355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Андрей Гришаев » Этот «цифровой» физический мир » Текст книги (страница 5)
Этот «цифровой» физический мир
  • Текст добавлен: 26 октября 2016, 22:03

Текст книги "Этот «цифровой» физический мир"


Автор книги: Андрей Гришаев


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 5 (всего у книги 31 страниц)

1.13. Что показали кругосветные транспортировки атомных часов.

В октябре 1971 г. Хафеле и Китинг проделали выдающийся эксперимент [Х2,Х3] с транспортируемыми атомными часами на цезиевом пучке. Четвёрку таких часов аккуратно сличили со шкалой времени Военно-морской обсерватории США (USNO), а затем, обычными пассажирскими рейсами, выполнили две кругосветные воздушные транспортировки этой четвёрки – в восточном и западном направлениях.

После каждой из этих кругосветок, четвёрку часов вновь сличали со шкалой USNO. Результирующие разности между показаниями часов и шкалой USNO воспроизведены на Рис.1.13.1. Нулю оси абсцисс соответствует 0 часов Всемирного времени (UT) 25 сентября

Рис.1.13.1

1971 г. Трёхзначные цифровые метки – это индивидуальные номера часов из рабочей четвёрки, метка «Average» обозначает среднее по четырём разностям. Поведение этой усреднённой разности в окрестностях интервалов времени, приходившихся на транспортировки, воспроизведено на Рис.1.13.2. Этот рисунок наглядно демонстрирует, как судили о дополнительных изменениях показаний, накопленных в ходе транспортировок. А именно: делали прогноз дрейфа усреднённой разности, и находили сдвиг между её прогнозным и фактическим значениями – на момент возобновления сличений.

Теперь – об интерпретации этих сдвигов. Считалось, что они были обусловлены совместным действием двух эффектов: гравитационным и кинематическим, т.е. релятивистским, замедлениями времени. Гравитационное замедление времени предсказывает общая теория относительности (ОТО) – согласно которой, на высоте время течёт несколько быстрее, чем на земной поверхности. Поэтому наземные часы должны монотонно накапливать отставание по сравнению с такими же часами, поднятыми на высоту – в частности, на борту самолёта. Расчётные величины вклада этого эффекта были примерно одинаковы для обеих кругосветок (см. Рис.1.13.3). Разбор феномена гравитационного изменения хода часов мы проведём ниже, в 1.14; здесь же мы сосредоточим внимание на кинематическом изменении хода часов.

Рис.1.13.2

Согласно СТО, движущиеся часы должны монотонно накапливать отставание по сравнению с такими же покоящимися часами. В рамках концепции относительных скоростей, Хафеле и Китингу предстояло решить нелёгкую проблему: сообразить, какая из двух групп часов – лабораторная, по которой формировалась шкала USNO, или транспортируемая четвёрка – двигалась, а какая покоилась. Не подумайте, дорогой читатель, что мы издеваемся, называя эту проблему нелёгкой. Это лишь на первый взгляд кажется, что лабораторные часы покоились, а двигались те часы, которых транспортировали. Если бы всё было так просто, то, в течение той и другой кругосветок, транспортируемые часы накопили бы примерно одинаковые кинематические отставания по сравнению с лабораторными часами. И, для обеих кругосветок, примерно одинаковыми оказались бы результирующие суммы гравитационного и кинематического эффектов. Но, взгляните ещё раз на Рис.1.13.2: эти результирующие суммы для восточной и западной кругосветок оказались, в действительности, различны не только по величине, но и по знаку! Подтвердился вывод Айвса [А1] и Бильдера [Б2] о том, что верный расчёт релятивистского расхождения показаний у пары произвольно движущихся часов невозможен, если оперировать только их относительной скоростью.

Рис.1.13.3

Пришлось Хафеле и Китингу отказаться от нерабочей концепции относительных скоростей и поискать способ расчёта кинематических эффектов, который дал бы более адекватное описание полученных ими результатов. Такой способ, задним умом, быстро нашёлся. Были сделаны расчёты замедления хода для обеих групп часов – как транспортируемой, так и лабораторной – на основе индивидуальных скоростей той и другой групп в геоцентрической невращающейся системе отсчёта. С такой «точки зрения», двигалась не только транспортируемая группа, лабораторная группа двигалась тоже – из-за суточного вращения Земли. Соответственно, пришлось рассчитывать накопленные кинематические «отставания» для обеих групп, и брать разность этих «отставаний» в качестве обнаружимого кинематического эффекта. Вот такие расчёты дали вполне приемлемое согласие с опытом: предсказание полного эффекта для восточной кругосветки составило -40±23 нс, а для западной оно составило +275±21 нс.

