355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Занимательно о космологии » Текст книги (страница 14)
Занимательно о космологии
  • Текст добавлен: 4 октября 2016, 21:03

Текст книги "Занимательно о космологии"


Автор книги: Анатолий Томилин



сообщить о нарушении

Текущая страница: 14 (всего у книги 20 страниц)

И вот появляется общая теория относительности. И сразу важнейший результат – перигелий Меркурия за счет релятивистских эффектов должен смещаться на 43,03 больше, чем это получается по классической теории!

Чувствуете?.. 574″ ― 531″ = 43″, и теория относительности дает 43″,03! Впрочем, измерения были разные. Более точные и менее точные. Здесь интересно отметить исследования советского астронома Г. А. Чеботарева. Он просмотрел множество старых наблюдений за орбитой Меркурия и, используя уточненные значения астрономических постоянных и масс планет, нашел значение неувязки наблюдений с классической теорией в 42,65±0,5. Что, как вы сами видите, находится в прекрасном соотношении с предсказаниями ОТО.


Конечно, соблазнительно было проверить и значение векового эффекта перигелия для других планет по данным измерений. Цифры получились такие: для Венеры – 8,4±08, для Земли – 5,0±1,2, для Марса – 1,1±0,3 угловых секунды за сто лет. И эти величины оказались в весьма хорошем соотношении с предсказанием ОТО. Теория давала для Венеры 8″,6, для Земли 3″,8, для Марса 1″,4.

В общем, сегодня подтверждение указанного эффекта считается важнейшим доказательством правильности идей общей теории относительности.

Нашло подтверждение и «покраснение» светового кванта (фотона). Это явление свидетельствовало о правильности важнейшего вывода, положенного в основу ОТО, – о равенстве инертной и гравитационной масс. Исследователи Р. Паунд и Дж. Ребка умудрились зарегистрировать покраснение света даже в условиях земной лаборатории под влиянием поля тяготения нашей планеты.

Конечно, приведенные данные не должны восприниматься как окончательная опытная проверка общей теории относительности и будто дальше тут делать нечего. Отнюдь, опыты нужно продолжать, все время повышая и повышая точность их результатов с помощью новых технических средств. Об этом говорит и академик В. Л. Гинзбург, предлагая использовать для наблюдения отклонения световых лучей, проходящих вблизи Солнца, аппаратуру на баллонах, поднятую в зону сильно разреженной атмосферы и на спутниках. Это дало бы возможность измерить отклонение световых лучей независимо от затмений.

Наблюдаемый поворот перигелия Меркурия совпадает с теоретическим значением в пределах достигнутой точности в 1 процент. Но если запустить искусственную планету с орбитой, обладающей большим эксцентриситетом, то формулу теории относительности удалось бы проверить со значительно большей точностью. Правда, на пути этого эксперимента пока стоят сложности как технического характера (запуск космического летательного аппарата на орбиту с очень большим эксцентриситетом и способы слежения за ним), так и теоретического (пока не ясно, как учитывать световое давление и солнечный ветер, а также влияние возможной сплющенности Солнца).

Наконец проверке выводов ОТО поможет уточнение орбиты естественного спутника Земли. Для этого советский луноход доставил на поверхность Луны уголковые лазерные отражатели.

Есть и еще возможности для проверки общей теории относительности, кроме указанных Эйнштейном экспериментов. Например, релятивистский эффект при радиолокации планет. Согласно теории в поле тяготения световой луч не только должен искривляться, но и запаздывать. То есть время, необходимое световому сигналу для того, чтобы долететь от Земли до Венеры или Меркурия, проходя вблизи Солнца, нужно большее, чем в том случае, когда сигнал летит к планетам вдали от тяготеющей массы нашего светила. Правда, это время запаздывания крайне невелико, не больше 2·10 -4сек., но оно должно существовать. Значит, его можно и нужно обнаружить. Пока этот эксперимент произведен с небольшой точностью, порядка 20 процентов. Но совсем недавно группа американских исследователей под руководством Андерсона проверила этот эффект при связи с искусственным небесным телом, запущенным американцами межпланетным кораблем «Маринером». И теоретические предположения подтвердились уже с точностью до десяти процентов.

