355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Андрей Гришаев » Этот «цифровой» физический мир » Текст книги (страница 9)
Этот «цифровой» физический мир
  • Текст добавлен: 26 октября 2016, 22:03

Текст книги "Этот «цифровой» физический мир"


Автор книги: Андрей Гришаев


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 9 (всего у книги 31 страниц)

2.9. Буферные слои на границах планетарных частотных воронок.

Вопрос о том, как организованы границы, разделяющие области планетарного и солнечного тяготения, заслуживает отдельного разговора. Если планетарные и солнечный частотные склоны порождаются чисто программными средствами, то и толщину переходного слоя – разделяющего планетарную частотную воронку и солнечный частотный склон – можно было задать программными средствами. Мы обращаем внимание на то, что, при малости толщины переходного слоя, прохождение сквозь него физических тел сопровождалось бы серьёзными проблемами. Эти проблемы связаны с тем, что неодинаковость локально-абсолютных скоростей у различных элементарных объёмчиков тела, пересекающего переходный слой, порождала бы механические напряжения в теле – и, при достаточно малой толщине переходного слоя, эти напряжения могли бы разрушить тело.

Проиллюстрируем это на примере влёта космического аппарата, запущенного с Земли, в область тяготения Марса. Энергетически наиболее выгодная траектория полёта к Марсу (т.н. гомановская, [Л4]) – это околосолнечный полуэллипс, с перигелием в области орбиты Земли и с афелием на орбите Марса. Гелиоцентрическая скорость аппарата, достигшего орбиты Марса, составляет при этом около 20 км/с, а орбитальная скорость Марса есть 24 км/с, и тогда влёт в марсианскую частотную воронку возможен лишь через переднюю полусферу её границы. Сразу после пересечения этой границы, планетоцентрическая скорость аппарата составит, по правилам векторного сложения [Л4], 4 км/с. Если толщина переходного слоя l была бы меньше, чем размер аппарата, то возникала бы ситуация, при которой части аппарата, находящиеся по внешнюю и по внутреннюю стороны переходного слоя, имели бы локально-абсолютные скорости, соответственно, V0=20 км/с и V1=4 км/с. Эквивалентное ускорение было бы равно a=(V02-V12)/2l. Так, при l=1 м, это ускорение составило бы чудовищную величину 2·108 м/с2, т.е. около 2·107 g! В такой ситуации, аппарат разнесло бы в пыль.

Как нам представляется, для возможности более «мягкого» прохождения тел сквозь границу области планетарного тяготения, эта граница представляет собой довольно толстый буферный слой, на котором задано такое согласующее изменение локально-абсолютной скорости, чтобы результирующие механические напряжения были не слишком разрушительны. Сделаем оценку для толщины буферного слоя в центральной части передней полусферы частотной воронки Марса, которая обеспечивала бы пролёт объекта с

Рис.2.9

характерным размером L=100 м при механических напряжениях, соответствующих ускорению не более чем amax=5g. Полный размах приращения локально-абсолютной скорости на толщине буферного слоя должен равняться орбитальной скорости Марса, т.е. Vorb=24 км/с. Подчеркнём, что это приращение локально-абсолютной скорости, согласующее её значения по обе стороны от буферного слоя, возможно обеспечить лишь программными средствами! Пусть согласующая функция составлена из двух «встречных» ветвей одинаковых квадратичных парабол – ОВ и СВ (см. Рис.2.9). Здесь область отрицательных значений абсцисс соответствует области тяготения Марса, область абсцисс ОА соответствует буферному слою, область больших абсцисс – области солнечного тяготения. Наибольшая скорость изменения крутизны согласующей функции, приводящая к наибольшим механическим напряжениям в теле, приходится, очевидно, на центральную часть буферного слоя. Искомая результирующая толщина буферного слоя есть D= Vorb(2L/amax)1/2, для нашего случая она составляет около 84 км – что на четыре порядка меньше радиуса планетарной частотной воронки. Хотя этот результат выглядит правдоподобно, он имеет, конечно, исключительно ориентировочный характер.

