355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Анатолий Томилин » Занимательно о космологии » Текст книги (страница 18)
Занимательно о космологии
  • Текст добавлен: 4 октября 2016, 21:03

Текст книги "Занимательно о космологии"


Автор книги: Анатолий Томилин



сообщить о нарушении

Текущая страница: 18 (всего у книги 20 страниц)

При больших плотностях, по-видимому, нужна другая теория.

Единое «начало» вселенной порождает и трудность, связанную со шкалой времени. Помните, по старой шкале метагалактических расстояний, существовавшей до 1952 года, продолжительность эпохи расширения равнялась T =  1/ H =  1/ 540 = 1,8 миллиарда лет. Этот срок находился в вопиющем противоречии даже с возрастом земной коры. Сейчас принято считать Т = 10–13 миллиардов лет. Это, конечно, лучше, но не намного. Космогонисты предполагают, что возраст наиболее старых звезд примерно… 25 миллиардов лет. Но звезды не могли образоваться до «рождения вселенной».

Вообще надо сказать, что многие специалисты в области космогонии настроены по отношению к космологии довольно решительным образом. Вот, например, что говорил Виктор Амазаспович Амбарцумян, основатель и глава широко известной во всем мире школы космогонии.

«…Некоторые теоретики, основываясь на законе Хаббла и на ряде других очень грубых и произвольных предположений, построили гипотетические модели вселенной, которые, по-видимому, отражают некоторые свойства реальной вселенной. Но характер этих моделей настолько зависит от сделанных упрощающих предложений, что эти модели следует считать очень далекими от реальности. Что касается меня лично, то я думаю, что на современном этапе этих теоретических работ даже не имеет смысла подробно сравнивать эти модели с наблюдениями».

Академик В. А. Амбарцумян не строит заранее теоретической модели, которая лишь затем подвергается эмпирической проверке. Его космогонические гипотезы, касающиеся вопросов возникновения звезд и звездных скоплений, галактик и их взаимодействия, возникают как обобщение результатов наблюдений.

Внегалактическая астрономия – главный эмпирический фундамент космологии – еще очень молода. А трудности, с которыми ей приходится сталкиваться, поистине фантастические. Многие результаты наблюдений лежат не только на пределе возможности уникальных приборов, но даже за этими пределами. Это обстоятельство допускает возможность различного толкования некоторых эмпирических данных. Читатель, наверное, помнит, что все наши рассуждения исходили из признания либо совершенного космологического принципа, либо его ограниченного варианта. Последний предполагает, что вселенная одинакова в разных точках и по разным направлениям. Совершенный же космологический принцип требует еще и того, чтобы так было всегда в разные моменты времени. Однако на любом этапе познания наука всегда имеет дело с некоторой ограниченной частью вселенной, так что выводы о ее однородности и изотропности всегда остаются предположительными.

Последнее время многие космологи стали отходить от космологического постулата, считая требования однородности и изотропности вселенной слишком жесткими, слишком сильно снижающими степень реальности такой модели. В свою очередь, отказ от космологического постулата требует сразу пересмотра некоторых важных выводов. Так, если согласиться с тем, что более близкое описание реальной пространственно-временной структуры вселенной дается ее анизотропной и неоднородной моделью, то зависимость конечности или бесконечности пространства от знака его кривизны становится неоднозначной. Впрочем, по поводу анизотропной и неоднородной вселенной среди специалистов споры только разгораются. Многие считают, что вселенная может быть неоднородна лишь «в малом»; в достаточно же больших объемах она однородна.

Наконец, следует вспомнить и о том, что данных внегалактической астрономии все еще недостаточно, чтобы определить среднюю плотность вещества во вселенной. А это значит, что не может быть решен вопрос и о кривизне пространства. Мы не можем пока на основании эмпирических данных решить вопрос о замкнутости или незамкнутости нашего мира.

Да, трудностей много. Но тем интереснее, тем перспективнее наука. Очень интересное сравнение привел академик Гинзбург: «Космология и физика элементарных частиц – это как бы два антипода. Вместе с тем, как говорят, противоположности сходятся. И действительно, у космологии и физики элементарных частиц есть одна и та же черта, определяющая их значение в науке. Именно в этих областях – соответственно, астрономии и физике – сейчас проходит граница между областью, освещенной знанием, пусть неполным, и кромешной тьмой неведомого».

