355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Алексей Шилейко » Информация или интуиция? » Текст книги (страница 8)
Информация или интуиция?
  • Текст добавлен: 6 октября 2016, 18:24

Текст книги "Информация или интуиция?"


Автор книги: Алексей Шилейко


Соавторы: Тамара Шилейко

Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 8 (всего у книги 16 страниц)

КУДА ДЕВАЛАСЬ ИНФОРМАЦИЯ ?

Возможно, у читателя создалось впечатление, что, увлекшись термодинамическими рассуждениями, мы забыли, чему посвящена эта книга. Ничего подобного! Все сказанное до сих пор имеет прямое отношение к нашей главной героине – информации. Ведь до сих пор мы имеем единственное строгое определение информации как энтропии, взятой с обратным знаком. Поэтому утверждение о том, что все процессы в природе направлены в сторону увеличения энтропии, одновременно является утверждением о том, что все процессы в природе направлены в, сторону уменьшения связанной с этими процессами информации. На первый взгляд подобное утверждение представляется весьма правдоподобным. Действительно, все, что мы знаем, рано или поздно забывается. Книги приходят в негодность. Мы имеем лишь весьма приближенное представление о том, что происходило, к примеру, в Древней Греции. А ведь там когда-то бурлила жизнь, и каждый день каждого человека был до отказа заполнен информацией. Где она, эта информация?Да что там древние греки, попробуйте во всех деталях восстановить, о чем вы думали, скажем, на прошлой неделе! Совершенствование техники хранения информации лишь замедляет этот процесс, однако основная тенденция остается неизменной.Всякий раз, когда мы сталкиваемся с каким-то явлением природы, возникает естественное желание разобраться, почему так происходит. Вот и сейчас мы не можем не задать вопрос: почему мир устроен так, что все процессы направлены в сторону уменьшения количества информации?Американский математик У. Гиббс высказал предположение, что во всем виновато время. В механике Ньютона каждая переменная обладает свойством симметрии. Это значит, что если изменения некоторой переменной описывают реально осуществимый физический процесс, то, изменив знак этой переменной на противоположный, мы снова получим описание реально осуществимого физического процесса. Если процесс состоит в том, что револьверная пуля после выстрела движется, скажем, с севера на юг, то, поменяв знак у переменной, описывающей расстояние, мы получим процесс, состоящий в том, что пуля движется с юга на север. Аналогичным образом, если пуля имеет данную, скорость (направленную опять-таки с севера на юг), то, поменяв знак, мы получим ту же скорость, но противоположно направленную. И то и другое вполне реально. Наконец, если в уравнениях небесной механики все знаки поменять на обратные, получится уравнение, описывающее, например, солнечную систему, в которой при наблюдениях с Земли Солнце встает на западе и заходит на востоке. Опять-таки нет ничего такого, чтобы запрещало существование подобной солнечной системы.А вот время, согласно У. Гиббсу, не обладает свойством симметрии. Время всегда направлено в одну лишь сторону, в сторону повышения энтропии и уменьшения информации. Если поменять знак у времени, мы получим вселенную, в которой разбитые чашки склеиваются, а дым превращается в березовые поленья.Однако обвинить во всем время – это значит заменить один вопрос другим. Существует другая теория, в которой все сводится к понятиям порядка и беспорядка. Например, считается, что струя пара, в которой все молекулы движутся, хотя и с разными скоростями, но в одном и том же направлении, может служить примером физической системы, в которой царит порядок.После взаимодействия с лопаткой турбинного колеса молекулы отскакивают от лопатки под различными углами, струя пара превращается в облачко пара, в котором молекулы движутся не только с различными скоростями, но и в самых различных направлениях. Такое облако – пример физической системы, в которой царит беспорядок.Как и в предыдущем случае, подобных примеров можно привести сколько угодно. И основной вывод тогда будет состоять в том, что вселенная стремится от состояний, характеризуемых большей упорядоченностью, к состояниям, характеризуемым меньшей упорядоченностыо, или что время, по У. Гиббсу, может протекать лишь в направлении от порядка к беспорядку. Такую трактовку законов природы вряд ли можно признать удачной. Начнем с того, что она снова не дает ответа на основной вопрос: почему? – а лишь заменяет понятия «состояние с малой энтропией» и «состояние с большой энтропией» понятиями «порядок» и «беспорядок».

