412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Алексей Шилейко » Информация или интуиция? » Текст книги (страница 13)
Информация или интуиция?
  • Текст добавлен: 6 октября 2016, 18:24

Текст книги "Информация или интуиция?"


Автор книги: Алексей Шилейко


Соавторы: Тамара Шилейко

Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 13 (всего у книги 16 страниц)

ЕСТЬ ЛИ ПОЛЕ?

Имеет смысл задержать внимание читателя еще на одном обстоятельстве. Мы говорили, что согласно теории А. Гурвича, кроме трех носителей информации в клетке – хромосом, цитоплазмы и оболочки, – существует еще четвертый носитель – поле, которое А. Гурвич поспешил окрестить биологическим. Тому положению, которое сейчас занимает биология среди прочих наук, она во многом обязана широко развившемуся в последние годы использованию математических методов, а также методов смежных наук – физики и физической химии. К сожалению, мы констатируем, однако, что специалисты-биологи еще не достигли столь полного слияния биологического мышления с математическим и физическим, какое можно наблюдать, например, у представителей различных инженерных специальностей.Одно из следствий этого состоит, в частности, в том, что самые простые физические явления, если только они происходят в биологических системах, сразу получают приставку «био». Мы только и слышим, что о биотоках, биопотенциалах, биополях и т. п. Дело, конечно, не в названии, но, с другой стороны, стоит назвать обычный электрический ток биотоком, как сразу же возникает мысль, что биоток (зачем-то ведь он получил приставку «био») по сравнению с обычным электрическим током обладает еще какими-то дополнительными, сугубо биологическими свойствами. А отсюда один шаг и до всякого рода шарлатанств вроде «видения» пальцами.Магистральный путь развития биологии как раз и направлен в сторону объяснения практически всех биологических явлений с позиций нормальных физики и химии. В частности, биотоки и биопотенциалы возникают в организме в результате обычных химических явлений в электролитах, разделенных клеточными оболочками – мембранами, таких же точно, как те, что происходят в некоторых видах электрических батарей и аккумуляторов. Приставка «био» здесь не вносит ничего нового.Попробуем с этих позиций рассмотреть вопрос о клеточных биополях. Во-первых, еще несколько фактов. По наблюдениям польского ученого Тарковского, если из двух клеток зародыша мыши оставить одну, то такой зародыш развивается нормально. До середины беременности он вдвое меньше обычного, затем внезапно наступает период резкого роста, и к моменту рождения он неотличим от любого другого новорожденного мышонка.Можно пойти дальше, то есть разрушить у четырехклеточного зародыша три из четырех клеток или взять восьмиклеточный зародыш и разрушить у него семь клеток и проследить далее судьбу одной клетки, оставшейся живой. Биологи Мур, Эдамс и Роусон получили нормальных плодовитых кроликов из одиночных клеток, оставшихся от двух, четырех или восьмиклеточных эмбрионов, пересаженных затем в матку крольчихи – приемной матери.Эти данные, казалось бы, свидетельствуют о том, что, во всяком случае, на стадии восьмиклеточного зародыша все клетки полностью равноправны независимо от занимаемого ими места. Но существуют и другие факты. У млекопитающих наиболее раннее проявление дифференцировки клеток явственно обнаруживается еще на стадии, когда зародыш представляет собой шар (бластоцисту). Уже на этой ранней стадии развития есть два типа клеток: более мелкие округлые клетки, расположенные внутри бластоцисты, из которых в дальнейшем образуется тело зародыша, и крупные уплощенные клетки, окружающие бластоцисту по поверхности, из которых развиваются плацента и оболочки зародыша.Тарковский и его сотрудники провели интересный опыт. Если только одной из клеток двухклеточного мышиного зародыша дать возможность развиваться, то она обычно образует типичную бластоцисту с нормальной дифференцировкой на внутренние и наружные клетки. Но если выделить одну клетку из четырехклеточного зародыша, то иногда внутренние клетки вообще не развиваются и вместо бластоцисты образуются полые шары, состоящие только из наружных клеток, которые не могут продолжать дальнейшее развитие. То же самое наблюдается (только еще чаще, в 80 процентах случаев), если культивировать одну клетку, изолированную из восьмиклеточного зародыша мыши. Эти факты свидетельствуют об обратном. Получается, что уже на четырехклеточной стадии клетки определенным образом дифференцированы. Правда, весьма существенное значение имеет здесь слово «иногда».Наиболее правдоподобным представляется следующее объяснение. Мы знаем, что хромосомы клеточного ядра содержат полную программу создания будущего организма во всех его деталях. Только что рассмотренные факты заставляют нас пойти дальше и предположить, что на хромосомах записаны отдельные подпрограммы, каждая из которых описывает развитие данной зародышевой клетки в одну из окончательных форм, то есть в нервную клетку, клетку кожи, клетку печени и т. д.Повторяем, каждая клетка зародыша, равно как и каждая уже специализированная клетка организма, содержит полный комплект таких подпрограмм.Та или иная подпрограмма включается в зависимости от внешних условий, а еще конкретнее – в зависимости от сигналов, поступающих в ядро от цитоплазмы и оболочки. Естественнее всего предположить, хотя стопроцентной уверенности в этом нет, что эти сигналы, как и прочие сигналы, включающие те или иные подпрограммы, имеют природу ферментов, то есть химическую. К слову сказать, включение различных подпрограмм в зависимости от внешних условий – это типичный прием, используемый программистами ЭВМ.Два процесса протекают одновременно. В зависимости от положения, занятого клеткой в бластоцисте, включается та или иная подпрограмма, а наличие той или иной работающей подпрограммы определяет места, занимаемые в дальнейшем потомством этой клетки.Значит ли это, что мы полностью отвергаем участит биополя в процессе дифференцировки клеток?Нет, не значит. Жизнедеятельность клетки состоит из множества чрезвычайно сложных физико-химических процессов. Нет ничего необычного в том, что при протекании некоторых из этих процессов, связанных с раз личной перегруппировкой атомов в молекулах, отдельные атомы возбуждаются и, приходя затем в основное состояние, излучают фотоны. Более того, поскольку молекулы белков и тем более РНК и ДНК имеют сложную и строго определенную геометрию, нет ничего необычного в том, что эти фотоны могут иметь определенные преимущественные направления движения. Наконец, нет ничего необычного в том, что фотоны воспринимаются другими клетками и инициируют там процесс образования того или иного фермента или же непосредственно воздействуют на хромосомы. Мы ведь знаем, что влияние света на направление процессов, происходящих в клетках, – факт, весьма распространенный в биологии (образование хлорофилла у растений).Однако сумма накопленных в биологии фактов свидетельствует скорее всего о том, что если и существует такая фотонная связь между клетками, то она не является единственным фактором, а действует наряду с другими, например, такими, как непосредственный контакт оболочек двух клеток. И уж конечно, нет никаких оснований называть фотоны биологическими, а образуемое ими поле – биополем только по той причине, что эти фотоны испускаются атомами, входящими в состав молекул живой клетки.Вообще все процессы, происходящие в живом организме, суть обычные физико-химические процессы, и они могут быть описаны и объяснены с позиций основных законов физики и химии. Только такая позиция позволяет биологии развиться в современную точную пауку. Что же касается некоторых, казалось бы, необъяснимых фактов (главным из них является сам факт существования живых организмов!), то как раз информационная теория систем позволяет снять с них последние покроим тайны. Наоборот, продолжая настаивать на существовании каких-то сугубо биологических явлений и закономерностей, мы лишь удлиняем путь, ведущий к но знанию биологических систем.