Заметим, что буферный слой на границе планетарной частотной воронки может защищать планету от крупных астероидов. Параметры буферного слоя могут быть заданы таким образом, чтобы достаточно крупные астероиды, влетающие в область планетарного тяготения, разрушались на более мелкие фрагменты. Не исключено, что дробление астероидов или комет, на влёте в область планетарного тяготения, является одним из сценариев, по которому образуются метеорные потоки в Солнечной системе.

2.10. Феномен астероидов-Троянцев.

Имеется особое семейство астероидов, т.н. Троянцев. В него входят две группы, движущиеся примерно по орбите Юпитера и с таким же, как у Юпитера, периодом обращения вокруг Солнца, причём одна из этих групп опережает Юпитер примерно на 60о, а другая – на столько же отстаёт.

Феномен Троянцев считается важным свидетельством справедливости закона всемирного тяготения – для частного случая задачи трёх тел. Ведь каждое из этих трёх тел, якобы, притягивает два других и, в свою очередь, притягивается ими. При таком подходе, аналитические решения найдены лишь для некоторых частных случаев, например, для случая, когда массы трёх тел сильно различаются и подчиняются соотношению M1>>M2>>M3. Лагранж показал, что должны существовать такие местонахождения тела M3 по отношению к паре M1 и M2, что все три тела будут обращаться вокруг общего центра масс с одной и той же угловой скоростью, и, таким образом, система при вращении будет сохранять свою конфигурацию. Лагранж предсказал пять таких особых местонахождений тела M3 по отношению к паре M1 и M2, эти местонахождения называются точками Лагранжа или точками либрации (см., например, [Л4]). Три из них, неустойчивые, находятся на прямой, проходящей через тела M1 и M2. Четвёртая и пятая точки либрации находятся в тех местах орбиты тела M2, которые равноудалены от тел M1 и M2; когда тело M3 находится в четвёртой или пятой точке либрации, положения трёх тел задают вершины равностороннего треугольника. Считается, что эти две точки либрации могут быть устойчивы [С4], и в окрестностях именно этих точек наблюдаются две группы Троянцев, если телом M1 считать Солнце, а телом M2 – Юпитер.

Казалось бы, мы имеем дело с блестящим подтверждением традиционных воззрений на тяготение, согласно которым движение Троянцев определяется действием двух притягивающих центров: Солнца и Юпитера. Если бы это было действительно так, то один лишь феномен Троянцев делал бы негодной нашу модель унитарного действия тяготения – согласно которой, Троянцы находятся за пределами частотной воронки Юпитера, и поэтому они должны тяготеть только к Солнцу. Но мы постараемся показать, что как раз такой подход даёт более правдоподобное объяснение феномена Троянцев.

Официальная теория гласит: вблизи устойчивой точки либрации «выведенное из равновесия» тело должно совершать эллиптические колебания вокруг этой точки [С4]. Каковы же размеры области устойчивости, в пределах которой возможны эти эллиптические колебания? По логике методов возмущений, отношение характерного размера области устойчивости к характерному расстоянию в данной задаче, т.е. к радиусу орбиты Юпитера, должно быть малым параметром, много меньшим единицы. В действительности же, разброс положений Троянцев грандиозен. На Рис.2.10 приведена карта положений малых тел Солнечной системы на 27 января 2006 г., в проекции на плоскость эклиптики; рисунок заимствован с общедоступного ресурса [ВЕБ12].

Здесь астероиды главного пояса обозначены малыми зелёными точками. Орбиту Юпитера изображает внешняя окружность; Юпитер, обозначенный кружком с крестиком, находится в точке, соответствующей примерно семи с половиной часам на циферблате; Троянцы изображены синими точками; центры их групп соответствуют примерно девяти с половиной и пяти с половиной часам. План выполнен с сохранением масштабов, и, как можно видеть, размеры «облаков» Троянцев сравнимы с радиусом орбиты Юпитера – вопреки теоретическим ожиданиям. Более того: чётко видно, что вытянутые вдоль орбиты Юпитера «облака» Троянцев изогнуты в соответствии с кривизной этой орбиты – словно, начиная с некоторой амплитуды, колебания Троянцев происходят по «изогнутым эллипсам»!