ЧТО ЕСТЬ ПОРЯДОК!

Если считать слова «порядок» и «беспорядок» просто синонимами слов «состояние с малым значением энтропии» и «состояние с большим значением энтропии», то и сама теория, провозглашающая стремление к беспорядку, будет правильной постольку, поскольку справедливо второе начало термодинамики, но при этом она и не будет содержать ничего нового.Дело представляется иначе, если использовать понятия «порядок» и «беспорядок» в общепринятом человеческом смысле. Мы говорим, что элементы некоторой системы находятся в порядке, или, иначе, упорядочены. если состояния этих элементов подчиняются какому-либо закону. Например, о планетах солнечной системы мы так и говорим, что они расположены в порядке, характеризуемом тем, что кубы их расстояний от Солнца пропорциональны квадратам периодов обращений. Однако никто не сказал, что закон обязательно должен быть простым. Или, иначе, что степень порядка тем выше, чем проще закон, описывающий этот порядок. Скорей наоборот, чем сложнее закон, тем выше степень упорядоченности.Рассмотрим, к примеру, произведение какого-нибудь великого художника. Можно считать, что картина состоит из отдельных мазков красок. Эти мазки расположены в соответствии со строгими законами, одни из которых определяют соответствие между изображенным па картине и натурой, а другие – соответствие между изображенным на картине и той мыслью, .которую вложил в нее художник. Чем сложнее эти законы, тем, вообще говоря, талантливее мы считаем произведение. Возможно, это последнее утверждение у кого-то встретит возражение, но мы надеемся, что все согласятся хотя бы с тем, что в картине, представляющей собой истинное произведение искусства, степень упорядоченности отдельных элементов все-таки выше, чем, скажем, в картине, изображающей черный квадрат на желтом фоне.Интересно в этой связи проследить одну тенденцию, чаще всего наблюдаемую в научно-фантастической литературе. Прибытие людей на неизвестную планету – ситуация достаточно обычная для подобных произведений. И вот, увидев, например, пейзаж, состоящий из правильных прямоугольников, люди сразу решают, что планета населена разумными существами. Действительно, деятельности человека характерно стремление к правильным геометрическим фигурам, что частично может быть объяснено соображениями целесообразности.Однако вряд ли кто-нибудь будет возражать, что истинного величия архитектура достигает не в каком-нибудь стеклобетонном параллелепипеде, а, скажем, в контурах готического замка, больше всего напоминающих естественный горный пейзаж.Шенноновская теория информации дает возможность строго показать, что наибольшей информативностью, или, другими словами, наибольшим количеством информации, приходящейся на один элемент (символ), обладает сообщение, в котором все символы равновероятны, то есть расположены наиболее произвольным образом.Все сказанное позволяет нам сделать вывод, что теорию, основанную на понятиях порядка и беспорядка, вряд ли можно признать удачной. Мало того, что она не дает ответа на основной вопрос, она к тому же еще заставляет смещать наши представления о порядке и беспорядке.