ЭНТРОПИЯ живого

Заканчивая главу, посвященную информации в биологических системах, мы вправе задать вопрос: проливает ли все то, что мы узнали, какой-либо дополнительный свет на то, в каких единицах следует измерять количество информации?Каждая клетка и каждый живой организм – это физическая система, которая реализуется одним-единственным способом (система, состоящая из намагниченных и нумерованных шаров). Статистический вес такой системы равен единице, а энтропия нулю. Поэтому применительно к биологическим системам просто нельзя использовать в качестве меры количества информации статистический вес. Правда, если статистический вес, скажем, системы «человек» равен единице, то система «человечество» может быть реализована огромным числом различных способов. Число способов в данном случае равно числу возможных сочетаний из общего количества людей, населяющих Землю (не существует двух полностью одинаковых людей так же, как не существует двух полностью одинаковых клеток). Это огромное число. И все же оно исчезающе мало по сравнению с количеством способов, которым может быть реализовано некоторое состояние газа, занимающего сравнимый объем.Отсюда окончательный вывод: методы, основанные на статистическом весе, и вообще энтропийные методы не применимы для оценки количества информации в биологических системах. Такой вывод был подготовлен всем ходом наших рассуждений.Хуже другое. В биологических системах нельзя также использовать в качестве меры количества информации количество энергии или совершенной механической работы, поскольку даже применительно к клетке энергетические соотношения не являются основными, определяющими ее жизнедеятельность. В этой главе нам придется ограничиться таким малооптимистическим выводом.

