Текст книги "Занимательно о космологии"
Автор книги: Анатолий Томилин
Жанр:
Астрономия и Космос
сообщить о нарушении
Текущая страница: 10 (всего у книги 20 страниц)
Глава шестая
в которой читатель неожиданно попадает в абстрактный мир науки о пространстве, такой непохожей на добрую старую геометрию, щеголяющую в «пифагоровых штанах» и ловко жонглирующую кубами, цилиндрами, шарами и конусами, а также всевозможными усеченными пирамидами и многогранниками
Атаки, подтачивающие устои бесконечной вселенной, велись не только астрономами, но и математиками. Хотя ни те, ни другие вовсе не ставили перед собой столь неблагородной задачи… Пространство ньютоновской вселенной существовало независимо от материи. Под «материей» подразумевалось вещество, так или иначе распределенное в пространстве. Веществом занимались физика, астрономия и другие науки, призванные изучать «материальный» мир. Пространство являлось прерогативой математики и философии. Из задач человеческой практики возникла даже специальная отрасль математики – геометрия. Развиваясь, она из практической землемерной науки постепенно превратилась в абстрактную математическую теорию.
Все, что нас окружает в мире, все предметы имеют три измерения: длину, ширину и высоту. Каждый взрослый в состоянии убедиться в этом на глаз или на ощупь, как кому нравится. Автор подчеркнул «каждый взрослый», потому что у дитяти в грудном возрасте воспринимаемое пространство двухмерно. Оно – дитя не понимает, что такое «далеко» или «близко», тянется одинаково ручонками и к маминому носу, и к звездам… Однако постепенно психофизиологические механизмы и груз исторического опыта человечества, именуемый здравым смыслом, приводят ребенка к сознанию того, что мир, в котором он живет, трехмерен.
Но что такое исторический опыт человечества? Несколько тысячелетий сознательного накопления сведений. За это время человечество охватило пространственные расстояния от межатомных горизонтов до космологических просторов. Колоссально! Да, но только с точки зрения человека. Если же считать вселенную бесконечной, то охваченная нашими наблюдениями часть просто бесконечно мала. На каком же основании позволительно распространять столь ничтожный опыт на то, что не имеет меры?.. Почему бы не предположить, например, что наша вселенная одно-трехмерна? Ее модель напоминала бы сеть с узлами. Причем каждый узел – это трехмерная метагалактика, заключающая в себя мириады звездных островов. Посмотрите на чертеж. Так изобразил одно-трехмерную модель вселенной доктор философии Э. Кольман в своей книжке «Четвертое измерение». А рядом модель двух-трехмерной вселенной – тоненькая двумерная пленка с трехмерными пузырьками – метагалактиками. Вы скажете – фантазия. Что ж, согласен. Модель ньютоновской вселенной – огромный пустой ящик – пространство, равномерно заполненное жидким бульоном материи. Чем она лучше?.. Тем, что ее легче себе представить, опираясь на опыт и здравый смысл?
Эти два «кита», опыт и здравый смысл, позволили еще в глубокой древности построить теорию отвлеченно-абстрактного пространства и выявить его основные свойства. Собрал же крупицы мудрости и выковал из них «золотую розу» теории замечательный александрийский математик Эвклид.
Чему учил Эвклид
Эвклид рисовал свои чертежи на песке, на навощенных табличках, на папирусных свитках. О жизни его в архивах истории не осталось буквально ни строчки. Известно только, что жил он примерно в начале III века до нашей эры во времена первого царя из династии Птолемеев и что протекала его деятельность в Александрии. Сохранилась, правда, одна легенда. Однажды царь Птолемей, которому Эвклид преподавал основы математики, пожаловался на длинноты вступлений к науке. На что его учитель, запахнув тогу, заявил, что к геометрии нет «царской дороги». Путь к высотам науки один для всех смертных, и начинается он с простых понятий.
Тринадцать книг его «Начал», содержащие изложение планиметрии, стереометрии и некоторых вопросов теории чисел, в течение двух тысячелетий являются основами изучения математики. «В истории западного мира, – пишет математик Д. Л. Стройк, – „Начала“ после библии, вероятно, наибольшее число раз изданная и более всего изучавшаяся книга. После изобретения книгопечатания появилось более тысячи изданий, а до того эта книга, преимущественно в рукописном виде, была основной при изучении геометрии. Большая часть нашей школьной геометрии заимствована часто буквально из первых шести книг „Начал“, и традиция Эвклида до сих пор тяготеет над нашим элементарным обучением».