Таким образом, модель колебаний Троянцев около устойчивых точек либрации приводит к абсурду. Ключом же к разумному объяснению феномена является факт совпадения периодов «колебаний» Троянцев с периодом обращения их и Юпитера вокруг

Рис.2.10

Солнца. Этот факт допускает совсем простую интерпретацию: Троянцы всего лишь движутся вокруг Солнца по эллиптическим орбитам с большими полуосями, равными большой полуоси орбиты Юпитера – тогда периоды их обращения такие же, как и у Юпитера. И ещё их орбиты имеют некоторый разброс по степени эллиптичности, т.е. разброс эксцентриситетов. Чем больше разница эксцентриситетов орбиты Троянца и орбиты Юпитера, тем больше размах углового сближения-расхождения того и другого – с периодом, равным периоду их обращения. Можно, конечно, продолжать валять дурака и полагать, что Троянцы «колеблются» – в чудовищных по размерам «областях устойчивости» и с чудовищным по длительности периодом. Но такие колебания, по всем теоретическим раскладам, должны быть чудовищно нелинейными. А у нелинейных колебаний, как назло, период зависит от амплитуды. Чего в случае Троянцев не наблюдается!

Но почему Троянцы оказываются сосредоточены лишь на двух зафиксированных по отношению к Юпитеру участках его орбиты? Мы рассмотрели такую задачу: частотная воронка Юпитера не достаёт до скоплений Троянцев, и они движутся, тяготея только к центру частотной воронки Солнца – положение которой изменяется из-за её «обращения», в противофазе с обращением Юпитера, около их барицентра. При таких условиях, обращение астероида, долговременно-синхронное с обращением Юпитера, возможно лишь при двух средних углах отстояния астероида от Юпитера, как раз ±60о [Г8] – в согласии с опытом. И это при том, ещё раз отметим, что тяготение Юпитера на Троянец не действует!

Более того, подход [Г8] позволяет прояснить сценарий, по которому пополняются скопления Троянцев Юпитера. В эти скопления попадают астероиды из главного пояса, которым удаётся избежать «сметающего» действия частотной воронки Юпитера [Г8].

О каком «сметающем» действии речь? Да взгляните ещё раз на Рис.2.10. Слишком бросается в глаза выраженная резкость внешнего и внутреннего краёв главного пояса астероидов. Официальная наука оставляет без комментариев этот поразительный факт – ибо ей и сказать-то нечего. Мы же этот факт легко объясняем: изнутри пояса, астероиды «подчищаются» частотной воронкой Марса, а снаружи – частотной воронкой Юпитера. Представьте: летел астероид, притягиваясь только к Солнцу, и вдруг он попадает в область планетарного тяготения. Скачком изменяется его локально-абсолютная скорость, бывшая эллиптическая траектория становится гиперболической… Короче, в области планетарного тяготения, такой астероид совершает пролётный «гравитационный манёвр», уводящий его с прежней околосолнечной орбиты. Такие же гравитационные манёвры с некоторых пор лихо закладывают управленцы полётами дальних космических зондов. Только эти управленцы помалкивают про то, что границы областей планетарного тяготения – резко выражены. А мы – ещё раз бросим взгляд на Рис.2.10. Вот же они – свидетельства о границах!