Самостоятельным и чрезвычайно интересным экспериментом по проверке ОТО могло бы служить наблюдение релятивистской прецессии оси гироскопа, заключающейся в дополнительном повороте оси по сравнению с данными согласно классической теории. Уравнения общей теории относительности позволяют вычислить эту добавку. Такой эксперимент три года назад находился в стадии подготовки.

И наконец блестящее доказательство дало бы наблюдение гравитационных волн. Ведь в классической теории Ньютона предполагается, что распространение действия силы тяготения происходит мгновенно. И потому никаких «волн тяготения» в вакууме существовать не может. Другое дело в ОТО. В теории гравитационного поля волны тяготения неизбежны, как неизбежно существование волн электромагнитных. Однако это эксперимент чрезвычайной сложности.

В 1970 году появилось сообщение профессора Дж. Вебера о том, что ему якобы удалось зарегистрировать гравитационные волны. Но пока никому не удалось ни повторить его результат, ни найти адреса, откуда они пришли. Тем не менее факт этот настолько интересный, что на гравитационных конференциях всего мира опыт Вебера непрерывно находится в центре внимания.

Проверять нужно! Но это не значит, что проверка предполагает недоверие. Результаты проверок помогут уточнить положения теории и показать направление нового развития. Потому что не следует забывать слова самого творца общей теории относительности о том, что каждая теория услышит в конце концов свое нет.

Сейчас мы можем сказать, что на существующем уровне развития науки и техники не выявлено никаких противоречий при проверке основ и следствий общей теории относительности, «и в этом отношении нет никаких указаний на несправедливость или ограниченность области применения эйнштейновской ОТО (имеем в виду, конечно, лишь макроскопические явления, или, точнее, неквантованную область). Все следствия, которые вообще удалось наблюдать по мере уточнения данных, все лучше и лучше согласуются с ОТО» – так пишет академик В. Л. Гинзбург, оценивая последние результаты проверки общей теории относительности Эйнштейна. Эта теория стала надежной базой современной космологии.


Решение Карла Шварцшильда и история одной фантастической любви

Несколько месяцев спустя после опубликования Эйнштейном работы, содержащей гравитационные уравнения, немецкий астроном Карл Шварцшильд (1873–1916) получил их первое «строгое» решение.

Карл Шварцшильд – директор Потсдамского астрофизического института, в 1912 году стал членом Прусской академии наук. Свободно владея математическими методами, он, по словам Эйнштейна, с легкостью «разгадывал наиболее существенное в астрономических или физических вопросах». У Шварцшильда, несмотря на его недолгую жизнь (умер Шварцшильд в 42 года), много важных и исключительно изящных исследований. Он занимался звездной статистикой и теорией Солнца. Интересны его работы по основам электродинамики.

О проницательности Шварцшильда говорит тот факт, что уже в 1900 году на XVIII конгрессе Немецкого астрономического общества в Гейдельберге он сделал доклад о мере кривизны пространства. Следует помнить, что теории относительности еще не было, но Шварцшильд уже понимал важность неэвклидовой геометрии для описания вселенной. Он говорил: «…можно, не противореча очевидным фактам, представить вселенную заключенную в гиперболическом (псевдосферическом) пространстве с радиусом кривизны более 4 000 000 радиусов земной орбиты или в пределах конечного эллиптического пространства с радиусом кривизны более 100 000 000 радиусов земной орбиты…»

Сегодня мы знаем, что возможный радиус кривизны вселенной должен быть значительно больше величин, предложенных Шварцшильдом, но в его работе была поставлена смелая задача решения «космологической проблемы» нашего времени.

В последние годы своей жизни он занялся новой теорией гравитации и первым применил выводы общей теории относительности к задаче нахождения гравитационного потенциала поля, которое создает массивное сферическое тело в окружающем пространстве. Другими словами, он решал задачу определения картины поля тяготения звезды в окружающем пространстве. На достаточно большом расстоянии от этой массы решение дает хорошо известный каждому школьнику потенциал тяготения по закону Ньютона. Вообще, если тело – источник тяготения – имеет умеренную массу, например, является обычной, заурядной звездой типа Солнца, то шварцшильдовское решение не так сильно отличается от ньютонова. Но давайте заставим звезду сжиматься.

Описание подобной ситуации дает в своей популярной книге «Загадка гравитации» Петер Бергман. Однако значительно подробнее об этом написано в серьезной книге Я. Б. Зельдовича и И. Д. Новикова «Релятивистская астрофизика». Для целей же ознакомительных нам достаточно лишь общего взгляда.

