355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Андрей Гришаев » Этот «цифровой» физический мир » Текст книги (страница 8)
Этот «цифровой» физический мир
  • Текст добавлен: 26 октября 2016, 22:03

Текст книги "Этот «цифровой» физический мир"


Автор книги: Андрей Гришаев


Жанр:

   

Физика


сообщить о нарушении

Текущая страница: 8 (всего у книги 31 страниц)

В частности, планировалось высадить на Итокаву исследовательский робот, который, после отделения от зонда на положенной высоте, должен был очень медленно упасть на поверхность. Но… не упал. «Микроробот «Минерва»… успешно стартовал с зонда «Хаябуса» в субботу, 12 ноября 2005г., но вскоре начал удаляться от астероида» [ВЕБ11]. Так и уплыл он в космические дали. Странным образом, это не поколебало уверенность специалистов в том, что у астероида имеется собственное тяготение. Действуя вполне последовательно, они отправили на поверхность астероида ещё одну болваночку без двигателей – отражающий шарик, который должен был выполнять роль навигационного маркера при работе лазерных дальномеров, обеспечивающих посадку на астероид самого зонда, для взятия пробы грунта. Когда дело дошло до работы лазерных дальномеров… ну, в общем, выяснилось, что шарика-отражателя нет на положенном месте. Куда он мог деться, если его аккуратно сбросили с высоты всего в 40 метров [ВЕБ30], и ему оставалось лишь опуститься на поверхность, двигаясь с мизерным ускорением? И это был уже второй прокол подряд! И второй раз подряд японцам пришлось давать смехотворные, наскоро состряпанные объяснения [Г17]! Но здесь уже не выдержали журналисты. Они обрушились на руководителей проекта с требованием, чтобы вторая попытка посадки зонда на поверхность астероида освещалась в прямом эфире. Неслыханная наглость, правда? Но уж так был крепок маразм происходящего, что пришлось японцам согласиться на прямой эфир. Правда, в этом прямом эфире, по ходу второй попытки посадки, связь с зондом на самом интересном месте прервалась. Как по заказу! Так что сел ли японский зонд на астероид, и взял ли он там пробу грунта – науке неизвестно.

После этого, массовый интерес к зонду HAYABUSA угас, и мало-помалу страсти улеглись. Спустя год, провели даже научную конференцию по тематике HAYABUSA-Итокава. Среди всего прочего, там демонстрировалась гравиметрическая карта астероида. Сам видел – редкой красоты вещь! Выполнена в традициях дзен; оказывает успокаивающее и расслабляющее действие. Созерцая этот шедевр, ни за что не подумаешь, что болванки без движков рядом с астероидом не удерживались!

2.6. Малые планеты: как же они ускоряются к Солнцу?

Из закона всемирного тяготения следует, что притяжение к нескольким массивным телам равно векторной сумме притяжений к каждому из них по отдельности. Т.е., тяготения нескольких тел действуют совместно, аддитивно. Такой подход приводит к поразительному парадоксу; мы изложим его в терминах гравитационных потенциалов.

Тело, имеющее собственное тяготение, находится в центре своей потенциальной ямы. Быть в яме означает быть в устойчивом равновесии. Отчего же малое тело, находясь вблизи много большего тела, ускоряется к нему? Оттого, говорят нам, что потенциальная ямка малого тела, складываясь с потенциальным склоном большого тела, возмущает этот склон настолько слабо, что суммарное распределение потенциала в объёме малого тела представляет собой, в первом приближении, склон, а не ямку – а по склону тело должно «скатываться». Очень хорошо! Теперь пусть малое тело удаляется всё дальше от большого. При этом крутизна потенциального склона большого тела становится всё меньше, и, наконец, она сравняется с крутизной потенциальной ямки малого тела на его поверхности. Расстояние от большого тела, на котором это произойдёт, мы называем дальностью отчуждения. За пределами дальности отчуждения малое тело находится уже не «на склоне», а «в ямке». Конечно, эта «ямка» асимметрична из-за перекоса, наводимого склоном большого тела – но теперь это, в первом приближении, ямка, а не склон. А в ямке тело должно удерживаться. С чего ему теперь «скатываться» в сторону большого тела? В перекошенной ямке у тела будет другое положение равновесия и другое распределение деформаций, чем в симметричной ямке, но перекошенная ямка будет удерживать тело не хуже, чем симметричная. Таким образом, из универсальности действия тяготения следует вывод: малое тело, находящееся за пределами дальности отчуждения от большого тела, не должно к нему ускоряться. Но практика не подтверждает этот вывод.

Действительно, для малого тела с массой m и радиусом r, дальность отчуждения Dот от большого тела с массой M есть

.