Чему учит нас феномен Троянцев? А тому, что точек либрации, предсказываемых законом всемирного тяготения, в реальности-то нету. Нас пытались образумить, приводя пример космического зонда SOHO, который подвесили в точке либрации между Землёй и Солнцем – на полутора миллионах километрах от Земли. Но даже официальная теория гласит, что эта точка либрации неустойчива. И поначалу никто не скрывал, что SOHO удерживали между Землёй и Солнцем, используя подработку двигателем! А тогда, с неменьшим успехом можно было, через подработку двигателем, удерживать зонд около точки между Солнцем и Землёй, отстоящей от Земли не на полтора миллиона километров, а, скажем, на один миллион – эта точка тоже находится за пределами области земного тяготения, радиус которой составляет около 900 тысяч километров.

Резюмируем: феномен Троянцев, поначалу считавшийся триумфом закона всемирного тяготения, обернулся грандиозным проколом этого закона. Ибо движение Троянцев не объясняется в рамках представлений о точках либрации – но легко объясняется на основе модели унитарного действия тяготения (2.8)!

Спрашивается: если области тяготения планет имеют выраженные границы, то имеет ли такую границу область солнечного тяготения?

2.11. Граница области солнечного тяготения.

Ранее мы верили рассказам астрономов о долгопериодических кометах – с периодами обращения, по сильно вытянутым эллиптическим орбитам, вплоть до миллионов лет [С3]. При таких периодах обращения, скорости в афелиях ничтожны, поэтому считается, что большую часть времени такие кометы пребывают в окрестностях своих афелиев – и, соответственно, на интервале удалений 50000-150000 а.е. (астрономическая единица, средний радиус орбиты Земли) существует область повышенной концентрации комет [С3], называемая также облаком Оорта. Если это всё правда, то граница солнечного тяготения должна находиться за пределами облака Оорта.

Но на чём основаны рассказы о долгопериодических кометах? Движение комет наблюдается лишь в центральной области Солнечной системы – когда у них имеются выраженные хвосты. Величины же афелиев в 50000-150000 а.е. основаны исключительно на прогнозах, сделанных по результатам анализа наблюдаемых участков траекторий комет. Но прогнозы не обладают доказательной силой. Да и кто наблюдал предсказанное возвращение кометы спустя миллион лет? Достоверные свидетельства имеют совсем другой временной масштаб. Если отбросить курьёзную историю с кометой Гершель-Риголе [Г9], то комета с самым большим удалением в афелии, предсказанные возвращения которой достоверно наблюдались неоднократно – это знаменитая комета Галлея, с периодом обращения около 76 лет. Но её удаление в афелии составляет всего около 35 а.е. [А1].

Имеются ли астрономические свидетельства о том, что солнечное тяготения действует на больших удалениях, чем 35 а.е.? Да, относительно недавно такие свидетельства появились. За орбитой Плутона обнаружили т.н. пояс Койпера. Так астрономы называют группу астероидов, которые обращаются в интервале удалений примерно от 30 до 50 а.е. [ВЕБ13]. Подавляющее большинство объектов пояса Койпера движется по орбитам, близким к круговым, и имеет периоды обращения 260-320 лет [ВЕБ14]. Поразительной особенностью пояса Койпера является то, что его «внешняя граница… на расстоянии 47 а.е. от Солнца выражена очень резко» [ВЕБ13] (на этот факт обратил наше внимание А.Зеберг [З1], который предположил, что по этому краю и проходит граница области солнечного тяготения). Для объяснения этой «резкой выраженности» выдвигали гипотезу о наличии в районе пояса Койпера ещё не обнаруженной планеты, «чьё гравитационное воздействие не позволяет астероидам «разбредаться» [ВЕБ13]. Похоже, нелепость этой гипотезы бросается в глаза не только нам, поскольку резкость внешнего края пояса Койпера уже включают в списки фактов, не имеющих научного объяснения [ВЕБ15].