Как же строил Эвклид несокрушимое здание своей геометрии? В основание всей науки он вводит несколько главных положений-истин, по тем или иным причинам не требующих доказательств. Остроумные греческие философы, закаленные в спорах и наделенные скептическим умом, выбирали их очень осторожно. Они разделили подобные истины на аксиомы и постулаты. Аксиомами в те далекие времена называли утверждения, которые нельзя отрицать, не нарушая всех основ логического мышления. Говоря об аксиоме, греки начинали фразу со слов: «Очевидно, что…» И тем отбрасывали всякую возможность спора на этот счет.
Постулаты, в древнегреческом понимании, представляли собой конкретные утверждения, свойственные той или иной науке. Первая фраза постулата должна была начинаться словами «допустим, что…». Это также снимало возможность спора, но не налагало на выдвинутое положение критерия безусловности.
Такое очень важное и тонкое различие между аксиомой и постулатом со временем сгладилось и принесло неисчислимые беды и чистым философам, и представителям натуральной философии, но о том речь дальше.
Изложение геометрии в книгах Эвклида построено в виде системы определений, аксиом и постулатов, из которых логическим путем выводятся теоремы. В первых четырех книгах Эвклид рассматривает геометрию на плоскости. При этом в книге первой он формулирует пять основных требований, или допущений, на которых строит остальные выводы. Постулаты Эвклида настолько наглядны, настолько очевидны, что так и хочется назвать их аксиомами. Но мы уже предупреждены. И мы начеку. Да и сами постулаты при всей своей определенности точно взывают к бдительности. Смотрите сами. Эвклид пишет: «Нужно потребовать (помните, это эквивалентно словам „допустим, что…“):
1. Чтобы из каждой точки к каждой точке можно было провести прямую линию (и притом только одну).
2. И чтобы ограниченную прямую можно было непрерывно продолжить по прямой.
3. И чтобы из любого центра любым радиусом можно было описать окружность.
4. И чтобы все прямые углы были друг другу равны.
5. И чтобы всякий раз, как прямая, пересекая две прямые, образует с ними внутренние односторонние углы, составляющие вместе меньше двух прямых, эти прямые при неограниченном продолжении пересекались с той стороной, с которой эти углы составляют меньше двух прямых».
Даже не умудренный математикой читатель сразу заметит, что пятый постулат резко отличается от четырех первых. Он гораздо сложнее и больше похож на теорему, которую нужно доказывать. В пятом постулате нет и следа наглядности первых четырех, ведь здесь говорится о «неограниченном продолжении» прямых. А попробуйте-ка займитесь этим «неограниченным продолжением». Кто возьмет на себя смелость сказать, что и в бесконечности параллельные прямые не сойдутся?.. То есть интуитивно, конечно, пятый постулат кажется бесспорным. Но интуиция диктуется опытом. Опыт же перед бесконечностью пас. Эвклид и сам скорее всего понимал, что с пятым постулатом не все обстоит чисто. Потому он и распределил изложение материала в своих книгах на две неравные части.
В первой сгруппированы теоремы, которые доказываются с помощью четырех начальных постулатов. Эта часть называется Абсолютной Геометрией. Во второй собраны теоремы, которые могут быть доказаны только при использовании пятого постулата. И эта вторая часть носит название собственно эвклидовой геометрии. Скорее всего некогда пятый постулат был теоремой. Однако ни одна из попыток доказать ее не увенчалась успехом. И тогда Эвклид включил упрямую теорему в число постулатов.
Математики так легко не примирились с решением Эвклида. «В области математики найдется мало вещей, – писал Карл Фридрих Гаусс, – о которых было бы написано так много, как о пробеле в начале геометрии при обосновании теории параллельных линий. Редко проходит год, в течение которого не появилась бы попытка восполнить этот пробел. И все же если мы хотим говорить честно и открыто, то нужно сказать, что, по существу, за 2000 лет мы не ушли в этом вопросе дальше, чем Эвклид».