В таблице приведены рассчитанные по этой формуле дальности отчуждения от Солнца для некоторых малых планет (a – расстояние от Солнца в афелии; справочные данные взяты из [К2]).

Как можно видеть, расстояния от Солнца, на которых малые планеты, несомненно, ускоряются к нему, на порядок превосходят соответствующие дальности отчуждения. Как такое возможно? Парадокс легко разрешался бы, если у малых планет, действительно, не было бы собственного тяготения, т.е. не было бы своих потенциальных ямочек. Тогда для них не было бы и дальностей отчуждения от Солнца, и они могли бы ускоряться к нему в пределах всей области действия солнечного тяготения – что и происходит в действительности.

2.7. Частотные склоны, как причина тяготения. Скорость действия тяготения.

Выше мы привели ряд примеров, которые свидетельствуют о том, что вещество не обладает способностью порождать тяготение. Оно не притягивает, оно лишь подчиняется тяготению. К чему же оно тяготеет? В такой форме – «К чему?» – вопрос некорректен. Правильнее спросить: «Куда направлено силовое воздействие?» Тогда ответ таков: «Оно направлено вниз по местной вертикали». А эти местные вертикали заданы чисто программными средствами.

Как мы излагали в 1.6, частоты квантовых пульсаций заданы программно. Если частота квантовых пульсаций, например, электрона, была бы задана одинаковой во всём пространстве, то такое пространство было бы «плоское», и в таком мире не было бы тяготения. Но программы, порождающие тяготение, обязывают частоты квантовых пульсаторов зависеть от местоположения в пространстве. Таким образом формируется программная реальность, которую мы называем частотными склонами. В области пространства, в которой «действует» частотный склон, в каждом месте задан локальный градиент частот квантовых пульсаций.

Таким образом, в объёме пробного тела, находящегося на частотном склоне, программно формируется градиент частот квантовых пульсаций. К чему это приводит?

Как отмечалось в (1.4), частота квантового пульсатора и его собственная энергия прямо пропорциональны друг другу. Следовательно, градиент этих частот означает градиент энергий. А градиент энергий означает силовое воздействие. Действительно, теоретическая механика учит, что вектор силы, действующей на тело, пропорционален и противоположно направлен градиенту потенциальной энергии – отчего тело, находящееся на склоне потенциальной ямы, «скатывается вниз». Но потенциальная энергия тела не вписывается в реалии «цифрового» мира. Эта энергия зависит только от местоположения тела и не соответствует никакой форме движения – тогда как такое соответствие является непременным атрибутом реальной физической энергии (1.3). Такой реальной энергией является энергия квантовых пульсаций, и тяготение организовано через градиенты именно этой энергии – через частотные склоны. Находясь на частотном склоне, пробное тело испытывает силовое воздействие, направленное «вниз», т.е. туда, где частоты квантовых пульсаций меньше. При этом ускорение свободного падения, сообщаемое пробному телу локальным участком частотного склона, есть [Г5]

, (2.7.1)

где df/dr – локальный градиент частот, c – скорость света.

О чём говорит это выражение? Прежде всего, оно подчёркивает непричастность масс к порождению тяготения, поскольку, как можно видеть, ускорение свободного падения не зависит от массы «силового притягивающего центра»: оно определяется лишь геометрией локального участка частотного склона.

Далее, из выражения (2.7.1) тривиально следует объяснение того факта, что, скажем, в одном и том же месте области действия тяготения Земли, различные тела имеют одно и то же ускорение свободного падения – независимо от их массы, формы, химического состава и агрегатного состояния. Эйнштейн придавал этому факту фундаментальное значение. Он полагал, что его теория объяснила этот фундаментальный факт. Там вышло вот что: в ньютоновском законе всемирного тяготения фигурирует т.н. гравитационная масса тела, а в выражении второго закона Ньютона – его инертная масса. Комбинация этих выражений даёт, что ускорение свободного падения тела прямо пропорционально отношению его гравитационной массы к инертной. А это отношение в каждом месте одинаково для различных малых тел – и пусть оно, мол, равно единице! Тогда, мол, всё сходится! Но у этого «объяснения» есть всего один недостаточек. Оно, может, и работало бы, если понятие «гравитационная масса» имело бы физический смысл – если массы обладали бы притягивающим действием. Но, как проиллюстрировано выше, это не так. А одинаковость ускорения свободного падения у разных тел обусловлена тем, что в любом месте крутизна частотного склона, порождающего тяготение, одинакова для всех. Поэтому, когда говорят, что эксперименты Этвёша, Дикке и Брагинского установили равенство инертной и гравитационной масс с точностью аж до двенадцатого знака, то надо понимать, что установили-то, с этой точностью, одинаковость ускорений свободного падения для различных тел, и ничего сверх этого. Согласно (2.7.1), идентичность этих ускорений, сообщаемых разным малым телам одним и тем же участком частотного склона – это по определению так. Не нужно здесь изображать заумную «фундаментальность»!