Итак, чем меньше становится объем звезды, тем выше ее плотность, тем сильнее проявляются гравитационные поля. Тем больше становится кривизна пространства-времени около такого тела. Мы уже знаем, что кривизну можно описывать с помощью радиуса кривизны. При этом чем больше сама кривизна, тем меньше радиус, ее измеряющий. Если радиус кривизны ненамного превышает размеры самого тела, то поле около него может считаться «сильным». Чтобы представить себе это положение более наглядно, допустим на мгновение, что вся масса нашей Земли сконцентрирована в точке. Тогда радиус кривизны пространства-времени окажется равным примерно одному сантиметру. Если такую же операцию проделать с Солнцем, кривизна пространства-времени сможет быть обнаружена на расстоянии порядка полутора километров от центральной точки. Это расстояние становится равным так называемому гравитационному радиусу.

Сфера с радиусом, равным гравитационному, описанная около большой массы, называется сферой Шварцшильда. Это чрезвычайно интересная область «мира».

И так как в свое время автор немало сил отдал ниве фантастической литературы, то при виде столь лакомого объекта, как сфера Шварцшильда, он просто не может отказать себе в удовольствии вспомнить о грехах юности.

Итак, осторожно, фантастика!

«…Глотая пространство, космический лайнер неудержимо несся вперед! Выведенные из строя двигатели молчали. В черном отсеке астронавигатора (из-за экономии энергии освещение включали редко) царила гнетущая тишина.

– Командир, приборы фиксируют ускорение. Но двигатели не работают и впереди по курсу нет ни одного светящегося массивного объекта, в поле которого мы могли бы попасть?.. Между тем скорость нашего движения приближается к „С“.

Командир неслышно вздохнул…

– Формулы теории Ньютона не годятся».

Дальше следует монолог, показывающий внутреннюю борьбу между долгом и чувством в душе командира, который, конечно, уже давно обо всем знает. Автор просит прощения за опущенную деталь. Главный астронавигатор космолета… Но вы, конечно, сами догадались… Она умна, восхитительно хороша собой, и ей только двадцать… нет, двадцать три… В общем, командир ее любит.

В конце внутреннего монолога долг побеждает, и командир говорит уклончиво:

«– Мы в ловушке. Поле „черной“ звезды взяло нас в гравитационные клещи. Корабль летит, приближаясь к сфере Шварцшильда, которая окружает сколлапсировавшего сверхгиганта».

Астронавигатор сразу понимает ужасную правду его слов. Вспыхнувшее внезапно чувство подсказывает ей, что она должна продолжать расспросы, чтобы дать возможность выговориться этому суровому и бесконечно дорогому ей человеку. Она спрашивает:

«– Но почему, если впереди звезда, да еще сверхгигант, мы не видим ее блеска?

– Бывший сверхгигант, – с горечью поправляет ее командир. – Равновесие звезды нарушилось, и наступил коллапс… Внешние слои рухнули к центру, притянутые чудовищной силой гравитации. Вещество спрессовалось. Ядра атомов с ободранными электронными оболочками смяты, сдавлены и лежат плотно упакованные друг возле друга. Лучи света, излучаемые сколлапсировавшим телом, не могут выйти наружу за пределы сферы Шварцшильда и движутся внутри по искривленному замкнутому пространству… Смотри! – он резко встал и подошел к переднему иллюминатору. Она чувствовала его большое и сильное тело совсем рядом, кажется, протяни руку, и она коснется бьющегося сердца. А впереди, среди чуть заметного мерцания фосфоресцирующих туманностей, зияло непроглядно-черное пятно – угольный мешок… – Фотоны, траектория полета которых проходит близко, не далее 2,6 гравитационного радиуса от центра коллапса, тоже захватываются, попадая в гравитационную могилу…

Космическим холодом повеяло от этих слов.

– Но ведь нас должны увидеть, спасти… – Большая рука медленно легла на ее плечи, обтянутые пушистым свитером.

– Для наблюдателей извне мы будем приближаться к сфере Шварцшильда бесконечно долго.

– Бесконечно долго? Значит, мы не попадем в лапы „гравитационной могилы“?..

– Бесконечно долго по удаленным часам. По часам, находящимся на борту звездолета, мы пересечем сферу Шварцшильда и упадем на центральное тело за конечное время.