От планиметрии – геометрии на плоскости – Эвклид переходит в последних трех книгах к геометрии в пространстве – стереометрии. Что же подразумевал Эвклид под пространством? В руках у вас, читатель, книга. Считайте ее плоскостью. А теперь поднимите ее плашмя над столом и опустите снова. Объем, который прошла книга при этом движении, и есть эвклидово пространство. Просто, правда? В этом пространстве должны быть удовлетворены все постулаты и аксиомы Эвклида, потому что они суть его свойства. Да и кому в голову придет усомниться, например, в том, что прямую линию можно продолжать в бесконечность. Или что пространство всюду обладает одними и теми же свойствами, что позволяет свободно передвигать любые фигуры в пространстве, не нарушая их внутренних связей.
От абстрактного геометрического понятия эвклидова пространства легко перейти к физическому пространству, в котором мы с вами живем и двигаемся. А приложив к миру Эвклида наглядные декартовы координаты, мы добиваемся полного слияния двух геометрий: геометрии Эвклида и геометрии физического мира.
Можно сказать даже, что слишком легко понятия геометрии: точка, линия, фигура, тело – отождествляются с наблюдаемыми объектами. И хотя геометрическая точка является идеализацией точки физической, так и кажется, что подобная идеализация никак не может нарушить основ геометрии. Геометрические объекты физического мира казались настолько тождественными объектам, с которыми имеет дело геометрия, что из этого кажущегося тождества выросла уверенность в том, что для описания пространства физического мира даже формально не может быть построено другой геометрии, кроме эвклидовой. То есть, что геометрия Эвклида – это и есть единственно возможная геометрия физического мира!
Внимательный читатель должен был заметить небольшой логический «кувырок», поставивший взаимоотношения геометрий Эвклида и реального мира в нашем представлении с ног на голову. Родившись и пребывая в своем первоначальном состоянии в качестве предисловия к физике, геометрия воспользовалась полным отвлечением пространственных форм и отношений от материального содержания и превратилась в отрасль чистой математики. Превратилась, чтобы затем подменить собой систему взглядов, описывающих реальный мир. Это было тем более опасно, что, основанная на аксиомах и постулатах, эвклидова геометрия, хоть и вытекала из опыта, проблемой согласования своих выводов с опытом не интересовалась.
Подобные метаморфозы в истории науки не новость. Метод Эвклида был очень похож на метод Аристотеля. Точно так же постулировал Аристотель целый ряд свойств сил и их действий на тела, находящиеся в движении. Понадобился Галилей, чтобы возник вопрос об опытной проверке законов Аристотеля. И тогда казавшаяся совершенной логическая схема стагирского философа и построенная на ее основе механика оказались просто неверными. Галилей с помощью опыта опроверг Аристотеля и открыл дорогу новым законам механики.
Нечто подобное предстояло совершить и с геометрией Эвклида. Но лишь в конце XIX столетия люди поняли, что положения геометрии, описывающие свойства физического пространства, тоже можно и нужно проверять на опыте, как это делают с любыми законами физики. И это было великим открытием.
Царь Мидас из страны математики
Карл Фридрих Гаусс родился в Брауншвейге, в семье зажиточного мастера-водопроводчика, 30 апреля 1777 года. Мальчик часто поражал взрослых своими способностями к счету. Сохранилась даже легенда, как однажды трехлетний Карл поправил отца, допустившего ошибку в расчетах с подсобниками. Можно предположить, что именно эти способности привели юного наследника почтенного ремесленника в стены Геттингенского университета. Здесь студент Карл Гаусс со всей основательностью принялся за изучение математики. Геометрия Эвклида поразила и покорила его. Как и многие другие до него и после, Гаусс отдал немало сил честолюбивому стремлению доказать пятый постулат. Правда, в отличие от других он скоро убедился в принципиальной невозможности его доказательства. Одновременно выяснилась удивительная вещь: пятый постулат был настолько не связан с остальными, что, заменив его другим, можно было построить стройную систему взглядов, может быть, несколько иных, чем эвклидовы, но так же непротиворечивых. Даже допущение ошибочности пятого постулата не входило в противоречие с остальными четырьмя… Нет, молодому Гауссу не удалось превратить пятый постулат Эвклида в теорему. Но эта попытка дала ему прекрасное знание основ геометрии и на всю жизнь привила будущему математику любовь к этой строгой науке.
Заботясь о своем авторитете первого математика мира, Гаусс в дальнейшем никогда больше не возвращался к пятому постулату. Но он на всю жизнь сохранил к нему интерес и ревнивое отношение к работам других математиков, касавшихся этой темы.