Ещё одно следствие из выражения (2.7.1) таково: на пробное тело действует не удалённый «силовой центр», а локальный градиент частот – поэтому тяготение действует без задержки во времени. Этот вывод несовместим с декларацией общей теории относительности о том, что «скорость действия тяготения очень велика, но больше скорости света она быть не может – значит, она равна скорости света». В насмешку над подобными декларациями, имеются надёжные экспериментальные факты, которые свидетельствуют о действии тяготения без задержки во времени. Так, Ван Фландерн обращает внимание на тот факт, что в уравнениях небесной механики скорость действия тяготения однозначно принимается бесконечной [Ф1], и, именно при этом, движение небесных тел описывается с огромной точностью – с погрешностями до нескольких угловых секунд за столетие. Если скорость действия тяготения была бы конечна, и на планету действовала бы сила тяготения, соответствующая не мгновенному положению планеты, а её некоторому предшествовавшему положению, то эта сила действовала бы нецентрально. Тогда орбиты планет эволюционировали бы, увеличивая свои средние радиусы – но ничего подобного не наблюдается. Исходя из этого, ещё Лаплас, основываясь на доступных ему данных астрономических наблюдений, сделал вывод о том, что нижнее ограничение на скорость действия тяготения превышает скорость света на 7 порядков [Л2]. Ещё более впечатляющие цифры получены уже в нашу эпоху – по результатам приёма импульсов пульсаров, расположенных на различных участках небесной сферы. На основе совместной пост-обработки последовательностей этих импульсов, находили текущий вектор скорости Земли, а затем, беря производную этого вектора по времени, находили текущий вектор ускорения Земли. Оказалось, что компонента этого вектора, обеспечивающая центростремительное ускорение Земли при её орбитальном движении, всегда направлена не к мгновенному видимому положению Солнца, а к его мгновенному истинному положению. Поперечный сдвиг «оптического Солнца», из-за задержки на распространение света, обнаруживается, а поперечный сдвиг «гравитационного Солнца», из-за запаздывания действия тяготения – не обнаруживается. В итоге Ван Фландерн сообщил о нижнем ограничении на скорость действия тяготения, которое превышает скорость света уже на 10 порядков [Ф1].

В этой связи нельзя не упомянуть про нашумевший эксперимент Копейкина-Фомалонта, которые заявили, что измерили «скорость гравитации» – наблюдая, с помощью нескольких радиотелескопов, сдвиг радиоизображения квазара при близком прохождении Юпитера. Авторы утверждали, что они обнаружили совпадение скорости гравитации со скоростью света в пределах точности 20% [К3,К4]. Свой результат они представили как «первое измерение скорости гравитации», как будто не было результатов ни Лапласа, ни Ван Фландерна. В статье [Г6] мы дали подробный анализ того, что делали Копейкин и Фомалонт. Мы обнаружили, что заявленный ими результат основан на сознательной имитации желаемого эффекта. Этим результатом ничуть не опровергается вывод о действии тяготения без запаздывания во времени – что находится в согласии с вышеназванными экспериментальными реалиями.

Здесь уместно упомянуть о весьма драматической, по своим смехотворным результатам, области физического эксперимента – ловле гравитационных волн. На что ловцы гравитационных волн надеялись, с завидным упорством строя свои детекторы в расчёте на то, что скорость этих волн равна скорости света? Неужто они надеялись на то, что сегодня мало кто знаком с трудами Лапласа?