Некоторое время она молчала».

Дальше следует еще один внутренний монолог, показывающий глубину чувства астронавигатора и не имеющий прямого отношения к глубине «угольного мешка».

«– …Но может быть, имеет смысл подать световой сигнал бедствия?

– Поздно! С приближением к гравитационному радиусу красное смещение испущенного нами светового сигнала резко возрастает и частота света, при приближении к удаленным приемникам, устремится к нулю. Нашего сигнала не увидят.

Корабль был обречен. На мгновение забывшись, ощущая лишь тепло и тяжесть его руки на своих плечах, она по привычке попыталась рассчитать в уме скорость падения по ньютоновской формуле и обнаружила, что она перевалила за „С“. И тогда в темном пространстве штурманского отсека на краю гравитационной могилы их руки нашли друг друга…»

Продолжать дальше эту грустную историю, приключившуюся с простыми хорошими людьми, у автора нет сил. Он уверен, что и читатель глубоко переживает события описанной драмы. Потому что нужно быть бездушным, чтобы увидеть в рассказанном лишь пять неожиданных результатов, к которым приводит общая теория относительности тела, приблизившиеся на критический гравитационный радиус к шварцшильдовской сфере.

Автор не может продолжать свой рассказ об отважных покорителях космоса еще и по той причине, что никакой сигнал из сферы Шварцшильда не в состоянии пробиться наружу к внешнему наблюдателю. Тем не менее любознательному и в меру сентиментальному читателю, безусловно, интересно, что ожидает наших героев дальше.

Пространство внутри сферы Шварцшильда также будет иметь две резко отличающиеся друг от друга области. Их можно назвать «внутренней областью прошлого» и «внутренней областью будущего». Из внешнего мира можно видеть события, происходящие во «внутренней области прошлого», и можно даже посылать сигналы во «внутреннюю область будущего», лишь бы не наоборот. Но никакие сигналы из «внутренней области будущего» не могут попасть в область вне сферы Шварцшильда. И провалившиеся туда герои будут чувствовать себя очень одиноко.

Они по-прежнему будут видеть внешнюю область, хотя и не смогут с ней общаться. Впрочем, это обстоятельство «провалившиеся» должны знать из теории, потому что это будет вовсе не очевидным. С точки зрения обитателей такого «внутреннего мира» сигналы, которые они станут рассылать во все стороны, распространяются вполне нормально. Вот только сам «мир» внутри сферы покажется чем-то вроде многослойной раздувающейся сферы, внешняя оболочка которой будет удаляться от наблюдателя со скоростью света, скрывая все, что находится за ней, за границей, которую специалисты называют «горизонтом событий». Понятно, что никакие сигналы внутренних обитателей никогда не дойдут до коллег и безутешных товарищей, оставшихся во внешнем мире. Потому что никакой сигнал не в состоянии догнать «горизонт событий», удаляющийся со скоростью света.

Конечно, все описанные выше парадоксальные следствия, вытекающие из общей теории относительности, скептически настроенного читателя могут заставить лишь пожать плечами. «Зачем, дескать, все эти головоломки? Мы живем в условиях слабого гравитационного поля, и столь сильное искривление пространства до образования горизонта событий может действительно занимать лишь воображение теоретиков».

Однако это не совсем так. Прежде всего с проникновением вглубь вселенной, как говорится, кто знает, с чем нам придется встретиться. Природа на выдумки щедра. Только за последние годы она подарила людям квазары – небесные объекты со светимостью, во сто крат превышающей светимость средней галактики, содержащей сотню миллиардов звезд. Что представляет собой пространство вблизи таких монстров звездного мира?

Открытие пульсаров оживило дискуссии по поводу нейтронных звезд – небесных тел, сложенных из тяжелых элементарных частиц и имеющих плотности около миллиона тонн на один кубический сантиметр.

Наконец, рассмотренные выводы оказываются чрезвычайно плодотворными при обсуждении космологических моделей. То есть при переходе к объекту нашей непосредственной заинтересованности. Итак, будем считать, что новый инструмент познания вселенной – ОТО – выкован, выверен в первом приближении. Пора его пустить в дело.