Хорошо сказано, правда?..


Глава десятая

В ней читатель знакомится с гипотезами-конкурентами и наконец протягивает руки к вопросу, как возникла вселенная, после которого понимает, что может начинать читать книгу сначала

Весной 1958 года Нильс Бор, обсуждая вопросы единой теории элементарных частиц, выдвинутой Вернером Гейзенбергом и Вольфгангом Паули, неосторожно заметил: «Нет никакого сомнения, что перед нами безумная теория. Вопрос состоит в том, достаточно ли она безумна, чтобы быть правильной».

Нельзя сказать, чтобы мысль была совершенно оригинальной. Начнем разматывать ленту времени назад: Фридман, Эйнштейн, Лобачевский, Коперник… да это все авторы совершенно безумных идей. Ряд имен можно продолжить еще в глубь столетий до древнего принципа доказательства «от противного». Напрашивается вывод, не закономерно ли то обстоятельство, что в результате планомерного хода развития постепенного накопления информации наука оказывается перед необходимостью качественного скачка?.. Диалектика – вот поистине нержавеющее оружие!

В конце пятидесятых годов нашего века нужда в качественном скачке стала ощущаться в науке повсеместно. Не даром в том же 1958 году, только осенью, в октябре, на Первом Всесоюзном совещании по философским вопросам естествознания член-корреспондент Академии наук СССР Д. И. Блохинцев высказал ту же мысль, что и Бор: «Нужен серьезный фундаментальный шаг вперед, и здесь нужно, быть может, только одно слово. Идея должна быть какой-то совершенно „сумасшедшей“».

К сожалению, за последние годы цитата Нильса Бора приводилась столько раз в различного рода литературе, что критерий «безумия» (или «сумасшествия» в отечественной транскрипции) стал едва ли не основным при оценке некоторых идей, хотя бы на научно-популярном уровне. Между тем бывают идеи «безумные» и «безумные». Впрочем, автор испытывает сильное желание предоставить читателю проявить известную самостоятельность в оценке идей. Сам он, автор, только сообщает сведения.


Когда идея недостаточно безумна

В 1948 году в мире еще действовала «короткая» шкала внегалактических расстояний, определенная с помощью мировой постоянной Хаббла, равной 540  км/секна мегапарсек.

В 1948 году возраст обозреваемой вселенной в связи с этим оценивался всего в 2 миллиарда лет. Между тем даже камни на поверхности Земли были значительно старше. Этот конфликт теории с практикой беспокоил специалистов. Профессор У. Боннор рассказывал, что «даже Эйнштейн, который никогда не переоценивал значение наблюдений, был обеспокоен этим противоречием».

В 1948 году результаты наблюдений настойчиво уверяли, что наша Галактика – самый большой звездный остров во всем наблюдаемом мире, а ее звезды дают сто очков вперед звездам чужих галактик по величине и яркости… Такой вывод сводил на нет совершенный космологический принцип, лежащий в основе релятивистской космологии.

Строго говоря, общая теория относительности позволяла, конечно, выйти из многих затруднений, если предположить реальность существования λ-члена и рассматривать модели мира наподобие модели Леметра. Но предубежденность самого Эйнштейна против космологической постоянной настолько сильно влияла на психологию исследователей, что можно сказать смело: да, в 1948 году не существовало ни единого мнения, ни единой убедительной модели вселенной; вернее, последних было слишком много. Несчастье каждой заключалось в том, что, во-первых, любая теория претендовала на единственность, отвергая все остальное. Во-вторых, каждая гипотеза несла с собой новые противоречия. И наконец, ни одна из них не была настолько солидна, чтобы суметь достойно конкурировать с нестационарной (релятивистской) космологией.

В таком интеллектуальном климате в 1948 году почти одновременно появились работы английских специалистов. Одна – подписанная именами Германа Бонди, самого молодого профессора математики королевского колледжа в Лондоне, и Томаса Голда – человека еще моложе годами и по этой причине находившегося пока в должности преподавателя Тринити-колледжа: знаменитого Тринити-колледжа! И вторая работа, подписанная именем английского астрофизика, тридцатитрехлетнего профессора Фрэда Хойла.

Обе работы исходили из постулирования совершенного космологического принципа.