Но вернёмся к выражению (2.7.1) и заметим, что оно даёт математически верное значение для крутизны частотного склона – это подтверждается опытом. Крутизна околоземного частотного склона была впервые измерена, с помощью мёссбауэровской спектроскопии, в 1959 г. Паундом и Ребкой [П2]. Правда, они неверно интерпретировали свой результат – полагая, что измерили «гравитационное красное смещение», т.е. гравитационный сдвиг частоты у гамма-квантов, движущихся вертикально. Они не приняли во внимание, что если источник и поглотитель находятся на разных высотах, то их спектральные линии имеют тот же самый взаимный гравитационный сдвиг [Л3]. Если ещё и гамма-кванты, при своём вертикальном движении, изменяли бы свою частоту, то итоговый эффект был бы удвоенный – а он был одинарный. Строго говоря, схема эксперимента Паунда и Ребки не позволяла сделать вывод об источнике обнаруженного эффекта: является ли он следствием взаимного сдвига линий источника и поглотителя, или следствием сдвига частоты гамма-квантов, движущихся по вертикали. Но в дальнейшем был проведен целый ряд экспериментов с перевозимыми атомными часами, в частности, многочисленные применения этих часов на бортах ИСЗ. Эти эксперименты убеждают нас в том, что гравитационные сдвиги квантовых уровней энергии в веществе непременно имеют место – причём, они в точности объясняют и результат Паунда и Ребки. Значит, эти авторы измерили не сдвиг частоты у гамма-квантов, а именно крутизну околоземного частотного склона. Действительно, при 22.5-метровой разнице высот расположения мёссбауэровских источника и поглотителя, относительная разность частот составила около 2.5·10-15. Отношение второй из этих величин к первой, умноженное, согласно (2.7.1), на квадрат скорости света, даёт значение ускорения свободного падения на поверхности Земли.

Наконец, заметим, что локальный градиент частот (2.7.1) не только задаёт направление, в котором пробное тело приобретает ускорение свободного падения – градиент частот (2.7.1) обеспечивает также превращения энергии при свободном падении. При перемещении пробного тела вниз по местной вертикали, уменьшаются частоты его квантовых пульсаторов, т.е. уменьшается его масса, или собственная энергия. Эта убыль собственной энергии пробного тела идёт на приращение его кинетической энергии – чем энергетически обеспечено приобретение пробным телом ускорения свободного падения [Н1,Г7]. Чем круче частотный склон, тем больше величина этого ускорения (2.7.1).

2.8. Планетарные частотные воронки. Унитарное действие тяготения.

Совокупность окружающих планету частотных склонов представляет собой сферически-симметричную частотную яму, в центре которой удерживается планета. Геометрия этой частотной ямы такова, что для силы тяготения, действующей на малое пробное тело, имитируется известный закон обратных квадратов. Совокупность частотных склонов, порождающих планетарное тяготение, мы называем планетарной частотной воронкой. Будучи встроены в частотные склоны Солнца, планетарные частотные воронки имеют конечные размеры и выраженные границы (1.10, 1.11), за которыми – т.е. в межпланетном пространстве, не занятом частотными воронками планет – действует только солнечное тяготение.

Даже если солнечное тяготение действовало бы и в пределах планетарных частотных воронок, складываясь там с планетарным тяготением, то их совместное действие не могло бы обеспечить центростремительного ускорения планеты к Солнцу. По аналогии с изложенным в 2.6, участок солнечный склона, приходящийся на планетарную воронку, деформировал бы её – отчего возникало бы направленное к Солнцу воздействие на вещество планеты. Но ведь планета продолжала бы оставаться в деформированной воронке. Значит, если даже солнечный склон навёл бы «перекос» этой воронки, планета всего лишь заняла бы в ней новое положение равновесия – но центростремительного ускорения к Солнцу планета не имела бы, если его не имела бы сама планетарная частотная воронка [Г4].

А это уже очень интересно. Это приоткрывает тайну происхождения Солнечной системы. Ни одна из выдвинутых на эту тему научных гипотез, основанных на законе всемирного тяготения, не проясняет главного: каким это дивным образом планеты в своё время приобретали «правильные» векторы скорости, чтобы продолжать своё движение по, практически, круговым орбитам, радиусы которых зависят от их порядкового номера, подчиняясь эмпирическому правилу Тициуса-Боде [С3]. Мы же, с учетом вышеизложенного, приходим к выводу об искусственном устроении движения планет. Вещество планет просто удерживается в центрах планетарных частотных воронок – для которых организовано орбитальное движение вокруг Солнца. Организовано, конечно, чисто программными средствами [Г4] – да так, чтобы для ускорений планетарных частотных воронок к Солнцу и друг к другу имитировался закон обратных квадратов (см. также 4.14)!