Глава восьмая

в которой читатель знакомится еще с одним великим открытием, после чего помимо своей воли оказывается втянутым в борьбу крайних и непримиримых точек зрения

Мы помним с вами, уважаемый читатель, что задача космологии заключается в изучении строения вселенной в целом. Существовавшие в XIX веке представления базировались на классической теории Ньютона. Естественно, что, создав новую теорию пространства и тяготения, Эйнштейн должен был приняться за конструирование и новой модели мира…


Тысяча девятьсот семнадцатый, февраль

Семнадцатый год! Год великих потрясений в жизни народов, в политике и в науке. В феврале в Берлине вышел десятый том журнала «Сообщения Прусской академии наук» с короткой статьей, подписанной именем Эйнштейна. Статья называлась «Вопросы космологии и общая теория относительности» и умещалась всего на десяти страницах. Но этого было достаточно для рождения современной науки о вселенной. Науки, не только имеющей свою теорию, но и претендующей на экспериментальное подтверждение своих выводов.

Вселенная Ньютона, атакованная парадоксами Ольберса и Зеелигера, стала к началу нашего столетия для физиков и астрономов расплывчатым и неконкретным понятием. Ее бесконечность в ньютоновском смысле приводила к фотометрическому и гравитационному парадоксам, противореча наблюдениям. Оба парадокса свидетельствовали о катастрофическом неблагополучии в классической физике. Ведь только подумать, ей противоречило само существование вселенной! Нельзя было оставаться и на позициях Гершеля, считая, что в пустом бесконечном пространстве имеется лишь одна звездная система с конечным и вполне определенным числом звезд. В этом случае небесные тела должны были притягиваться друг к другу и слипаться в один ком.

Ньютоновская вселенная, описываемая законами эвклидова пространства, наблюдаемой действительности не отвечала. Мир был другим. Не таким, каким представлял его себе XIX век. Заботливо собираемая «по кирпичику», постройка мироздания рухнула, как карточный домик, под напором вскрывшихся противоречий. Следовало срочно предпринять какие-то кардинальные меры, чтобы вернуть людям гармонию мироздания. Нужно было найти такую модель мира, которая, не противореча уже открытым и проверенным законам физики, не только противостояла бы парадоксам Ольберса и Зеелигера, но и могла предсказать новые результаты, которые поддавались опытной проверке на базе возросших технических возможностей астрономии и физики.

Читатель, надо полагать, помнит, что выход из тупика, созданного гравитационным и фотометрическим парадоксами и вторым началом термодинамики, искали многие. Автор уже упоминал об изящных математических решениях К. Шарлье, иерархические структуры которого были свободны от парадоксов. Астрофизик Эмден строил так называемые изотермические сферы, находящиеся в термодинамическом равновесии и противостоящие «тепловой смерти». В 1897 году задача исследования однородной стационарной модели была решена Л. Бьянки, который нашел девять различных типов однородных пространств. Все они являлись пространствами постоянной кривизны и, как пишут С. Шюкинг и О. Гекман, «обладали тем свойством, что любой наблюдатель в любом направлении видит одну и ту же картину мира».

Тем не менее никто из исследователей не сумел построить модель вселенной, не имеющей центра и одновременно свободной от гравитационного и фотометрического парадоксов, а также от термодинамических затруднений.

Теперь автор убежден, что читателю вполне ясна обстановка, в которой появилась работа Эйнштейна. Прежде всего следовало решить, от каких канонов старой теории можно отказаться. Исчерпавшая себя ньютоновская модель вселенной опиралась на «трех китов»: 1) на стационарность, или неизменность, вселенной во времени, 2) на «космологический принцип», или «мировой постулат» однородности и изотропности, предусматривающие отсутствие единого центра мира и невозможность существования привилегированных направлений в нем, 3) на эвклидовость пространства. От чего же отказываться?..

Выход указывала общая теория относительности. Она обобщила ньютонову теорию всемирного тяготения, приведя ее в соответствий с принципом относительности. Правда, при этом геометрия мира оказывалась неэвклидовой. И Эйнштейн пожертвовал этим «китом».