СНОВА ШАРЫ

А что, если в попытках ответить на вопрос, почему отдельные процессы в природе необратимы, мы привлечем понятие случайности? Ведь любой процесс в больших физических системах, таких, как множество бильярдных шаров или молекул, сводится к последовательности элементарных актов. На бильярдном столе эти акты суть столкновения шаров между собой. Рассмотрим подробнее столкновение шаров, предположив сначала, что оно происходит в строгом соответствии со всеми законами механики.Вот шары движутся по двум сближающимся прямолинейным траекториям, вот они пришли в соприкосновение, разошлись и продолжают двигаться по двум, теперь расходящимся, траекториям. Стоп! Остановили время и пустили его наоборот. Теперь шары сходятся, двигаясь в обратном направлении по траекториям, по которым они расходились, входят в соприкосновение и, если все законы механики выполняются, теперь расходятся именно по тем траекториям, по которым они ранее сходились. В классической механике процесс столкновения шаров обратим. Следовательно, должен быть обратим и любой более сложный процесс, состоящий из отдельных элементарных столкновений.Представим себе теперь, что акт столкновения хотя бы в малой своей части содержит элемент случайности. Тогда, точно зная траектории, по которым шары сближаются, мы сможем лишь приближенно предсказать траектории, по которым они будут расходиться после столкновения.Если акт столкновения шаров содержит элемент случайности, то оно, столкновение, может быть строго описано в терминах теории вероятностей (теория вероятностей представляет собой строгую, а не приближенную теорию именно для случайных событий). В частности, теория вероятностей позволит предсказать величину угла, в пределах которого будут расположены траектории каждого шара после столкновения.Итак, если элементарный акт столкновения двух шаров содержит элемент случайности, то мы наблюдаем такую картину. Два шара движутся по строго определенным сближающимся траекториям, приходят в соприкосновение, и после этого каждый шар произвольно выбирает себе одну из траекторий в пределах данного угла. Как говорил А. Эйнштейн, бог, перед тем как задать тару определенную траекторию, каждый раз бросает кости.Ясно, что такой процесс необратим. ЕСЛИ после столкновения шаров мы поменяем знак у переменной времени, получится следующее. Расходившиеся шары начнут сближаться в точности по тем же траекториям, по которым они до этого расходились, а придя в соприкосновение, они уже не станут двигаться по своим прежним траекториям. Вместо этого каждый шар опять-таки выберет себе одну из траекторий в пределах данного угла. Но необратимость одного элементарного акта, конечно, означает необратимость и всего процесса, состоящего из таких элементарных актов. Более того, после каждого очередного столкновения неопределенность траектории, а следовательно, и положение шаров будут возрастать, И очень скоро наступит такое положение, когда определенно нельзя будет ничего сказать о положении шаров. Любые утверждения могут делаться только применительно к вероятностям положений и состояний.

КТО ЖЕ ПРАВ, А. ЭЙНШТЕЙН ИЛИ Н. БОР!