А теперь вспомним, что скорости часов в геоцентрической невращающейся системе отсчёта – это, в данном случае, их локально-абсолютные скорости (1.6). Выходит, что опыт Хафеле-Китинга с полной очевидностью продемонстрировал непригодность концепции относительных скоростей и, наоборот, работоспособность концепции локально-абсолютных скоростей. Похоже, Хафеле и Китинг о чём-то таком догадывались – если судить по их рассуждениям о том, что система отсчёта, связанная с лабораторией USNO, является неинерциальной из-за участия в суточном вращении Земли, а невращающаяся геоцентрическая система отсчёта является инерциальной, и поэтому-то расчёты делались именно в ней. Позвольте, как может быть инерциальной система отсчёта, которая имеет центростремительное ускорение при орбитальном движении вокруг Солнца? Или системы отсчёта бывают инерциальными в большей или меньшей степени?! Если кто-то полагает, что так оно и есть, то пусть возьмёт ещё «более инерциальную» систему отсчёта – связанную с Солнцем – и пусть в ней сделает расчёт для опыта Хафеле-Китинга. Этот расчёт окажется чудовищно некорректен. В том и прелесть квадратичного эффекта Допплера, что он квадратичен – по скорости. Из-за этого, для каждой конкретной задачи имеется лишь одна система отсчёта, в которой следует брать «истинные» скорости и возводить их в квадрат – чтобы получить правильные предсказания. И эти «истинные» скорости – как раз локально-абсолютные.

1.14. Как «подтвердили» теорию относительности спутники GPS и TIMATION.

С началом «эры GPS» в массовое сознание вдалбливали не подлежащий сомнению тезис о том, что эта навигационная система работает, с огромной точностью подтверждая – ежедневно, ежечасно и ежеминутно – предсказания СТО и ОТО насчёт изменения темпа течения времени на бортах спутников. Но, странным образом, от общественности скрывали – как конкретно эти предсказания подтверждаются. Так, в одной из самых известных книг по основам GPS [Т3], автор ни словом не обмолвился о том, каким именно образом при работе GPS учитываются релятивистские и гравитационные эффекты. Это настолько контрастирует с широтой охвата материала и подробностями изложения в [Т3], что невольно возникает вопрос: почему от нас прячут свидетельства об эйнштейновской гениальности?

А ответ прост: потому что этих свидетельств нет. Ибо, концепция относительных скоростей и в случае с GPS не работает – с полной очевидностью. Вот, смотрите: пусть пользователь GPS-навигатора Вася принимает сигналы от нескольких спутников GPS. Каждый спутник из этого рабочего созвездия имеет свою скорость относительно Васиного GPS-навигатора. По логике относительных скоростей, для Васи бортовые часы на каждом из этих спутников должны испытывать квадратично-допплеровские замедления хода в соответствии с их скоростями относительно Васи. А откуда бортовым часам знать эти скорости? К тому же, Вася не один, есть ещё другие пользователи GPS-навигаторов – Петя, например. Если скорости тех же спутников относительно Пети не те, что относительно Васи, то и квадратично-допплеровские замедления ходов бортовых часов должны быть «не те», что для Васи. А это уже ни в какие ворота не лезет. Ведь опыт показывает, что хода бортовых часов GPS – однозначны. Чихали эти часы на Васю, на Петю и на миллионы остальных пользователей – они «тикают» одинаково для всех. Станции слежения за спутниками GPS, рассредоточенные по разным долготам, свидетельствуют: ход каждых бортовых часов постоянен – с точностью до небольших случайных флуктуаций, и до поправок на небольшие отличия орбит GPS от круговых, а также на периодически производимые коррекции этих ходов. Только благодаря почти постоянным ходам бортовых часов GPS, оказывается возможным выполнение одного из главных пунктов технического задания: удерживать шкалу времени GPS в пределах небольшой разности со шкалой Всемирного координированного времени (UTC). На заре «эры GPS», эта разность не должна была превышать ±100 нс, затем ±50 нс. Сегодня эта разность не должна превышать, если не ошибаемся, ±20 нс. Таким образом, работа GPS основана на почти синхронном ходе шкалы GPS, формируемой бортовыми часами, и шкалой UTC, формируемой наземными часами. Как такое возможно, если, по отношению к наземным часам, бортовые часы испытывают релятивистские и гравитационные эффекты?