Что означает резкость внешнего края пояса Койпера? Это означает, что, вплоть до этого края, наблюдается обращение малых тел по почти круговым орбитам – т.е., несомненно, под действием солнечного тяготения – тогда как за пределами этого края такого обращения не наблюдается. Разумеется, «внешняя граница пояса не служит непреодолимым барьером, и 43 астероида (4% от известного их количества) уходят за её пределы… по сильно вытянутым орбитам» [ВЕБ13]. «Самую вытянутую орбиту… имеет 2000 ОО67 с периодом обращения вокруг Солнца 13300 лет» [ВЕБ14]. Опять же, эта цифра имеет чисто прогнозный характер – она получена на основе анализа небольшого участка траектории объекта на удалениях, больших чем 47 а.е. Причём, анализ проводился при допущении о том, что на этих удалениях солнечное тяготение действует. Но если это допущение ошибочно, то прогнозы, сделанные для убегающих койпероидов – совершенно неверны. Если судить по фактам, а не по прогнозам, то круговые орбиты койпероидов доказывают, что они находятся в области солнечного тяготения – но в области, где почему-то не наблюдаются замкнутые орбиты, одни лишь уходящие траектории отнюдь не доказывают наличие там солнечного тяготения.

Но ведь на сегодня, за внешний край пояса Койпера вылетели четыре дальних космических зонда: «Пионеры-10,11» и «Вояджеры-1,2»! Полёт каждого из них плотно контролировался средствами дальней космической связи – и, значит, имелись четыре блестящие возможности получить прямой ответ на вопрос о том, является ли внешний край пояса Койпера границей солнечного тяготения!

Главный пограничный эффект заключался бы в том, что, пока зонд двигался в области солнечного тяготения, его гелиоцентрическая скорость уменьшалась бы из-за наличия ускорения к Солнцу, а после пересечения им границы это уменьшение гелиоцентрической скорости прекратилось бы. Судя по отсутствию официальных сообщений о таком эффекте, он и не имел места. Однако, именно этот эффект мы выявили при анализе траекторных данных, которые находились в свободном доступе на официальном сайте NASA [ВЕБ16]. Разумеется, точные траекторные данные – это важная научная тайна, поэтому в свободном доступе находились грубые данные. Они были округлены в достаточной, по мнению специалистов из NASA, степени – чтобы их прямое использование не дало ничего, заслуживающего внимания. Тем не менее, мы нашли способ обработки этих данных, на два порядка повышающий точность представления гелиоцентрической дальности зонда [Г9]. По уточнённым данным мы находили уточнённую гелиоцентрическую скорость зонда – её результирующие значения, на интервале дальностей 30-70 а.е., приведены на Рис.2.11 для случая «Вояждера-2» [Г9].

На первый взгляд может показаться, что разбиение изображённого на диаграмме массива точек на две части, с переломом в области 49 а.е., выглядит искусственно. Но заметим, что характер разброса точек принципиально изменяется при переходе через область 49 а.е. А именно: при дальностях до 49 а.е, разброс точек неупорядочен, а далее он приобретает ярко выраженную упорядоченность, в которой отчётливо просматриваются две обособленные последовательности скачков. Так и должно быть, если разброс точек обусловлен, главным образом, грубостью использованных значений гелиоцентрических широт и долгот, и если скорость на дальностях до 49 а.е. уменьшалась, а далее она оставалась постоянной. О таком поведении скорости свидетельствуют и два линейных тренда, построенные для двух участков разбиения массива. Причём, крутизна первого тренда соответствует, на участке 47-49 а.е., величине ускорения 2.8·10-6 м/с2, которая мало отличается от величины ускорения свободного падения к Солнцу на дальности 48 а.е. – 2.6·10-6 м/с2. Такое согласие также свидетельствует о том, что наш анализ данных о траектории «Вояджера-2» не содержит грубых ошибок.