Теперь ясно, что предположение о случайности отдельных элементарных актов в природе полностью объясняет необратимость происходящих в ней процессов. Вопрос о том, действительно ли имеет место эта самая случайность, то есть опять-таки, кто прав, А. Эйнштейн или Н. Бор?Никакие макроскопические эксперименты не позволяют однозначно ответить на этот вопрос. Мы уже подчеркивали, и имеет смысл повторить еще раз, что второе начало термодинамики описывает лишь некоторое свойство массовых процессов. Причем это свойство проявляется только в вырожденных системах, то есть в системах, где существенным для их протекания является только наличие элемента в данный момент времени и в данной области пространства, и при этом совершенно безразлично, какой именно элемент на самом деле участвует в данном элементарном акте. Стоит, как мы говорили, снять вырождение, и система начнет вести себя совеем по-иному.Для удовлетворения второго начала термодинамики требуется также равновероятность отдельных микросостояний. Однако для такой равновероятности совсем необязательно, чтобы отдельные элементарные акты содержали элемент случайности. Если все элементарные акты будут совершаться в строгом соответствии с законами классической механики, но этих актов будет очень много и совершаться они будут над большим количеством элементов, то очень скоро система станет вести себя так, что все ее состояния окажутся равновероятными, или, во всяком случае, так, как если бы они были равновероятными. Вспомним, что вынести точное суждение по поводу вероятности можно лишь в том случае, если мы наблюдаем систему в течение бесконечного времени, или, что равносильно, наблюдаем бесконечное количество одинаковых систем.Лучшим доказательством сказанного является опыт работы с так называемыми генераторами случайных чисел. В современных ЭВМ реализуются алгоритмы, позволяющие получать последовательности чисел, распределение которых с любой наперед заданной точностью совпадает с соответствующим распределением случайных явлений. И в то же время эти числа получаются с помощью алгоритма, то есть строго детерминированным образом.Утверждение о том, что из случайной природы элементарных актов вытекает необратимость процессов, состоящих из этих актов, имеет и обратную силу. Если большинство процессов в природе действительно необратимы, значит, в их основе лежат случайные события. Казалось бы, нет лучшего доказательства случайной природы элементарных актов. Ведь разбитая чашка не склеивается! Но не станем торопиться. Наблюдая за разбитыми чашками, мы исследуем лишь локальные свойства природы в течение весьма небольших промежутков времени. А для однозначного ответа на вопрос о случайности необходимо убедиться в том, что необратимость процессов имеет место всегда, в сколь угодно больших областях пространства и в течение сколь угодно больших промежутков времени.Последняя фраза наводит нас на мысль: а не стоит ли поискать ответ на наш вопрос в космологии? Существует космологическая теория, которую впервые начал развивать советский ученый А. Фридман. Согласно этой теории все галактики, составляющие вселенную, разбегаются в разные стороны, причем скорость, с которой удаляется от наблюдателя каждая галактика, пропорциональна расстоянию от этой галактики до наблюдателя. Весьма интересно, что это утверждение справедливо независимо от того, где находится наблюдатель. Советуем читателю как следует поразмышлять над сказанным. Такие размышления позволят ему подметить весьма интересные свойства геометрии нашей вселенной.Нас интересует, однако, другое. В данный исторический период галактики разбегаются. А что будет дальше? В теории Фридмана содержится ответ на этот вопрос. Если средняя плотность вещества во вселенной меньше некоторого критического значения, галактики будут продолжать разбегаться. Такой процесс расширения вселенной, будучи необратимым, и представляет собой окончательное доказательство (на сей раз безапелляционное) случайности элементарных актов. Но это лишь в том случае, если средняя плотность вещества действительно меньше критического значения. Если это не так, то на смену периоду разбегания обязательно .придет период сближения. Галактики начнут двигаться по направлению друг к другу, и так будет продолжаться до тех пор, пока все вещество во вселенной не займет бесконечно малый объем, практически стянется в точку. Затем последует взрыв и все начнется сначала.Теория Фридмана практически является на сегодня общепринятой, хотя бы в той ее части, что вселенная возникла из первичного взрыва. Этому есть много экспериментальных доказательств, в частности так называемое реликтовое излучение. Что же касается прогноза на будущее, то здесь, как говорится, бабушка надвое сказала. Современные подсчеты средней плотности вещества во вселенной дают цифру, чуть меньшую критического значения. Однако ни из чего не следует, что ученые учли все вещество. Вполне возможно, что во вселенной существуют объекты, о которых мы пока Просто ничего не знаем. Ведь только недавно были обнаружены, скажем, черные дыры. Есть все основания предполагать, что истинная средняя плотность вещества все-таки больше критической. Вселенная не исчезнет бесследно, а возродится в очередном первичном взрыве, и так будет повторяться до бесконечности.С позиций вопросов, рассматриваемых в этой книге, нас больше всего интересует тот момент, когда все вещество вселенной стянется в точку. Энтропия точки (одного бильярдного шара), очевидно, равна нулю. Чему же равно количество информации, содержащейся в точке? Это количество информации равно значению энтропии вселенной в тот момент, когда она достигает своего максимального значения, иначе говоря, в тот момент, когда галактики перестанут разбегаться и вот-вот начнут сближаться. Вряд ли стоит спрашивать, о чем эта информация. О всей структуре будущей вселенной, и в том числе о всех чашках, которые возникнут в будущем взамен разбитых сегодня.Так выглядит представление об информации с позиций современной термодинамики и космологии.