И, в дополнение к этому чуду, имеются экспериментальные свидетельства о том, что в пределах планетарных частотных воронок, т.е. в областях действия планетарного тяготения, солнечное тяготение «отключено», т.е. планетарная частотная воронка не деформирована из-за наложения на неё соответствующего участка солнечного частотного склона. Так, убийственное свидетельство об «отключенности» солнечного тяготения в окрестностях Земли появилось с началом эры GPS. Если бы солнечное тяготение действовало здесь аддитивно с земным, то спутники GPS, движущиеся над дневной и ночной сторонами Земли, находились бы в неодинаковых гравитационных потенциалах. Соответственно, бортовые атомные часы на этих спутниках имели бы неодинаковые хода. Максимальная относительная разность этих ходов 2aSR/c2, где aS – ускорение свободного падения к Солнцу на радиусе орбиты Земли, R – радиус орбиты спутников GPS, c – скорость света, составляла бы величину около 3.5·10-12. Такие вариации ходов бортовых часов GPS, с периодом около полусуток, были бы быстро и уверенно обнаружены – но о них не сообщается. А ведь если эти вариации имели бы место, то их интерпретация – через аддитивное действие земного и солнечного тяготений – не заставила бы себя ждать. Почему же об этих вариациях помалкивают? Ответ очевиден: потому что их нет. А, значит, нет и никакого «аддитивного» действия планетарного и солнечного тяготения.

Вместо этого, имеет место разграниченность областей действия солнечного и планетарных тяготений – малое пробное тело, где бы оно ни находилось, тяготеет либо только к планете, либо только к Солнцу (исключение – короткодействующее тяготение Луны, которое наложено на земное тяготение (2.12)). В организации действия тяготения по такому, унитарному, принципу мы усматриваем большой смысл. Вспомним, что превращения энергии в «цифровом» мире должны происходить однозначно (1.3). При свободном падении тела изменяется его кинетическая энергия, однозначное значение которой зависит от квадрата локально-абсолютной скорости тела. А эта скорость определяется по отношению к локальному участку частотного склона. Значит, для однозначности превращений энергии при свободном падении, пробное тело должно иметь одну локально-абсолютную скорость, т.е. находиться только на одном частотном склоне – а, значит, солнечные и планетарные частотные склоны не должны накладываться друг на друга.

Организация тяготения по унитарному принципу радикально упрощает не только мироустройство, но и расчёты движения малого тела – например, космического аппарата при межпланетном полёте. В рамках традиционного подхода, задача движения аппарата при его притяжени к нескольким силовым центрам – даже всего к двум! – уже не имеет аналитического решения. Унитарное же действие тяготения устраняет эту проблему. Где бы ни находился аппарат, он притягивается к одному силовому центру – и его движение описывается аналитически. Практика межпланетных полётов с очевидностью это подтверждает (1.10)!

С учётом вышеизложенного, происхождение планет нам представляется следующим образом. В солнечный частотный склон встраивали частотную воронку будущей планеты и приводили её в орбитальное движение вокруг Солнца, а затем в эту воронку «загружали» вещество, из которого формировалась планета. При такой технологии, в результате загрузки в готовую воронку даже крупнодисперсных глыб вещества, глобальная фигура формируемой планеты мало отличалась бы от шаровой (см. также 4.14).

В этой связи, мы не можем обойти молчанием такую аномалию в устройстве Солнечной системы, как отсутствие планетарной частотной воронки на орбите между Марсом и Юпитером. Согласно вышеупомянутому правилу Тициуса-Боде, там должна обращаться ещё одна планета, но вместо неё там имеет место пояс астероидов. Происхождение этого пояса астероидов официальная наука затрудняется объяснить. Действительно, чтобы развалить на обломки «гравитирующую» планету, следовало бы «совершить работу против сил гравитации». Это мог бы сделать достаточно мощный взрыв, но тогда разные обломки приобрели бы приращения к вектору орбитальной скорости, сильно различающиеся по величинам и направлениям. Поэтому траектории орбит обломков планеты, образовавшихся в результате её взрыва, имели бы огромный разброс параметров – и никакого пояса астероидов не было бы. Чтобы образовался пояс астероидов из планеты, её вещество должно было тихо рассредоточиться. Мы усматриваем здесь единственный разумный сценарий: по какой-то причине, частотная воронка планеты была отключена (ясно, что если программными манипуляциями возможно частотную воронку создать, то уничтожить её – тоже возможно). При этом вещество планеты могло рассредоточиться в результате срабатывания одних лишь сил упругости, до этого уравновешивавших силы гравитационного сжатия.

Что касается воззрений официальной науки на пояс астероидов, то она ухватилась за гипотезу о том, что астероиды – это строительный материал, из которого планета так и не сформировалась. Указывают даже причину такой неудачи: влияние, каким-то образом, сильного гравитационного поля Юпитера. Эта версия не выдерживает критики, если иметь в виду, что в Солнечной системе планетарные частотные воронки, а, значит, и области планетарного тяготения, не перекрываются друг с другом. Орбита пятой планеты недосягаема для области действия тяготения Юпитера, поэтому формированию пятой планеты Юпитер никак не мог помешать. В 2.10 мы проиллюстрируем это с особенной наглядностью.


    Ваша оценка произведения:

Популярные книги за неделю