Разгадка вот в чём. С помощью первых, экспериментальных спутников GPS, убедились в том, что совместное действие этих двух эффектов имеет место [Х2]. После этого, «спутниковые часы перед запуском регулируют на такую скорость хода, чтобы компенсировать эти… эффекты» [Ф1]. Этот страшный секрет уже раскрыт и в официальных учебных пособиях [О1]. Строго говоря, подстраивают выходную частоту не бортового стандарта, а бортового синтезатора – ну да ладно. Факт внесения однозначных поправок на гравитационные и релятивистские эффекты – налицо. Никакого вам смехотворного «парадокса часов»!

Тем не менее, Ван Фландерн полагает, что, в случае с GPS, «мы можем утверждать с уверенностью, что предсказания теории относительности подтверждены с высокой точностью» [Ф1]. Он пытается убедить нас в том, что бортовые часы GPS идут в полном согласии с предсказаниями Эйнштейна. «ОТО предсказывает… что атомные часы на орбитальных высотах спутников GPS идут быстрее примерно на 45900 нс/день, потому что они находятся в более слабом поле тяготения, чем атомные часы на земной поверхности. Специальная теория относительности (СТО) предсказывает, что атомные часы, перемещающиеся с орбитальной скоростью спутников системы GPS идут медленнее примерно на 7200 нс/день, чем неподвижные наземные часы» [Ф1]. Позвольте – где это СТО предсказывала, что релятивистское замедление хода бортовых часов постоянно по отношению ко всем «неподвижным наземным часам»? Ведь скорость каждых бортовых часов различна по отношению к различным «неподвижным наземным часам» – да ещё периодически изменяется! Одинаковость релятивистской поправки для всех бортов и её независимость от времени означает, что она определяется одной и той же, постоянной скоростью – а именно, линейной скоростью орбитального движения спутников GPS. И, действительно, рабочей системой отсчёта GPS является геоцентрическая невращающаяся [Т3]. Принимая во внимание вышеизложенное (1.6), констатируем: квадратично-допплеровское замедление ходов бортовых часов GPS определяется только их локально-абсолютными скоростями, примерно одинаковыми для всех спутников GPS. Таким образом, работа GPS не подтверждает концепцию относительных скоростей, а, наоборот, оставляет от этой концепции мокрое место. Причём, если в опыте Хафеле-Китинга (1.13), давшем аналогичный результат, величина измеряемого эффекта превышала погрешность измерений всего лишь в разы, то, в случае с GPS, запас по точности составил уже почти четыре порядка.

Но это ещё не всё. Релятивистские и гравитационные изменения ходов бортовых спутниковых часов – это бесспорные факты. Только являются ли эти изменения хода следствиями замедления времени? Нет, не являются. Известны факты, тоже бесспорные, которые свидетельствуют о том, что дело здесь НЕ в замедлении времени. Действительно, такой фундаментальный феномен, как замедление времени, влиял бы на скорость всех без исключения физических процессов. В частности, выходные частоты генераторов самых различных конструкций изменялись бы одинаково – в относительном исчислении. Однако, это не так: в отличие от частот квантовых стандартов, частоты кварцевых генераторов не испытывают релятивистских и гравитационных сдвигов!

Так, в мае 1967 г. и в сентябре 1969 г. США запустили первую пару спутников низкоорбитной навигационной системы TIMATION (см., например, [И1]). На их бортах находились прецизионные кварцевые генераторы, частоты которых контролировались с точностью не хуже 10-11 [И1]. Для спутников TIMATION, с высотой орбиты 925 км, суммарное действие релятивистского и гравитационного эффектов составило бы –2.1·10-10 [Г2]. Эта цифра по модулю в 20 раз грубее, чем вышеназванная точность контроля частоты. Поэтому, если частоты кварцевых генераторов на бортах TIMATION испытывали бы релятивистские и гравитационные сдвиги, то их сумма непременно была бы обнаружена. Причём, это обнаружение явилось бы сенсацией – первым подтверждением СТО и ОТО с помощью бортовых спутниковых часов. Однако, сенсация не состоялась. Её устроили попозже, после запуска первых экспериментальных спутников GPS с квантовыми стандартами частоты на бортах.