Со времен Эвклида верхом искусства геометров считалось умение построить с помощью только циркуля и линейки правильный пятиугольник, который потом, умножая его стороны, можно было бы превратить в десятиугольник, пятнадцатиугольник и т. д. Гаусс-студент открывает способ построения семнадцатиугольника. А через пять лет после окончания университета выпускает большой труд под названием «Арифметические исследования». Здесь, в последнем разделе своего сочинения, он приводит полностью разработанную теорию деления круга. Теперь математики могли строить любые многоугольники, не хвастаясь своим искусством.
В канун нового, XIX столетия, прямо в новогоднюю ночь, аббат ордена театинцев, основатель и директор астрономической обсерватории в Палермо, на острове Сицилия, Джузеппе Пиацци открыл первую малую планету в «пустом» промежутке между Марсом и Юпитером. В честь богини плодородия – покровительницы Сицилии – он назвал ее Церерой и написал о том в Миланскую и Берлинскую обсерватории. Неожиданно Пиацци заболел. Долгое время он был лишен возможности подходить к своему телескопу. Между тем на Европейском континенте бушевали наполеоновские войны. Италия была наводнена воюющими армиями, и письма астронома ползли черепашьими темпами. Когда же они наконец достигли адресатов, то, сколько ни всматривались астрономы в звездные россыпи, новооткрытой планеты нигде не было видно. Она вошла в соединение с Солнцем и безнадежно потерялась в его лучах. У Пиацци остались данные наблюдений движения беглянки всего лишь по небольшой дуге в несколько градусов. Сколько он ни бился над решением построения всей орбиты по этим скудным данным, ничего у него не получалось. Все положения, где должна была находиться планета после того, как она покинула район Солнца на небесной сфере, оказывались ложными. Церера была безнадежно потеряна. И вот тогда этим вопросом занялся Гаусс, малоизвестный приват-доцент Брауншвейгского университета. Он изобретает новый точный способ вычисления орбиты небесного тела всего по трем измерениям и указывает место, где должна находиться исчезнувшая планета. Новогодняя история получила достойное завершение. Цереру, по указаниям Гаусса, отыскали в последнюю ночь 1801 года. Имя Гаусса получило широкую известность.
Между тем должность приват-доцента начала тяготить математического гения. Она давала ему всего восемь талеров в месяц. Этого было достаточно, чтобы не умереть с голоду, но слишком мало, чтобы заниматься наукой, не думая о том, как свести концы с концами. Гаусс ищет выход. Петербургский академик Фусс, с которым молодой человек поддерживал переписку, предложил перебраться в Россию. Там он обещал Гауссу место астронома и директора обсерватории с квартирой и окладом в тысячу рублей в год. Фусс гарантировал Гауссу избрание в действительные члены императорской академии и дальнейшее улучшение жизненных условий. Гаусс решил ехать. Случайно о его решении узнает эрцгерцог Брауншвейгский. Щедрым жестом он предлагает математику 400 талеров годового жалованья с тем условием, что тот не покинет родину. Тщательно взвесив все «за» и «против», практичный Гаусс остается в Брауншвейге.
В 1802 году вторую малую планету открыл близкий друг Гаусса, известный уже нам врач и астроном-любитель Генрих Вильгельм Матеус Ольберс. Он назвал ее Палладой в честь дочери Зевса – Афины. И снова Гаусс вычислил ее орбиту, пользуясь своим методом. Результаты этих исследований, обработанные со скрупулезной точностью, появились в 1809 году в сочинении «Теория движения небесных тел». Эта работа принесла молодому математику всемирную славу. С 1807 года Гаусс – член Геттингенского ученого общества. В том же году он получает кафедру математики и астрономии в Геттингенском университете и до конца жизни не покидает Геттингена.
Лишь раз по настойчивому приглашению Александра Гумбольдта выезжает он в Берлин на съезд естествоиспытателей.
Германия тех лет представляла собой удивительное сборище без малого трехсот крохотных государств. И в каждом свой герцог. В каждом свои законы. В этих малюсеньких государствах, властители которых изо всех сил пыжились, чтобы походить на настоящих королей и императоров, царила на редкость затхлая атмосфера. Но при каждом дворе или дворике непременная Академия наук. Непременно «свои» гении, содержащиеся для забавы, для представительства, питающиеся от щедрот сюзерена.
