брать длину той части качели, которая идёт от точки опоры до человека. Она всегда будет одна и та же, хоть ты перевернись.

Маленькое замечание к моментам: поскольку крутить он может в две разные стороны – "вверх" и "вниз" (именно в кавычках, строго говоря – это "по часовой стрелке" и "против часовой стрелки"), – то договорились, что момент, крутящий против часовой стрелки, будет больше нуля, а по часовой – меньше. По-честноку, не знаю, как это лучше запомнить и не перепутать – если только не знать алгебру на уровне синусов-косинусов – там тоже углы на единичной окружности отсчитываются таким же образом: против часовой стрелки идёт увеличение (+), по – уменьшение (-).

Короче говоря, из всех этих страшных слов следует простая вещь: если у тела есть закреплённая ось вращения, и сумма моментов сил, действующих на это тело, равна нулю, то тело будет в равновесии. На этом правиле основана работа весов – если неизвестную массу измеряемого туловища уравновешивают вместе поставленные гирьки, то момент силы тяжести гирек будет равен моменту силы тяжести туловища – отсюда, поскольку плечи обеих сил равны (а если даже и не равны, то они были бы известны – но так считать было бы гораздо неудобнее), то известны сами силы. А дальше как в ручных весах – сила тяжести гирек равна силе тяжести туловища, откуда при известной массе гирек находим, что масса туловища будет такая же.

Вкратце и поумнее: статика – раздел механики, изучающий условия равновесия взаимодействующих тел (в самом общем случае). Используется модель твёрдого тела, поскольку при нарушении равновесия оно будет вращаться вокруг некой оси, а материальная точка исключает вращение. Твёрдое тело – модель тела, деформацией которого под действием внешних сил можно пренебречь. Ось вращения – воображаемая прямая, на которой находятся центры всех траекторий точек вращающегося относительно неё твёрдого тела. Плечо силы – расстояние от оси вращения до линии, вдоль которой действует эта сила. Момент силы – произведение модуля силы на её плечо. Единица измерения – ньютон, умноженный на метр. Момент, вращающий тело по часовой стрелке, считается отрицательным, а против часовой стрелки – положительным. Итого условий равновесия твёрдого тела два: тело находится в равновесии, если сумма сил, действующих на это тело, равна нулю, и если сумма моментов сил, действующих на тело относительно произвольно выбранной оси, тоже равна нулю. В том числе отсюда следует правило моментов: тело, имеющее закреплённую ось вращения, будет находиться в равновесии, если сумма моментов сил относительно этой оси будет равна нулю.

Кое-как проехали страшную математику статики. Остались только слова. А именно заумные рассуждения на тему, как лучше держать тело, чтобы оно не упало, и какие вообще могут быть равновесия. Да, у равновесий тоже есть виды, оказывается! Отвлечёмся от качелей и весов, проще всего эти виды равновесия понять так: взять шарик и кинуть его в канаву-кювет U-образной формы. Шарик поболтается туда-сюда, после чего остановится на дне в середине (если смотреть вдоль, по канавке). Попытаешься толкнуть шарик – он снова покатается вправо-влево, но, в конце концов, всё равно вернётся в центр. Это устойчивое равновесие – если вывести шарик из равновесия, он со временем вернётся в него. Считается, что девушки любят парней, находящихся в устойчивом равновесии эмоциональном – то есть если человека «задеть», то он со временем всё равно успокоится и будет, как ни в чём не бывало. Эмоции, конечно, не шарик, расчётам не поддаются. Но суть та же самая – это тоже устойчивое равновесие. Хуже, когда оно неустойчивое: это значит, что невероятными усилиями мы добиваемся равновесия, а потом что-то выводит из него – и всё. Обратно просто так, сам собой, уже не вернёшься. Как таких товарищей называют? Правильно, нытиками. Если не обижать людей и показать на том же шарике – его можно положить, например, на компьютерную мышку (конечно, так, чтоб не двигался). Если его задеть, то он упадёт и, конечно же, обратно не запрыгнет. А вот когда шарик оказался на ровной поверхности стола – он в безразличном равновесии. Тронешь его – он поедет, но потом остановится, как ни в чём не бывало и по-прежнему останется в равновесии. Разница между этими тремя равновесиями – в силе, возникающей при отклонении. Когда равновесие устойчивое, при выведении из него возникает сила, стремящаяся вернуть в положение равновесия (в примере с шариком – сила тяжести). Когда неустойчивое – сила тоже возникает, но она при этом стремится вывести тело из равновесия ещё сильнее (в примере – тоже сила тяжести). Когда безразличное – никакой силы, стремящейся поддержать или подавить равновесие, не возникает. Умники могут возразить: а как же сила трения? Шарик-то трётся о поверхность! На что у меня припрятан туз в рукаве: соль здесь не только в силе, а ещё и в энергии. Об этом буквально через абзац. В двух словах, в чём различие по ней: потенциальная (не пугаться и не смеяться!) энергия тела при выведении из устойчивого равновесия возрастает, при выведении из неустойчивого – уменьшается, а при безразличном – не меняется вообще.

Последнее, о чём разговор здесь, – центр тяжести и центр масс. Если всё хорошо, то эти две точки совпадают и находятся в центре тела – например, центр шара  (яблока) или центр параллелепипеда (бруска, какого-нибудь простого бытового предмета вроде тёрки). Но, вообще говоря, эти две вещи различаются.

Центр масс – это точка, которая как бы является представительством всего тела в целом – если всю массу сосредоточить в этой одной точке, то она будет двигаться ровно так же, как двигается само тело. То есть если взять центр масс какого-нибудь тела и запихнуть туда всю массу, то получится как раз материальная точка, над которой уже можно законно проводить все расчёты кинематики и динамики. А центр тяжести – это такая точка, в которой просто суммарный момент всех сил тяжести, которые действуют на все места тела, равен нулю. К движению она никаким боком не относится, разве что если держать тело, грубо говоря, за его центр тяжести, то оно не будет падать – так официант таскает поднос одной рукой, не роняя его. К счастью, в той же статике эти две точки практически всегда совпадают друг с другом, поэтому обычно говорят просто "центр тяжести" и не парятся. Чтобы они не совпадали, нужно, чтобы рассматриваемый предмет находился в неоднородном гравитационном поле (например, если рассматривать его вместе с планетой) – а такими вещами даже физики-шизики заморачиваются достаточно редко.

Вкратце и поумнее: при выведении из устойчивого равновесия возникает сила, стремящаяся вернуть тело в первоначальное положение (равновесия), потенциальная энергия возрастает. При выведении из неустойчивого равновесия возникает сила, стремящаяся ещё сильнее отклонить тело от первоначального положения, потенциальная энергия падает. При выведении из безразличного равновесия никаких "стремящихся" сил не возникает, потенциальная энергия тела неизменна. Центр масс – точка, характеризующая движение тела или системы тел как единого целого. Центр тяжести – точка, относительно которой суммарный момент сил тяжести, действующих на систему, равен нулю. На практике оба этих центра практически всегда совпадают, исключение составляют случаи, когда тело находится в неоднородном гравитационном поле.


    Ваша оценка произведения:

Популярные книги за неделю