Эти факты – убийственны для СТО и ОТО. Частоты квантовых генераторов испытывают релятивистские и гравитационные сдвиги, а частоты кварцевых генераторов их не испытывают! Значит, в случае квантовых генераторов, эти сдвиги обусловлены вовсе не замедлением времени – которое, как мы помним, влияло бы на все физические процессы. О причинах, которые, на наш взгляд, обеспечивают эти сдвиги, мы скажем в 4.7. Если же совсем кратко, то, по логике «цифрового» мира, дело здесь в программных манипуляциях, которые управляют положением квантовых уровней энергии в веществе. Эти программные манипуляции действуют на частоты квантовых генераторов напрямую, а на частоты классических генераторов – лишь опосредованно. Разница в том, что собственная частота классического генератора определяется не столько частотами квантовых пульсаторов, из которых он построен, сколько законами структурной организации вещества, обеспечивающими эту постройку. Вот почему релятивистские и гравитационные сдвиги квантовых уровней энергии, трансформированные на структурный уровень классического генератора, могут приводить к совершенно иным результирующим сдвигам его частоты [Г2].

Факт остаётся фактом: у кварцевых генераторов на бортах спутников TIMATION не обнаружились релятивистские и гравитационные сдвиги частот, хотя точности для этого вполне хватало. На специализированных Интернет-форумах, где мы заводили речь о спутниках TIMATION, у релятивистов начиналась истерика. Руководствуясь принципом «Всё отрицать!» – они выдвигали самые нелепые возражения. И что никаких спутников TIMATION не было – это, мол, наша выдумка. И что релятивистские и гравитационные сдвиги частот там не обнаружились просто потому, что такая задача, мол, и не ставилась. И что не бывает кварцевых генераторов с точностью контроля частоты до 10-11 – эта цифра не бывает, мол, лучше чем 10-8 (хотя уже имеются экземпляры со значением этого параметра 1.1·10-12 [М2]). Отчего же релятивисты так неадекватно реагируют? Оттого, что слишком наглядно спутники TIMATION продемонстрировали: релятивистского и гравитационного замедлений времени в природе не существует. Никаким теоретическим словоблудием этот вывод уже не заболтать. Нам, конечно, укажут, что были эксперименты, в которых обнаруживалось релятивистское и гравитационное замедление времени. Это неправда: либо экспериментаторы сами заблуждались, либо сознательно вводили в заблуждение нас с Вами, дорогой читатель. Ключевой из этих «экспериментов» мы сейчас разберём.

1.15. Комедия со временем жизни мюонов.

Известен миф о том, что одни из исторически первых свидетельств о релятивистском замедлении времени были получены при измерениях времени жизни мю-мезонов, или мюонов. Мы говорим «миф», потому что даже в учебной литературе и обзорах экспериментов авторы умалчивают подробности и стараются побыстрее проскочить это скользкое место. Даже такой известный специалист по экспериментальной базе теории относительности, как У.И.Франкфурт, на этот счёт дал мимоходом три голые ссылки – и ни слова больше [Ф2]. Слишком уж бросается в глаза, в случае с мюонами, грубость фальшивки.

Вот, профессор А.Н.Матвеев поучает студентов: «Существуют различные способы… измерить длину пути μ-мезона между моментом его рождения и моментом его распада и независимо определить его скорость. Благодаря этому можно найти время жизни частицы. Если имеет место эффект замедления времени, то время жизни мезона должно быть тем больше, чем больше его скорость…» [М3] – и далее о том, что эксперимент всё это подтвердил, причём собственное время жизни μ+-мезона составило ≈2·10-6 с. Эти поучения – позор какой-то. Хотя бы потому, что в опытах, на основе которых приняли соглашение об этих самых двух микросекундах, «моменты рождения» мюонов и, соответственно, их «длины пути», были принципиально неизвестны!