Рис.2.11

Едва ли можно сомневаться в том, что не мы первые обнаружили исчезновение ускорения свободного падения к Солнцу у космических аппаратов, вылетавших за внешний край пояса Койпера. Подобный феномен был бы немедленно выявлен группой слежения за полётом. Но специалисты, работавшие с «Пионерами» и «Вояджерами», не сообщили об этих феноменах, а также о скачках допплеровского сдвига несущей при радиосвязи с аппаратами – на их выходе за внешний край пояса Койпера. А ведь знание величин этих скачков, при известных векторах выхода четырёх аппаратов из Солнечной системы, дало бы возможность определить вектор скорости Солнечной системы в Галактике. Такое определение – более быстрое и точное по сравнению с методами, основанными на наблюдениях вековых движений звёзд – стало бы научной сенсацией.

Но, увы, официальная наука в очередной раз умолчала о фактах, которые не уложились в концепцию «всемирного тяготения». Весьма показательна и реакция хозяев использованных нами траекторных данных. Не прошло и двух суток с момента публикации статьи [Г9] и размещения анонсов о ней на форумах в Интернете, как на сайте NASA [ВЕБ16] закрыли свободный доступ к этим траекторным данным, которые до того пылились там лет пятнадцать. Значит, было отчего задёргаться!

Но это ещё не всё. Специалисты, рулившие «Пионерами» и «Вояджерами», ранее выдали статью [А2] о необъяснённом аномальном ускорении «Пионеров» к Солнцу – причём, величина этой «аномалии» на четыре порядка меньше, чем скачкообразное обнуление ускорения на границе пояса Койпера, о котором они умолчали. Эту статью [А2] широко разрекламировали. Толпы энтузиастов кинулись наперебой выдвигать самые фантастические гипотезы для объяснения «аномалии «Пионеров». Сильна была их уверенность в том, что они искали объяснения для реального физического эффекта.

Но от этой уверенности ничего не остаётся, если внимательно посмотреть на приведённый авторами график (доступный также на [ВЕБ29]). Он иллюстрирует остаточные разности допплеровской скорости (измеряемой минус предсказываемой) для «Пионера-10» на семилетнем интервале. Заметно, что на систематический линейный рост этих остаточных разностей – на основе которого и сделали вывод об «аномальном ускорении» – наложена слабая раскачивающаяся волна с периодом в один год. Едва ли можно серьёзно говорить о том, что космический аппарат, движущийся где-то на периферии Солнечной системы, имеет годичную, да ещё раскачивающуюся, модуляцию своей скорости. Между тем, известно, что при машинной обработке потоков данных, имеющих периодические составляющие, появление такого рода «раскачек» при определённых параметрах фильтрации – обычное дело. Едва ли можно сомневаться в том, что названная годичная волна на графике не соответствует реальному физическому эффекту, а является «эффектом обработки». И если фильтрация при обработке данных допускает «пролезание» периодической паразитной компоненты, то «пролезание» линейной паразитной компоненты она должна допускать тем более. Было бы странно, если линейная паразитная компонента при этом отсутствовала бы!

Добавим, что мы усматриваем важное косвенное свидетельство о том, что заявленное «аномальное ускорение аппаратов к Солнцу» является не реальным физическим эффектом, а «эффектом обработки». Речь о том, что для аппаратов разных конструкций (Пионер-10 и -11, Галилео, Улисс) «аномальное ускорение» оказалось практически одинаковым в огромном диапазоне расстояний от Солнца – от 1.3 до 67 а.е. [А2]! Самым простым объяснением такого чуда является допущение об одинаковом паразитном эффекте, имевшем место при обработке различных сегментов данных – одной и той же программой [А2]. И неспроста авторы [А2], которые могли представить график на 20-летнем интервале, ограничились семилетним интервалом. Одним годом больше – и раскачивающаяся годичная волна уже бросалась бы в глаза всем.

Создаётся стойкое впечатление, что главной целью публикации [А2] было внушение научному сообществу ложной уверенности в том, что, с точностью до ~10-8 см/с2, солнечное тяготение действует в полном согласии с законом всемирного тяготения – на дальностях вплоть до 60 а.е. и более. Чтобы никто даже не заподозрил, что область солнечного тяготения имеет чёткую границу!


    Ваша оценка произведения:

Популярные книги за неделю