ГАРМОНИЯ СФЕР

Коли уж мы упоминали выше труды древнегреческих ученых и философов, нельзя обойти молчанием одного из наиболее легендарных среди них, а именно Пифагора. Как математик Пифагор, несомненно, представляет собой особо яркую фигуру для всего рассматриваемого периода древнегреческой науки. Нельзя сказать то же о его философских воззрениях, хотя пифагорейство есть едва ли не самое долговечное философское направление изо всех когда-либо существовавших в Европе.В основу своих воззрений на природу вещей Пифагор и его последователи приняли магию чисел. Мир основан на гармонии, учили они. Иначе говоря, между всеми явлениями природы должны существовать простые численные соотношения. Законам простых численных соотношений должно подчиняться и строение вселениой. В те времена считалось, что каждая планета прикреплена к твердой сфере, движущейся определенным образом вокруг Земли. Пифагор утверждал, что радиусы этих сфер находятся также в простых численных соотношениях. Эти соотношения получили название гармонии сфер.Ясно, что после построения гелиоцентрической системы само понятие небесных сфер, а следовательно, и всякие рассуждения о существующей между ними гармонии потеряли смысл. Однако вопрос о гармонии сфер получил неожиданное продолжение. В 1766 году некто И. Тициус занимался переводом с французского языка на немецкий книги знаменитого философа и естествоиспытателя Ш. Бонне «Созерцание природы». Между шестым и седьмым абзацами в главе четвертой первой части этой книги И. Тициус включил дополнительный текст:«Если обратить внимание на расстояния между соседними орбитами планет, то можно заметить, что эти расстояния увеличиваются почти пропорционально радиусам самих орбит. Если принять расстояние Сатурна от Солнца за 100 единиц, то Меркурий находится от Солнца на расстоянии 4 единиц, Земля 4 + 6 = 10 единиц, Марс 4+ 12= 16 единиц. Но при переходе от Марса к Юпитеру имеется отклонение от этой точности. После Марса такой прогрессии отвечает расстояние в 4 + 24 = 28 единиц, но на этом расстоянии мы не видим ни большой планеты, ни планетного спутника. Неужели создатель оставил это пространство пустым? Нив коем случае! Уверенно держу пари, что это место занимают еще не открытые спутники Марса; позвольте добавить, что Юпитер, возможно, также имеет спутников, которые еще не наблюдались. Далее мы открываем для себя положение Юпитера, отвечающее 4 + 48 = 52 единицам; Сатурн же находится на расстоянии 4 + 96 – = 100 единиц. Какое удивительное соотношение!»Трудно сказать, почему И. Тициус опубликовал эти соображения в столь скромной форме: не в виде самостоятельной статьи или хотя бы примечания к переводу книги Ш. Бонне. Определить авторство в данном случае мог только человек, сличающий французский и немецкий тексты. Естественно, что сначала никто не обратил внимания на закон Тициуса.Во втором издании перевода, вышедшем через шесть лет, И. Тициус поместил тот же самый текст уже в виде примечания переводчика. Как раз в это время И. Боде заканчивал подготовку второго издания своей книги «Руководство по изучению звездного неба». И. Боде обнаружил примечание И. Тициуса и был глубоко поражен согласием между этим законом и радиусами орбит известных в то время шести планет. И. Боде тотчас же уверовал в этот закон и включил его в текст своей книги в качестве примечания. Поскольку авторитет И. Бо-де как ученого был неизмеримо выше авторитета скромного переводчика И. Тициуса, закон получил название закона Боде и лишь в дальнейшем – закона Тициуса – Боде.