Бонди и Голд построили феноменологическую теорию вселенной, удовлетворяющую совершенному космологическому принципу. При этом в модели англичан присутствовало красное смещение – вселенная расширялась, но не было сингулярности – «особого (сжатого) состояния», не было «big bang’a», не было смущающего всех «начала». Как это им удалось?..

Оба автора отбросили «скользкую» гипотезу первоначального сверхплотного состояния материи и созидающего взрыва и предположили, что «мир вечен». Вселенная существовала всегда и всегда расширялась. Особенностью гипотезы являлось предположение, что в пространстве непрерывно рождается вещество. Причем рождается столько, что этот процесс полностью компенсирует убыль из-за эффекта «расширения». Из вновь созданного материала образуются новые галактики, и средняя плотность вещества во вселенной не меняется.

«Рождение материи» происходит очень незаметно. В объеме, соответствующем знаменитому зданию СЭВ в Москве, должен родиться в год всего один атом вещества. И такой ничтожной, с нашей точки зрения, производительности вселенной вполне достаточно, чтобы поддержать плотность вещества в мире на одном уровне…

В том же году Фрэд Хойл, наверняка известный читателю и как астрофизик, и как автор популярных фантастических романов, выступил с аналогичной идеей, по-новому поворачивающей космологическую проблему. Хойл всегда выделялся смелостью и оригинальностью мышления. Научную деятельность его часто сравнивают с фейерверком – столько, смелых идей и неожиданных концепций он создал. Правда, это сравнение опасное: вспышки фейерверка быстро гаснут… А пока возвратимся на 23 года назад и внемлем Хойлу и его новой гипотезе.

Чтобы избавиться от грустной картины все время «разжижающегося» мира, Хойл также предложил модель «стационарного состояния расширяющейся вселенной». Он только несколько видоизменил уравнения Эйнштейна и вывел модель Бонди и Голда как следствие новых уравнений поля. Чтобы объяснить возникновение галактик, Хойл предположил, что в пространстве рождается водород, и даже ввел понятие некоего «творящего поля», отмахнувшись от того, что подобные процессы физикам неизвестны.

«…откуда берется материя? Ниоткуда! Материя довольствуется тем, что возникает в готовом виде…

В прежних теориях предполагали, что в некоторый данный момент возникло целиком все количество материи во вселенной и весь процесс творения представлялся как гигантский взрыв. Что касается меня, то я нахожу эту идею гораздо более странной, чем идею непрерывного творения», – писал Хойл в 1952 году.

И несмотря на столь явно субъективный характер гипотезы, она показалась, привлекательной и стройной многим астрономам. «Устранялось разногласие между возрастом Земли и вселенной – мир вечен»! Устранялось и такое неприятное явление, как взрыв-созидатель, который в силу своей уникальности не поддавался объяснению, «…мне претит сама мысль о том, что для объяснения наиболее общих черт нашего бытия необходимы „начальные условия“. Это значило бы, что вселенная – весьма убогая штука, способная лишь громыхать, как огромный завод, да и то после долгой наладки, подобно той старой автомашине, которую я водил в первые послевоенные годы. В космологических исследованиях я придерживаюсь точки зрения, что все важные черты вселенной уже содержатся в ее законах, а не привносятся извне».

В этих словах Ф. Хойла, сказанных в 1963 году, выражено достаточно четкое кредо. Запомните эту дату – 1963 год. Нам она еще понадобится. А пока, начиная с 1948 года, гипотеза Хойла обрастала сторонниками и все новыми и новыми подробностями. «Кто знает, может быть, где-то в неисследованных недрах галактик скрывается механизм, рождающий „нечто из ничего“», – думали сомневающиеся и осторожные, не решаясь открыто возражать напористым англичанам. А профессор Р. Литтлтон, член Лондонского королевского общества и Королевского астрономического общества, даже придумал впечатляющую аналогию этого процесса, спекулируя на том, что мы живем в четырехмерном мире. Аналогия, как обычно в таких случаях, основывается на понижении мерности пространства с целью повышения наглядности.

Итак, представьте себе ведро, наполненное водой. Поверхность воды – наш плоский мир, в котором лежит, распластавшись, уже знакомый нам представитель – плоскун или плоскатик. А теперь вообразим, что пошел дождь. Капли падают на поверхность нашего плоского мира, создавая у плоскатика впечатление «рождения вещества». Ведь понятие «дождь» из третьего измерения ему не доступно. Дождевые капли переполняют ведро и переливаются через край, аналогично эффекту галактик, уходящих за горизонт событий в нашем мире. Вот и получается – все на месте. И «рождение вещества», и «расширение Вселенной», и ее «стационарность».