Дело в том, что в этих опытах работали с мюонами природного происхождения, которые летели вниз сквозь атмосферу, рождаясь при ударах протонами космических лучей по частицам воздуха. Протоны эти высокоэнергичные, и мюоны получались релятивистские – имевшие стартовую скорость, близкую к скорости света. О том, что мюоны нестабильны, свидетельствовал, например, такой факт: поглощение мюонов в слое воздуха в 1.4 раза больше, чем в эквивалентном по массе слое воды [Ф3]. Поскольку потери на взаимодействие с веществом в этих случаях практически одинаковы, а разница лишь в проходимых путях, напрашивался вывод о самопроизвольном распаде мюона. Время его жизни поначалу определяли на основе странного допущения о том, что все мюоны рождались на одной и той же высоте – где-то между 15 и 20 км. Использовали мюонный телескоп – пару разнесённых на некоторое расстояние сцинтилляторов. Если мюон пролетал сквозь оба сцинтиллятора, то по двум вспышкам – в режиме совпадений – мюон и регистрировался. Так вот, отклоняли телескоп на некоторый угол от вертикали и измеряли скорость счёта. Затем ставили телескоп вертикально и помещали над ним плотный поглотитель, компенсировавший уменьшение массы проходимого мюоном воздушного столба. При выровненных таким образом потерях на взаимодействие с веществом, скорости счёта для двух названных случаев были различны. Зная геометрическую разность проходимых мюоном путей, вычисляли среднее время его жизни.

Слабым местом здесь являлось ничем не подтверждённое допущение о том, что все мюоны рождались на одной высоте. Окажись это допущение ошибочным – и пойдут прахом все результаты. Так и вышло: сегодня хорошо известно, что мюоны рождаются на всей толще атмосферы, пронизываемой протонами космических лучей. Но до сих пор студенты выполняют лабораторные работы, в которых наклоняют мюонный телескоп. Теперь им уже заранее подсказывают, какую нужно взять «высоту рождения» мюонов, чтобы собственное время их жизни получалось близкое к справочному. Получив за эту туфту пять баллов, мальчики потом кричат на Интернет-форумах, что они «своими руками щупали увеличение времени жизни мюонов»!

А где там оно, увеличение-то? А вот как это релятивисты поясняют. Если собственное время жизни мюона составляет 2 микросекунды, то, двигаясь даже со скоростью света, он пролетел бы всего 600 м, но он пролетает многие километры – значит, только благодаря увеличению времени жизни! Нет уж, вы нас не путайте. Собственное время жизни мюона – это, по вашим же релятивистским меркам, время в системе отсчёта самого мюона. Но в этой системе отсчёта он не пролетает не то что километры, но даже и миллиметры – ибо в ней он покоится. Это в лабораторной системе отсчёта он «пролетает», причём – неизвестно сколько. Что же вы, господа, сопоставляете, если время берёте в одной системе отсчёта, а путь – в другой? Причём, для времени релятивистское преобразование делаете, а для пути – нет! Вы без обмана совсем ничего не можете? А без обмана здесь так: надо знать время жизни покоящегося в лаборатории мюона – вот тогда можно прикидывать, сколько он за это время пролетел бы. Но откуда было взяться покоящимся в лаборатории мюонам, когда они прошибали телескопы насквозь?

От этой «пролётной» методики перешли к более продвинутой – «полу-пролётной». В телескопе поместили два свинцовых поглотителя – притормаживавший и останавливавший. Добавили сцинтилляторов, а схемы совпадений настроили так, чтобы регистрировались только те мюоны, которые пролетали сквозь первый поглотитель, но не пролетали сквозь второй. Варьируя толщину первого поглотителя, можно было селективно регистрировать мюоны с теми или иными энергиями – в «окне» с шириной, которую задавала толщина второго поглотителя – и, таким образом, получить данные для довольно широкого спектра мюонов по энергиям! Однако, при работе с моноэнергическими мюонами, определялось лишь отношение собственного времени жизни мюона к его массе покоя [Ф3], которая ещё не была точно установлена. Приходилось, насчёт этой массы, принимать волевое решение… Но зато использовалась схема, позволявшая не задумываться о том, на какой высоте рождаются все мюоны – на 15 или 20 км. Измерения проводились на двух высотах над уровнем моря – с перепадом в пару километров – и соответствующая разница в скоростях счёта трактовалась как индикатор распадов мюонов на этом двухкилометровом пути. Вот, все эти новшества и применили Росси с соавторами [Р2]. Правда, вместо обещанного спектра, они почему-то выдали лишь две точки, 515 и 972 МэВ, для которых собственные времена жизни мюонов неплохо совпали – что, якобы, подтвердило «наличие релятивистского увеличения длительности жизни с ростом энергии» [Ф3]. А было ли это неплохое совпадение обусловлено тем, что требуемую разность скоростей счёта обеспечила соответствующая разность релятивистских факторов – или просто тем, что мюонов с энергиями 972 МэВ изначально несколько меньше, чем с энергиями 515 МэВ? Ведь их исходное распределение по энергиям было неизвестно! Да и рождение мюонов в промежутке между двумя высотами, на которых работал телескоп, авторы не учитывали… Как ни крути, неизвестных в этой задаче было гораздо больше, чем уравнений. А в такой ситуации однозначных решений не бывает – подходит и первое, и второе, и пятое, и десятое. Нравится то, которое подтверждает теорию относительности – его и выбирай!