СУДЬБА ЗАКОНА

В начале закону Тициуса – Боде не придавали большого значения. Положение, однако, изменилось после того, как в 1781 году В. Гершель открыл «любопытный объект – либо туманную звезду, либо, возможно, комету», который при дальнейшем изучении он счел кометой, так как объект перемещался. Несколькими месяцами позже А. Лексель пришел к выводу, что объект, открытый В. Гершелем, является планетой, и опубликовал первые вычисления ее круговой орбиты. Планету назвали Ураном (название, кстати, предложил И. Боде). Каково же было удивление астрономов, когда оказалось, что среднее расстояние новой планеты от Солнца отклоняется от числа 196, предсказываемого законом Тициуса – Боде, всего лишь на два процента. Закон Тициуса – Боде оказался в центре внимания: одно дело расположить в некотором порядке уже известные числа, а другое дело предсказать существование еще неизвестной планеты.Астрономы сразу обратили внимание на то, что согласно закону Тициуса – Боде между Марсом и Юпитером (если, конечно, этот закон справедлив) должна быть еще одна планета. Начались усиленные поиски, и вот в январе 1801 года Дж. Пиацци открыл объект, получивший название Цереры. Церера была первой среди множества мелких планет, составляющих так называемый пояс астероидов. Среднее расстояние от Цереры до Солнца оказалось равным 27,67, что очень хорошо согласовывалось со значением 28, отвечающим закону Тициуса– Боде. Затем была открыта малая планета Паллада, за ней последовали Юнона в 1804 году и Веста в 1807-м. Правда, среднее расстояние от Паллады до Солнца оказалось равным 26,70, что уже с большой натяжкой можно было согласовать с законом Тициуса – Боде. Объяснение не замедлило появиться. Цереру, Палладу, Юнону, Весту и другие открытые вслед за ними объекты было решено считать осколками ранее существовавшей и взорвавшейся по неизвестной причине большой планеты.Закон Тициуса – Боде переживал настоящий триумф. Шутка ли! Количество известных планет за столь небольшой промежуток времени увеличилось с шести до восьми (если, как уже говорилось, Цереру, Палладу, Юнону и Весту считать частями одной большой планеты), и обе новые планеты попали именно на те места, которые им предназначались законом Тициуса – Боде.Но продолжался этот триумф – увы! – недолго. Многочисленные наблюдения за поведением планеты Уран, а также за орбитами комет, в частности знаменитой кометы Галлея, с уверенностью говорили о том, что должна существовать по меньшей мере еще одна планета, расположенная за Ураном. Все попытки обнаружить эту планету там, где она должна быть согласно закону Тициуса – Боде, то есть на расстоянии 38,4 астрономической единицы от Солнца, не давали никакого результата. Такую планету несколько раз «находили», но тут же теряли. Кончилось тем, что Ж. Леверье, один из многих, кто проводил расчет, пользуясь в том числе и законом Тициуса – Боде, обратился к астроному И. Галле с личной просьбой поискать планету в определенном месте небосвода. В первую же ночь своих наблюдений 23 сентября 1846 года, И. Галле обнаружил планету почти в том самом месте, которое было предсказано.А вот все, что происходило дальше, нельзя назвать иначе, как иронией судьбы. Планета действительно была найдена и получила название Нептун, но, как показали расчеты, единственным параметром, согласующимся с вычислениями Ж– Леверье, оказалась ее истинная долгота на 1 января 1847 года. Для большой полуоси орбиты было получено значение 30,25 астрономической единицы, что уже ни с какими натяжками нельзя считать близким к величине 38,4, следующей из закона Тициуса– Боде. Окончательный удар по закону был нанесен после открытия в 1930 году планеты Плутон, среднее расстояние которой от Солнца составляет 39,5 астрономической единицы вместо 77,2, следующих из закона Тициуса – Боде.


    Ваша оценка произведения:

Популярные книги за неделю