Была, конечно, маленькая загвоздка и в этом объяснении. Почему же все-таки вселенная расширяется? На этот вопрос попытались подробно ответить совместно с Р. Литтлтон и Г. Бонди в 1959 году, выдвинув модель «Электрической вселенной». Оба специалиста высказались за то, что расширение вселенной можно объяснить электрическим отталкиванием. Для этого достаточно было предположить совершенно ничтожное неравенство положительного и отрицательного зарядов.

Литтлтон был даже уверен, что в лабораторных условиях проверить эту гипотезу окажется нетрудно. В 1961–1963 годах В. Хьюз с сотрудниками сумел доказать, что величина неравенства зарядов не наблюдается и при точности измерений на два порядка выше предсказанной (то есть ). После этого гипотеза электрического отталкивания потеряла в глазах исследователей всякую привлекательность; да и сами авторы как будто настроены к ней сейчас весьма скептически.

Что ж, время идет. Наука развивается. Постепенно стали возникать и некоторые теоретические неувязки. Например, математическим эквивалентом вселенной Бонди – Голда и Хойла является пустая математическая модель де Ситтера, о которой мы уже говорили. Для модели де Ситтера закон Хаббла – точный закон, для любых расстояний. Наблюдения же этого не подтверждают…

Хотя гипотеза стационарной вселенной и пользовалась популярностью, многие советские и зарубежные физики и астрономы отказывались ее принять. Однако такие вопросы не решаются голосованием и даже авторитетными теоретическими рассуждениями. Так, например, когда в сентябре 1952 года Вальтер Бааде выступил в Риме на конгрессе Международного астрономического союза с заявлением о необходимости пересмотреть шкалу внегалактических расстояний и увеличить возраст вселенной, то это уже само по себе снижало необходимость и злободневность гипотезы стационарной вселенной. Однако для открытой и безоговорочной критики время еще тогда не пришло. Прерогатива произнесения приговора над любой теорией принадлежит эксперименту.

Правда, нашелся в том же году один откровенный противник теории Бонди – Голда и Хойла… папа римский. Да, да, все тот же неугомонный Пий XII заявил с высоты апостольского престола, что теория стационарной вселенной не годится, ибо не соответствует божественному откровению. Согласно библии ведь мир «был сотворен»! В этом отношении «большой взрыв» папу устраивал куда больше. Но, кажется, возражения католического пастыря особенно никого не взволновали. Гораздо важнее было решить вопрос с экспериментом.

Мог ли помочь опыт подтвердить или отвергнуть справедливость стационарной космологии? Да, мог! В модели Хойла, Бонди и Голда средняя плотность вещества неизменна во времени. В расширяющихся же моделях в прошлом плотность должна была быть значительно выше, чем сейчас.

В модели стационарной вселенной мир, отделенный от настоящего времени миллиардами лет, ничем не отличался от современного. Релятивистская космология предусматривала определенную эволюцию вселенной во времени.

Какой же провести эксперимент? Измерить точно среднюю плотность вещества во вселенной – такую задачу решить сегодняшней науке не под силу. Сосчитать, как меняется количество галактик с увеличением расстояния, – дело тоже пока безнадежное, потому что очень уж трудно с достаточной точностью измерять расстояние до самых удаленных звездных островов. Если бы все галактики были одинаковы, а то ведь свойства их чрезвычайно различны. Различны и яркости, являющиеся одним из главных критериев расстояния.

И вот наступил 1963 год; год, когда, как пишет Дж. Гринстейн, «астрономы обнаружили, что пять небесных объектов, которые считались слабыми звездами нашей Галактики, хотя и несколько необычными, на самом деле являются, быть может, самыми удивительными и загадочными объектами, когда-либо наблюдавшимися человеком». В 1963 году были открыты квазары!

Конечно, сам факт этого открытия еще ни о чем не говорил, хотя именно эти удивительные объекты звездного мира погубили теорию стационарной вселенной. Как вы помните, все они обладают значительными красными смещениями. То есть этих «монстров звездного мира» мы видим сейчас такими, какими они, а следовательно, и вселенная, были 3, 5, 7 и даже 9 миллиардов лет назад. В пространственно-временной дали старой вселенной странных объектов множество. В непосредственной же близи к нам, ну хоть до миллиарда световых лет, их нет ни одного.