Одни бунтовали, как Бетховен при дворе князя Лихновского в Вене. Другие лавировали, стремясь воплотить свои идеалы, не вступая в открытый конфликт с окружающей социальной средой: так поступал Гейне в Веймаре. Третьи ценили кормушку, страшась возможной свободы и неустроенности, боясь остаться без покровителя, без привычных условий для главного и единственного в жизни – для науки: таким был Гаусс. Математика была страстью Гаусса, наука – его жизнью.
Дублинский математик Корнелий Ланцош пишет: «Гаусс чем-то напоминал легендарного греческого царя Мидаса. Царь Мидас обращал в золото все, к чему прикасался. Многие открытия Гаусса берут свое начало от некоторых случайных вопросов, которые перед ним ставились. И хотя сами по себе эти вопросы были зачастую досадной нагрузкой, но, когда Гаусс брался за них с характерными для него тщательностью и аккуратностью, он создавал нечто исключительно важное».
Математика, астрономия, геодезия, физика – во всех этих отраслях науки Гаусс, начиная с небольшого частного вопроса, заканчивал тем, что блестяще решал фундаментальные задачи, продвигая науку дальше и дальше. Нет, не зря современники называли его первым математиком мира.
В 1820 году Гаусс получает указание от министра общественных дел Ганноверского княжества возглавить геодезическую съемку государства и составить подробную карту для межевания и точного определения границ земельных владений. «Гаусс отнюдь не пришел в восторг от своих новых обязанностей». Но он разработал специальный прибор – гелиотроп – для усовершенствования оптической сигнализации; изобрел новый способ наименьших квадратов для установления длин, координат, дуг и других величин в астрономии и геодезии. Заинтересовавшись формой земной поверхности, он занялся углублением общего метода исследования кривых поверхностей. И в конце концов, открыв в геометрии целое новое направление, создал математический аппарат, без которого не смогла бы возникнуть общая теория относительности. Потому что именно геометрические методы Гаусса явились отправной точкой в размышлениях Эйнштейна об общих системах отсчета.
А так как общая теория относительности – хлеб насущный современной космологии, то терпеливый читатель понимает необходимость ознакомиться с геометрическим открытием Гаусса поподробнее.
Занимаясь проблемой измерения кривых поверхностей, Гаусс первым попробовал рассмотреть их «внутренние», или «собственные», свойства, зависящие только от самих искривленных поверхностей. Он как бы попробовал проникнуть в психологию плоского двухмерного существа, живущего на такой поверхности. Этот новый, совершенно необычный взгляд означал фактически создание новой, «внутренней геометрии» поверхностей.
В гостях у плоскунов и плоскатиков
Основными элементами геометрии всегда являлись прямые линии и углы. Без них геометрию не построишь, как не придумаешь правил правописания без букв. Но можно ли говорить о существовании прямых линий, например, на искривленной плоскости? Конечно, нет! – скажет поверхностный читатель. А глубокомыслящий задумается. Но давайте спросим у самого обитателя расплющенного мира. Ведь мы договорились, что на искривленной поверхности живут плоские, как вырезанные из полиэтиленовой пленки, существа. Итак.
Вопрос.Есть ли в вашем искривленном мире прямые линии?
Ответ.А почему же нет? Если прямая – кратчайшее расстояние между двумя точками, то, двигаясь, или, по-вашему, «ползя», в одном направлении, разве мы не будем совершать движение по прямой?..
М-да, против этого, пожалуй, не возразишь. Разве не так же мы, обитатели сферической (то есть искривленной) земной поверхности, строим «прямые как стрела» дороги и определяем кратчайшие расстояния между двумя городами? Ну, а коли есть прямые линии на искривленной поверхности, то есть и углы, треугольники, окружности, эллипсы…
Короче говоря, обитатели кривого плоского мира вправе ожидать от своего «расплющенного Эвклида» построения науки, которая ничуть не хуже планиметрии.
Теперь представим себе, что эта искривленная поверхность замыкается в шар. Ее обитатели, если они достаточно малы по сравнению с радиусом шара, просто не замечают кривизны. Кстати, «кривизна» чрезвычайно важное геометрическое понятие. Кривизной называют величину, как раз обратную радиусу закругления поверхности в рассматриваемой точке. У шара кривизна во всех точках одинакова. После такого открытия грешно не попытаться в лучших традициях древних греков соорудить аксиому со стандартным началом, «Очевидно, что чем больше радиус, тем меньше кривизна!» Прекрасно!