С БОЛЬШИМ ЗАПАСОМ

Последний вопрос, который мы хотим рассмотреть в этой главе, это вопрос о надежности биологических систем. Современные наука и техника знают два пути увеличения надежности. Один из них предусматривает увеличение надежности системы за счет увеличения надежности составляющих ее элементов. Этот путь быстро теряет свое значение по мере увеличения сложности системы. Действительно, как бы ни мала была вероятность выхода из строя одного какого-либо элемента, вероятность выхода из строя системы быстро растет с увеличением числа элементов. Для организмов, состоящих из многих миллиардов отдельных клеток, такой путь явно непригоден.Второй путь, наиболее широко используемый в настоящее время, – это так называемое резервирование. В сложных системах рассматривают отдельно аппаратное и информационное резервирование.Наконец, еще один принцип из числа тех, на которых основывается теория надежности, состоит в том, что чем большую роль играет данная часть системы для работы всей системы, тем в большей степени она должна быть защищена от возможных вредных воздействий окружающей среды.В живых организмах широко используются все три метода повышения надежности. Метод аппаратного резервирования можно проиллюстрировать хотя бы примерами с зародышами, когда разрушение семи восьмых зародыша все-таки не приводит к изменениям конечного результата. То же самое справедливо применительно к взрослым организмам. Известно, что даже при очень больших кровопотерях организм человека продолжает функционировать. Кроме того, включаются в действие механизмы «саморемонта», достаточно быстро восстанавливающие нормальное количество крови.Однако самая большая избыточность – информационная. Мы уже не раз говорили, что организм содержит столько своих собственных чертежей, сколько в нем имеется клеток. Это позволяет, в частности, при местных поражениях тут же производить восстановление (заживление раны, например), не обращаясь при этом к некоему центральному архиву, как это наверняка имело бы место в системах технических.Наконец, очень явно просматривается в биологических системах защита главных хранилищ информации. Такими хранилищами являются хромосомы в клеточных ядрах. Вспомним теперь, что хромосомы сами не участвуют в процессах синтеза белка. Они участвуют лишь в создании собственных копий – молекул РНК. Эти копии затем уже используются в процессе синтеза. Если при взаимодействии с веществами цитоплазмы одна такая копия окажется разрушенной, соответствующая информация все равно сохранится в хромосоме.И еще одна весьма интересная деталь. Все клетки организма в процессе жизнедеятельности потребляют энергию. В технических системах, как правило, энергия поступает к системе в одном каком-либо месте и затем по специальным каналам распределяется между отдельными элементами. Следовательно, каналы передачи энергии также оказываются источниками отказов. Для радиотехнических систем и особенно систем, занимающихся переработкой информации (ЭВМ), большая доля отказов приходится как раз на неисправности цепей питания и помехи, распространяющиеся по этим цепям.В организме человека энергия передается общим кровотоком. При этом каждая клетка находится как бы в энергетической ванне – она окружена некоторым запасом энергии. Даже временная приостановка кровотока не приводит к немедленному прекращению функционирования клетки. Этому обстоятельству мы обязаны, в частности, возможностью реанимации в течение достаточно длительных промежутков времени после клинической смерти.