Итак, наблюдения последних лет: открытие квазаров и особенно «реликтового излучения» – окончательно доконали гипотезу стационарной вселенной Бонди и Голда. Существует мнение, что если бы «реликтовое излучение» было открыто на двадцать лет раньше, подобная гипотеза даже не возникла бы. На сегодняшнем уровне знания можно считать доказанной гипотезу о расширении, об эволюции вселенной во времени.

Понимали это и авторы, и защитники гипотезы стационарной вселенной. Сам Ф. Хойл, – заканчивая на лекциях раздел, посвященный квазарам, вынужден был признать: «Возможно, что мы наконец-то получили ключ к связи между космологией и астрономией. Квазары выглядят так, как согласно некоторым космологическим теориям выглядела наша вселенная при ее возникновении. Последние десять лет (1955–1965) существовали так называемая теория „большого взрыва“, согласно которой вся вселенная произошла одновременно, и „теория стационарной вселенной“, по которой образование нуклонов спокойно происходит все время. Возможно, истина лежит где-то посередине. Возможно, наличие квазаров свидетельствует, что во вселенной вместо одного большого взрыва происходит множество маленьких. Тем не менее эти маленькие взрывы гораздо мощнее, чем спокойные процессы теории стационарной вселенной».

Этими словами автор гипотезы стационарной вселенной отказался от своего детища. Что же, на это надо иметь немало мужества. Чаще люди бывают не в силах, обнаружив свое заблуждение, признать ошибки. Сегодня разбегание галактик и квазаров можно считать, пожалуй, доказанным. Можно признать и то, что модель расширяющейся вселенной наиболее точно соответствует уровню современных знаний. А вот гипотеза стационарной вселенной оказалась безумной явно недостаточно.


Каббалистика XX века

Когда-то очень давно, может быть в самом начале нашей эры, кроме трех наиважнейших «наук»: магии, астрологии и алхимии, – весьма большим почетом пользовалась мистическая религиозная философия, изложенная в еврейских каббалистических сочинениях. Последователи каббалы, что на древнееврейском означало просто «предание», занимались символическим толкованием священных текстов, придавая словам и числам особое мистическое значение.

Но позвольте, скажет возмущенный читатель, при чем тут какие-то престарелые каббалисты, когда разговор идет о XX столетии?..

А вот при чем. Откройте-ка второй том физического энциклопедического словаря на странице 496. В статье «Космология», принадлежащей перу A. Л. Зельманова, в разделе «Основные затруднения, сыгравшие явную или неявную роль в появлении новых теорий…» под номером 2 стоит: «…2. Необъясненная эмпирическая связь межгалактических параметров с микрофизическими константами».

Что это значит?

В тридцатые годы Артур Эддингтон, весь переполненный идеями относительности, в целях популяризации задумал сосчитать… количество элементарных частиц во вселенной.

– Что за задача? – удивились многочисленные философы от физики и физики от философии. – Как можно счесть бесконечное в необъятном?..

Однако согласно теории относительности можно было представить вселенную замкнутой и вычислить ее диаметр и объем. Диаметр оказался равным примерно 10 28сантиметров, а объем приблизительно 10 84кубических сантиметров. Среднюю плотность вещества Эддингтон тоже знал; по оценкам того времени она равнялась примерно 10 -28 г/см 3. Если теперь помножить объем на плотность, получится масса вещества вселенной что-то порядка 10 56грамма. Масса же одного нуклона составляет примерно 10 -24грамма. Тогда количество частиц во вселенной найдется простым делением 10 56 : 10 -24 = 10 80. Это огромное число.


Но почему оно так поразило Артура Стэнли Эддингтона, что в своей работе «Фундаментальная теория» он отводит едва ли не центральное место математическому манипулированию с большими безразмерными коэффициентами – мировыми постоянными?

Отойдем еще чуть-чуть назад во времени, примерно в двадцатые годы. В Бристольском университете решает проблему получения высшего технического образования долговязый студент по имени Поль Дирак. Пройдет совсем немного лет, и весь мир узнает его полное имя Поль Адриен Морис Дирак. Хотя это вовсе и не принято в Англии. Пока же он Поль, или Пол, – парень со складом ума, малопригодным для инженерной деятельности.