Он предложил вместо бесконечной, стационарной и однородной модели вселенной Ньютона с плоским эвклидовым пространством конечную модель с римановым замкнутым в себя трехмерным пространством (трехмерной сферой), но также однородную и стационарную! Правда, чтобы построить свою модель, Эйнштейну пришлось несколько видоизменить уравнения тяготения, выведенные в общей теории относительности. «Я пришел к убеждению, – писал он, – что уравнения гравитационного поля, которых я до сих пор придерживался, нуждаются еще в некоторой модификации». Дело в том, что единственное стационарное решение уравнений в первозданном виде приводило к плоскому пространству Минковского, что принципиально ничем не отличалось от вселенной Ньютона и представляло собой тривиальный результат.

И вот тогда Эйнштейн вводит в свои уравнения космологический член, связанный с некой постоянной λ(лямбда), вводит, с трудом решившись на это действие, «не оправданное нашими действительными знаниями о тяготении». Но иного выхода не было!

В ньютоновском приближении наличие космологической постоянной в уравнениях тяготения соответствовало введению дополнительных сил во вселенную. Причем сил, пропорциональных расстоянию. Лямбда очень мала, и потому на небольших расстояниях влияние космологического члена незначительно. Модифицированные уравнения Эйнштейна с лямбда-членом почти ничем не отличаются от исходных. Но совсем другое дело, когда рассматриваемые расстояния приобретают космологические масштабы, то есть становятся равными десяткам или сотням миллионов парсеков…

Потому и называют постоянную λкосмологической постоянной. Силы притяжения, действующие между космической начинкой замкнутой вселенной, пытаются стянуть вещество в единый ком. В уравнении космологический член с λбольше нуля играл бы ту же роль, что и силы отталкивания, поддерживающие вселенную в равновесии. То же произошло бы и в противном случае. Если представить себе, что вещество вселенной не сжимается, а, наоборот, разлетается в разные стороны, лямбда-член, с λменьше нуля станет играть роль дополнительного притяжения, удерживающего вселенную в неизменном состоянии.

«Вновь введенная универсальная константа λопределяется, если известны средняя плотность распределения (вещества во вселенной) – ρ, сохраняющаяся в состоянии равновесия, а также радиус сферического пространства Rи его объем – 2π 2 R 3», – писал Эйнштейн.

Пусть читателя не смущает странная форма записи. Следует помнить, что мы имеем дело с трехмерной сферой четырехмерного пространства-времени. Так привычная нам величина поверхности двухмерной сферы в привычном нам трехмерном мире – 4π R 2– в четырехмерном мире превращается в гиперповерхность и вычисляется по формуле 2π 2 R 3.

Так возникла статическая, неизменная во времени, замкнутая и однородная модель вселенной, подчиняющаяся аксиомам неэвклидовой геометрии с искусственно введенной силой отталкивания – силой отрицательного давления.

Чтобы представить себе вселенную Эйнштейна более наглядно, обратимся к испытанному способу – мысленному эксперименту. Предположим, что нам удалось, стартовав с Земли, выдерживать направление полета строго по «прямой», к примеру, по направлению светового луча. Тогда если считать, что пространство вселенной обладает общей положительной кривизной, мы должны непременно вернуться в исходную точку пространства. Это значит, что, начавши наше движение с космодрома Земли и стремясь удалиться как можно дальше от исходной точки, мы все равно через миллиарды лет вернемся туда же.

Модель такой вселенной получится более наглядной, если сплющить трехмерное пространство в двухмерное пространство-поверхность, а координату времени оставить неизменной прямой, уходящей в бесконечность. Получится длиннющая труба – цилиндр. По этой аналогии первая модель мира, предложенная Эйнштейном на основании общей теории относительности, и получила название «цилиндрической» вселенной.

Автор надеется, что проницательный читатель и сам пришел к выводу, что если бы все ухищрения, включая и введение ничем не оправданной лямбды, приводили к единственному возможному решению, дающему модель «цилиндрической» вселенной, то это означало бы полное поражение ОТО, «скромные похороны по третьему разряду». Понимал это и сам Эйнштейн. Однако необычные идеи теории привлекали…

В том же 1917 году голландский астроном Виллем де Ситтер (1872–1934) разработал на основании ОТО модель, в которой время искривлялось так же, как и пространство. Теперь, вылетев из одной точки пространства и выдерживая прямой линию полета, путешественник должен был возвратиться не только в ту же точку пространства, но и в то же самое время. Однако, рассчитывая свою модель, де Ситтер допустил, что вещества в ней нет! Его модель была пустая, вакуумная, как говорят сегодня.