Эти высоконаучные подтверждения, по «пролётной» и «полу-пролётной» методикам, достойно увенчала методика «непролётная» – с помощью которой, как нас уверяют, измерялось, наконец, время жизни покоящегося мюона. Идея была в использовании поглотителей, в последнем из которых мюон застревал гарантированно – и момент конца его жизни фиксировался по вылету электрона или позитрона распада. Что же касается момента начала жизни мюона… ну, да, он не фиксировался. Как прикажете его фиксировать, если мюон рождался чёрт знает где? Единственный момент, который ещё фиксировался – это момент влёта мюона в установку, т.е. фактически, момент его застревания в поглотителе. Вот и набирали статистику промежутков времени между застреванием мюона в поглотителе и вылетом оттуда электрона или позитрона распада. Следите за логикой: в течение этого промежутка времени мюон, во-первых, жил, а, во-вторых, покоился. Это и послужило основанием для заявлений о том, что таким образом измерялось время жизни покоящегося мюона. Буквально, так сказать!

Дорогой читатель, мы не шутим. Схема установки и методика измерений даны не только в оригинальных статьях [Р2, Р3], но и у того же Фейнберга [Ф3], и в учебной литературе, например, в [М4], [Л2]. Желающие могут убедиться в том, что всё так и делалось, как описано выше. Уточним лишь, что искомое «время жизни» находилось не простым усреднением регистрируемых промежутков времени. Обнаружилась, статистически, спадающая экспоненциальная зависимость числа распадов от промежутка времени между влётом в поглотитель и распадом. Подобная зависимость – это типичная кривая, описывающая радиоактивный распад. Поэтому характерный интервал времени, которому соответствовал спад экспоненты в e раз, и договорились называть «временем жизни покоящегося мюона». И включили эту величину – около 2.2 мкс – в справочники.

Всё это было бы замечательно, если забыть, что мюоны жили и до того, как влететь в поглотитель. А ведь если мюон летел с высоты 20 км, то, по лабораторным часам, он преодолевал этот путь примерно за 67 мкс. Даже если допустить, что релятивистское замедление времени существует, то при релятивистском факторе, равном 10, мюон в этом полёте жил «по своим часам» около 6.7 мкс – т.е. существенно дольше, чем пресловутые 2 мкс. Выходит, что справочное значение продолжительности жизни покоящегося мюона ничуть не характеризует продолжительность жизни мюона «по его собственным часам». И результаты последующих экспериментов – в которых, скажем, при релятивистском факторе, равном 10, мюон жил 22 мкс – вовсе не свидетельствуют о релятивистском замедлении времени. Эти результаты вообще не имеют физического смысла, их смысл – чисто политический. Мюон был первой нестабильной частицей, с помощью которой «доказали» наличие релятивистского замедления времени. Дальше врать было уже проще.

Нет, ну как это можно: рассуждать о том, что в поглотителе мюон живёт всего 2 микросекунды, и за это время он не успел бы много пролететь – при этом прекрасно зная, что на полёт мюон тратит совсем другой, да не малый, отрезок своей жизни? Совсем плохи дела у теории относительности, если её приходится «подтверждать» подобным лепетом. Истина не нуждается во лжи для своего подкрепления. Во лжи нуждается ложь.


    Ваша оценка произведения:

Популярные книги за неделю