Однажды товарищи по курсу показали ему конкурсную задачу, которую дали в Кембридже на какой-то ежегодной студенческой конференции или олимпиаде. Условия звучали так: «Трое рыбаков поехали ловить рыбу. Ненастная ночь заставила их укрыться в одинокой пустой хижине. Чтобы переждать непогоду, рыбаки уснули. Однако одному из них не спалось. Выглянув на улицу и убедившись, что буря утихает, он решил забрать свою долю улова и отправиться домой, не беспокоя товарищей. При дележке одна рыба оставалась лишней. И дабы никому не было обидно, первый рыбак выкинул ее в море.

Вскоре после его ухода проснулся второй рыбак. Не зная, что дележ уже состоялся, он заново разложил улов на три части, получил лишнюю рыбу, выкинул ее в море, забрал свою долю и уехал домой.

С третьим рыбаком вся история повторилась. И он делил улов на три части, кидая лишнюю рыбу в море, брал свою долю и отправлялся восвояси.

Спрашивалось, какое минимальное число рыб удовлетворяло этому условию?»

Впервые кембриджскую задачу автор услыхал, будучи также студентом на семинаре по физике от прекрасного преподавателя доцента С. Б. Врасского. И насколько помнится, довольно долгое время был занят вместе с товарищами ее решением. Однако сообщенный С. Б. Врасским ответ Дирака ошеломил нас всех.

Дирак представил решение с ответом: «минус две рыбы»! Какое дело математике до того, положительными или отрицательными окажутся рыбы…

После окончания Бристольского университета П. А. М. Дирак специализируется по теоретической физике в Кембридже. В 1928 году работает у Резерфорда, строит релятивистскую теорию движения электрона. Занимается многими фундаментальными вопросами теоретической физики. Но нас интересуют работы Дирака, связавшие расчеты Эддингтона с неожиданной идеей о непостоянстве мировых констант. Некогда еще Пуанкаре высказывал идею о непостоянстве фундаментальных постоянных. Но для того чтобы хоть о чем-то говорить определенно, постоянные (или константы), казалось бы, необходимы.

Познакомившись с расчетами Эддингтона, Дирак в 1937 году решает ввести в качестве единицы измерения времени одну из величин, характеризующих мир на его элементарном уровне – время так называемых сильных взаимодействий 10 -23сек. Грубо говоря, такое время требуется элементарной частице, чтобы со скоростью света переместиться на расстояние, равное своему диаметру. Если подсчитать в новых единицах время существования вселенной (мы имеем в виду расширяющуюся вселенную, Т = 13 млрд. лет), то получится 10 40. Интересная величина! Отношение диаметра вселенной (10 28см) к размеру нуклона (10 -13см) тоже примерно 10 40. Отношение квадрата диаметра нуклона к квадрату «планковского кванта пространства L 2» ( L 2 =  G· h/ c 3; где h– постоянная Планка) снова 10 40.

Но самое интересное то, что число элементарных частиц во вселенной (10 80) равно квадрату безразмерного времени существования самой вселенной (10 40). Можно ли предположить, что такое соотношение – случайность, свойственная лишь нашей эпохе? Вряд ли… Реальнее считать, что это соотношение (10 40) 2между временем и количеством частиц сохранялось всегда. А так как время существования вселенной непрерывно растет, то и количество частиц должно увеличиваться. Так мы, жонглируя межгалактическими параметрами и микрофизическими константами, добрались и до необходимости увеличения количества частиц с течением времени. Но и это было еще не все. Дирак взял отношение сил сильного взаимодействия к силам гравитации и опять получил 10 40. Значит, и эти величины связаны друг с другом? Но время существования вселенной, от «начала» и до сего дня, размерное оно или безразмерное, растет. Не значит ли это, что гравитационная постоянная должна уменьшаться?

Сам П. А. М. Дирак, высказав идею, охладел к ней. Война с Германией и другие проблемы заслонили от него вопрос – являются ли мировые константы функциями возраста вселенной. Его идеи подхватили другие. Так, тезис о «старении гравитации» породил целый водопад работ, развивающих высказанные английским физиком предположения.

В 1944 году немецкий физик-теоретик Паскуаль Иордан пытался реализовать идеи Дирака. Он предложил сферическую модель вселенной, линейно расширяющуюся со временем. В «мире Иордана» непрерывно возникала материя, а «постоянная» тяготения изменялась обратно пропорционально возрасту вселенной…


Эта теория явилась одним из многочисленных обобщений теории Эйнштейна. И, как видит читатель, с каждым из них может быть связана своя космология.