Теперь вернемся к нашим «расплющенным» мыслителям, живущим на поверхности здоровенного шара, но не знающим этого. Их геометрия ничем не отличается от эвклидовой. Точно так же они станут утверждать, что прямые линии бесконечны, треугольники подобны, а параллельные никогда не пересекаются.
И вот приходим в этот плоский мир мы с вами. Нам тоже пришлось расплющиться. Вы не возражаете? Но все равно и в этом непривычном состоянии мы с вами гиганты мысли. Мы строим на поверхности шара, которую тамошние интеллектуалы именуют плоскостью, треугольник. И предлагаем измерить сумму его углов. Плоскуны-геометры меряют – вроде 180°. В пределах ошибки. Тогда мы растаскиваем, растягиваем стороны треугольника на полмира, в смысле на полшара. Плоскуны снова измеряют и обнаруживают… Ну мы-то, конечно, с самого начала знали, что сумма углов в криволинейном треугольнике не равна 180°, и потому не удивляемся этому результату.
Итак, на поверхности сферы сумма углов треугольника оказывается больше двух прямых, больше 180°. Попробуем сделать еще одну проверку, на этот раз первого постулата: «Из каждой точки к каждой точке можно провести прямую линию (и притом только одну)». Но «прямыми» на сфере являются дуги больших кругов – меридианы. А таких, от полюса до полюса, например, можно провести бесчисленное количество. Опять промах.
Второй постулат: «и чтобы ограниченную прямую можно было непрерывно продолжать по прямой». Отправимся в кругосветное путешествие, держась все время строго одного направления. Мы объехали сферический мир и вернулись к следам своих мокасин… Это значит, что законы Эвклида для сферы неприемлемы. Шар требует другой, неэвклидовой геометрии.
Подобный пример в свое время заставил Гаусса крепко задуматься. Как же быть тогда с нашим собственным миром? Действительно ли правдоподобные, но совершенно бездоказательные постулаты Эвклида отражают объективную реальность? А может быть, истинные законы геометрии нашего физического мира совсем иные?.. Вот когда понадобилась впервые проверка геометрии опытом. Нет, нет, Карл Фридрих Гаусс вовсе не собирался взрывать систему Эвклида, как это сделал в свое время Галилей со взглядами Аристотеля. У Карла Фридриха был не тот характер. Но истине он служил честно. Истина же требовала проверки.
Потихоньку, воспользовавшись наличием в своем топографическом хозяйстве угломерных инструментов, Гаусс выбирает вершины трех гор, хорошо заметных на горизонте. То были Хохер-Хаген, Инзельсберг и знаменитый Брокен – согласно поверьям, излюбленное место шабаша ведьм. Вершины составили подходящий по величине треугольник. Гаусс измеряет его углы со всей доступной инструментам точностью. Измеряет, считает, снова измеряет. Нет! Никакого отклонения от 180° сумма углов треугольника не давала. Разочарование?
Конечно! Однако Гаусс никому о нем не говорит. Он не уверен в собственной интуиции и неоднократно в письмах к друзьям то выражает свое недоверие Эвклиду, то снова принимает его взгляды безоговорочно. В конце концов он все-таки отказался от постулатов, заменив их фундаментальными величинами, которые можно точно измерить в каждой точке поверхности, воспользовавшись для этого системой изобретенных им криволинейных (гауссовых) координат. Эти измерения сами по себе дают понятие о кривизне поверхности независимо от пространства, в котором эта поверхность находится. Ведь о форме поверхности мы судим, как правило, извне, держа ее в руках или перед глазами.
Так, лист бумаги, лежащий перед вами на столе, – плоскость. А рулон линолеума имеет цилиндрическую поверхность. А как мы убеждаемся в том, что Земля – шар? Когда в Ленинграде вы смотрите на ночное небо, Полярная звезда стоит высоко над головой. Но погрузитесь в самолет. Через три часа вы на берегу Черного моря. Темной южной ночью поищите свою знакомую Полярную звезду, и вы заметите, как сильно сместилась она к горизонту. На море есть и еще одна возможность ощутить округлость земного бока. Уходит от берега корабль. И чем дальше, тем глубже, кажется нам, погружается он в пучину. Сначала исчезает корпус, потом трубы и наконец мачты… Кругла Земля! Третье измерение позволяет нам зафиксировать этот факт из внешнего, окружающего нашу поверхность пространства. Эта кривизна так и называется внешней, и характеризуется она уже знакомым нам радиусом кривизны.