Строго говоря, это допущение противоречило одному из основных принципов общей теории относительности, согласно которому именно наличие вещества и его движение определяют геометрические свойства мира. При полном отсутствии вещества (включая и гравитационные поля) пространство-время должно быть плоским.


Почему же модель де Ситтера все-таки обладала кривизной? Причиной как раз и была лямбда – космологический член в уравнениях Эйнштейна, играющий роль источника тяготения, искривляющего пространство-время.

Отсутствие вещества было, конечно, слабым местом модели де Ситтера. Но было у нее и одно существенное достоинство. Согласно теории де Ситтера, чем дальше взгляд земного наблюдателя проникал в пространство, тем медленнее должны были ему казаться происходящие там процессы. Стоило же предпринять путешествие «в эти отдаленные области лени и неторопливости» на космическом корабле, как по мере нашего приближения мы увидели бы постепенное оживление хода времени. И к моменту нашего прибытия жизнь кипела бы там в обычном темпе. Это явление можно было истолковать, как предсказание будущего красного смещения. К сожалению, в те годы на это никто не обратил внимания.

Сейчас моделью де Ситтера довольно часто пользуются теоретики для приближенных исследований. Эйнштейн чрезвычайно высоко ценил работу голландского астронома. «Мы ему обязаны глубокими исследованиями в общей теории относительности», – говорил он впоследствии.

Виллем де Ситтер родился в последней четверти XIX столетия – «века покоя и удовлетворенности в науке». И хотя большая часть его творческой жизни пришлась на наше беспокойное время, де Ситтер до конца оставался типичным ученым прошлого столетия.

Да, он принял специальную теорию относительности и даже пытался в 1911 году на ее основе объяснить некоторые неувязки в движениях Луны и планет.

Да, он проникся идеями общей теории относительности и первым дал ее космологическое приложение, а в конце жизни много занимался вопросами расширяющейся вселенной.

Но все это говорит лишь об отсутствии у него консерватизма. Он был «последним могиканином» среди астрономов-наблюдателей. Он предпочитал сам глядеть в окуляр телескопа, когда другие уже передоверили эту работу фотокамере; он занимался астрометрией и увлеченно мерял положения звезд по своим наблюдениям. Де Ситтер – астроном в самом полном понимании этого слова. В заключение следует еще добавить, что, родившись в Голландии, окончив там же университет, он всю жизнь проработал почти на одном месте, в Лейдене, не стремясь ни к почестям, ни к какой-то выгоде. Однако работы этого скромного и лишенного ложного честолюбия человека сильно укрепили позиции новой теории, содействуя славе ее творца.

Слава Эйнштейна особенно возросла после экспедиции Эддингтона и подтверждения общей теории относительности во время солнечного затмения 1919 года. В книге «Эйнштейн» профессор Б. Г. Кузнецов приводит слова польского физика Леопольда Инфельда, долгое время работавшего с Эйнштейном, о причинах «беспрецедентного роста популярности» автора теории относительности.

«Это произошло после окончания первой мировой войны. Людям опротивели ненависть, убийства и международные интриги. Окопы, бомбы, убийства оставили горький привкус. Книг о войне не покупали и не читали. Каждый ждал эры мира и хотел забыть о войне. А это явление способно было захватить человеческую фантазию. С земли, покрытой могилами, взоры устремлялись к небу, усеянному звездами. Абстрактная мысль уводила человека вдаль от горестей повседневной жизни. Мистерия затмения Солнца и сила человеческого разума, романтическая декорация: несколько минут темноты, а затем картина изгибающихся лучей – все так отличалось от угнетающей действительности… Тяга людей к миру была, как мне кажется, главной причиной возрастающей славы Эйнштейна».

Но слава никогда не приходит в одиночку. Одновременно с признанием теории прогрессивной частью ученых началась травля ее творца и попытки подорвать к ней доверие. Враги революций, враги прогресса понимали взрывную силу новой теории, понимали и то, что время разобщения науки и политической жизни миновало. Отныне наука стала реальной силой общественной борьбы. В Германии возникли специальные организации с целью борьбы против влияния теории Эйнштейна. Даже кое-кто из видных физиков и философов, не в силах справиться с новым взглядом на мир, пытался опровергнуть выводы теории любыми способами. Парадоксы теории относительности оказались в самой гуще политической борьбы.


    Ваша оценка произведения:

Популярные книги за неделю