С течением времени космологии, основанной на теории относительности, пришлось иметь дело со все возрастающим количеством гипотез-конкурентов. Если период до начала второй мировой войны специалисты считают временем «развития теоретических представлений и накопления эмпирического материала о наиболее удаленных туманностях», то после войны наступило время обобщения этих результатов и подготовки новых теорий.

Математическими моделями вселенной занимаются многие выдающиеся специалисты у нас и за рубежом. При этом некоторые решения, даже не подходящие для описания действительности, дают мощные толчки развитию чистой теории.

Возникает вопрос: можно ли считать числовое манипулирование коэффициентами чистой спекуляцией? «10 40» – модное число XX века! Но выражает оно какую-либо закономерность или имеет примерно тот же смысл, что и число десять в учении пифагорейцев, сейчас трудно сказать. Анализ еще до конца не доведен. А у обоих полярных взглядов имеются свои авторитетные сторонники и свои не менее авторитетные противники. Так что подождем…

Сегодня клан ученых, пытающихся реализовать идеи Дирака, возглавляет Роберт Дикке – молодой и исключительно активный профессор Принстонского университета. Это ему принадлежит интерпретация непонятного шумового фона как «реликтового излучения». Он же провел и великолепный эксперимент по проверке равенства инертной и гравитационной масс, повысив точность существовавших до него результатов сразу на три порядка.

Вместе со своим аспирантом Брансом Р. Дикке предложил новую теорию развития вселенной. Его модель не нуждалась в «творящем поле Иордана», и постоянная гравитации менялась в ней пропорционально времени, а не обратно пропорционально, как в предыдущих теориях. В общем, теория производила очень хорошее впечатление, пока дело не дошло до расчетов.

Согласно теории Дикке – Бранса перигелий орбиты Меркурия вращался, обгоняя классическую теорию на 39 секунд, вместо 43 секунд по теории Эйнштейна. Чтобы убрать неувязку, Дикке предполагает, что Солнце сплющено, и эта сплющенность вносит поправку в те самые 4 угловых секунды за столетие. Мало того, Дикке проводит эксперимент и объявляет, что сплющенность нашего светила доказана… Правда, научным экспериментом называется обычно то, что в аналогичных условиях может быть повторено другими.

Результат наблюдений Дикке пока еще никем не подтвержден. Однако его теория, основанная на реализации идей Дирака, сегодня рассматривается многими как главный конкурент общей теории относительности. Справедливо ли это мнение или ошибочно – покажет время.


Вещество + антивещество = ?

В Стокгольме в Королевском технологическом институте отдел физики плазмы возглавляет, по выражению академика Б. П. Константинова, один из «интереснейших и оригинальных физиков и астрофизиков нашего времени», профессор Г. Альвен. Его работы в области магнитной гидродинамики, совсем молодом, но чрезвычайно быстроразвивающемся разделе современной физики, трудно переоценить. За научные достижения профессор Г. Альвен избран в 1966 году иностранным членом Академии наук СССР. Физикам известны многие глубокие исследования Альвена. Но вот совсем недавно вышла в издательстве «Мир» популярная книжка шведского профессора, посвященная описанию космологической гипотезы, которую Г. Альвен уже давно разрабатывает вместе с профессором О. Клейном. Суть гипотезы заключается в том, что оба автора, положив в основу своих взглядов концепцию о полной зарядовой симметрии мира, приходят к выводу о равноправности существования во вселенной как вещества, так и антивещества. И на этой базе вырастает гипотеза происхождения вселенной. Вот как определяет профессор Г. Альвен задачи, которые он видит стоящими перед собой:

«В нашем анализе мы старались не прибегать к каким-либо новым законам природы; напротив, мы старались понять, как далеко можно продвинуться, опираясь на уже известные законы. Иными словами, мы пытались включить проблемы космологии в систему идей лабораторной физики. Мы избегали также постановки вопросов: каким образом возникла вселенная и как далеко находятся ее границы, если таковые вообще существуют? Мы скромно ограничились рассмотрением последнего триллиона лет во времени и ближайшего триллиона световых лет в пространстве»…


    Ваша оценка произведения:

Популярные книги за неделю