А как быть, если у нас нет никакой информации о внешнем пространстве? Помните, мы же с вами добровольно согласились расплющиться. Пожалуй, наряду с кривизной внешней должна существовать и кривизна внутренняя, характеризующая поверхность из ее собственных внутренних свойств. Конечно, эта характеристика не столь наглядна. Но получается она благодаря измерениям, производимым на самой поверхности.
Лучше же всего характеризовать кривизну любой поверхности так называемой полной, или гауссовой, кривизной. Тут мы подходим к замечательному открытию, которое совершил Гаусс, исследуя искривленные поверхности.
«Великолепная теорема» Гаусса
Давайте вспомним или познакомимся с тем, как обычно геометры характеризуют кривизну искривленной поверхности в окрестностях избранной точки M. Прежде всего они строят плоскость, касательную к поверхности в исследуемой точке, и восстанавливают перпендикуляр. Затем проводят через перпендикуляр множество секущих плоскостей. Каждая из них пересекает поверхность по какой-то кривой, которую вблизи точки M можно считать частью окружности большего или меньшего радиуса. И вот оказывается, что окружности самого большого и самого маленького радиусов лежат всегда во взаимно перпендикулярных плоскостях сечения. Геометры берут величины, обратные этим радиусам (их называют главными радиусами кривизны), и перемножают:
1/R max · 1/ R min = K
Получают, полную, или гауссову, кривизну.
Конечно с точки зрения двухмерных жителей искривленной поверхности касательная плоскость, перпендикуляр к ней, секущие плоскости и все, что выходит за пределы двухмерного мира, – все это недоступно пониманию двухмерного разума, все это для него мираж, нереальность и фантастика. Как же быть?.. И вот Гаусс доказал, что полная кривизна может быть без всяких дополнительных построений выражена через результаты измерений на самой поверхности. Понимаете, независимо от внешнего, окружающего пространства! Это открытие получило название «великолепной теоремы».
Красиво, правда? Любили предки оформлять свои достижения. Любили и умели, нужно отдать им должное.
Величие гауссовой теоремы заключается в том, что полная кривизна абсолютно характеризует поверхность в исследуемой точке. Она доступна жителям двухмерного мира и определяет ту геометрию, которую следует им применять. Плоскуны и плоскатики могут вообще не иметь понятия, что такое «кривизна» собственного мира. Но, получив путем измерений абстрактную величину гауссовой кривизны, равную нулю, они должны пользоваться самым простым типом геометрии – эвклидовой. Если же число К окажется на всей поверхности одинаковым и больше нуля, ряд постулатов Эвклида теряет смысл и нужно применять законы другой – сферической геометрии.
Вообще говоря, «внутренняя» и «внешняя» геометрии могут сильно отличаться друг от друга. Возьмем, например, три геометрические фигуры: плоскость, цилиндр и конус. Внешне выглядят они совсем по-разному. А внутренняя их суть?..
Давайте раздвоимся. Пусть одна наша половинка расплющится и перейдет жить на плоскость, ну хотя бы на лист этой книги. Вторая же часть пусть продолжает сидеть или лежать, держа уцелевшей рукой книгу перед уцелевшим глазом. А теперь аккуратно свернем лист в цилиндр или в конус-кулек и зададим своей расплющенной половинке несколько вопросов.
– Эй, двухмерный, как там у тебя с геометрией?
– Все так же. Как была эвклидовой, такой и осталась…
– Подожди, разве ты не чувствуешь изменений?
– Нет. Гауссова кривизна равна нулю по-прежнему.
И ведь он прав, наш двухмерный двойник. У плоского листа бумаги оба радиуса кривизны, R 1и R 2, имеют бесконечно большое значение. Следовательно, произведение их обратных величин даст нуль. Но нуль можно получить, имея и один радиус бесконечным. Значит, и цилиндр и конус будут обладать внутренней геометрией, неотличимой от эвклидовой на плоскости.
Другое дело, если бы нам пришла в голову фантазия превратить плоский лист бумаги в сферу. Впрочем, вряд ли это кому-либо удастся, не сминая листа в складки или не разрывая его поверхности. Сфера – поверхность совсем другого характера, чем плоскость, и потому ее внутренняя геометрия не такая, как у плоскости. И кривизна ее имеет положительное значение, а не равна нулю.