КАСТРЮЛЯ

Что общего между технической информационной системой и кастрюлей, стоящей на плите? Энтропия системы «комната плюс кастрюля» максимальна тогда, когда повсюду в комнате установится одна и та же температура. Нагревая кастрюлю, мы. тем самым создаем разность температур. При этом появляется возможность выполнения механической работы, энтропия системы оказывается меньше максимально возможной и, следовательно,, система «комната плюс кастрюля» получает некоторую порцию информации. Термодинамическим системам и, в частности, тепловым двигателям мы посвятили в нашей книге целую главу, и не было бы никакой нужды возвращаться к ним здесь, если бы не одно на первый взгляд незначительное обстоятельство. Мы знаем, что для приведения в действие теплового двигателя, неважно какого: паровой машины, турбины или двигателя внутреннего сгорания, – необходимо что-то нагреть. В тепловых двигателях это «что-то» называют рабочим веществом. Но совершенно такой же эффект будет получен, если мы не нагреем, а, наоборот, охладим рабочее вещество. Значит, чтобы тепловая энергия могла преобразоваться в энергию механическую или в другие более совершенные виды энергии, необходима разность температур. Именно разность. При этом совершенно неважно, чему равны уменьшаемое и вычитаемое.Если температура окружающей среды равна, к примеру, плюс 20 градусов и мы имеем возможность в некотором заданном объеме поддерживать температуру минус 50 градусов, то, воспользовавшись этим, можно построить паровую машину в точности такую же, как описанная во второй главе. Единственное отличие будет состоять в том, что вместо воды мы возьмем в качестве рабочего вещества какую-нибудь жидкость, кипящую при минус 10 градусах. Таких жидкостей, особенно среди органических веществ, можно найти сколько угодно.Нагреваясь до температуры окружающей среды, жидкость будет испаряться, перегретый пар под большим давлением будет поступать в цилиндр и совершать механическую работу. Отработавший пар следует теперь направить в холодильник, где он сконденсируется, снова превратится в жидкость и т. д. Количество произведенной таким образом работы будет пропорционально разности температур.С другой стороны, чтобы охладить некоторое количество вещества до температуры, меньшей температуры окружающей среды, необходимо затратить механическую работу или определенную порцию энергии другого, более совершенного вида. Все это представляет собой азы термодинамики и известно каждому из курса средней школы. По такому принципу работает любой домашний холодильник.И все же тот факт, что для охлаждения ниже температуры окружающей среды в той же степени требуется затрата энергии, как и для нагревания, менее обычен и поэтому часто забывается. В частности, все сказанное выше упорно игнорируют некоторые изобретатели так называемых тепловых насосов.

ТЕПЛОВЫЕ НАСОСЫ

Что такое тепловой насос? Его действие основано на хорошо известном в физике твердого тела эффекте Зеебека – Пельтье. Если нагревать область контакта двух различных металлов или полупроводников, возникает ЭДС, которая так и называется термо-ЭДС. Это явление было открыто немецким физиком Зеебеком еще в 1821 году и сейчас широко используется главным образом для создания различных измерителей температуры. Известно и обратное явление, открытое французским физиком Ж. Пельтье в 1&34 году. Если пропустить электрический ток через контакт двух различных металлов или полупроводников, то область контакта будет нагреваться или охлаждаться в зависимости от на правления тока.Можно, наконец, составить цепочку из чередующихся металлических (или полупроводниковых) стержней двух типов. Тогда при данном направлении тока, протекающего через цепочку, например, все четные спаи будут нагреваться, а все нечетные – охлаждаться. Поместив все нечетные спаи внутри теплоизолированной камеры, мы получим обычный холодильник. Воздух внутри камеры будет охлаждаться, пока не достигнет некоторой равновесной температуры, а контакты, расположенные вне камеры, будут нагреваться. Тепло от наружных контактов будет отводиться окружающим воздухом, и они тоже приобретут некоторую постоянную равновесную температуру. Полученная таким образом разность температур окажется пропорциональной мощности, затрачиваемой от источника тока, протекающего по цепочке стержней.Все это опять-таки общеизвестно. Более того, мощность, расходуемая подобным холодильником, будет в точности равна, например, мощности, расходуемой обычным холодильником с компрессором, если пренебречь некоторыми потерями, имеющими место при работе компрессора.Авторы тепловых насосов предлагают поступать так. Холодные контакты стержней вынести на улицу, где окружающий воздух имеет температуру, скажем,—10° С, а горячие контакты поместить в комнате. При пропускании тока горячие контакты будут нагреваться, а холодные охлаждаться. Поскольку в комнате расположены только горячие контакты, воздух в комнате будет нагреваться до тех пор, пока не установится равновесие.Все это пока совершенно правильно. Таким образом действительно можно нагреть комнату, причем количество затраченной электроэнергии будет в точности равно количеству, потребному для нагревания данного объема воздуха с помощью любого преобразователя. Это легко посчитать. Количество энергии, потребляемой от источника нагревателем, основанным на эффекте Пельтье, в единицу времени, равно произведению силы протекающего тока на сумму термо-ЭДС всех контактов (наряду с эффектом Пельтье, как и следует ожидать, здесь имеет место и эффект Зеебека).Сумма термо-ЭДС пропорциональна разности температур. При данной величине тока количество затраченной энергии пропорционально разности температур вне зависимости от того, помещаем ли мы горячие спаи в теплоизолированный объем (комнату) и таким образом нагреваем его (холодные спаи при этом поддерживаются при температуре окружающей среды) или, наоборот, помещаем холодные спаи в теплоизолированный объем (холодильную камеру), а горячие поддерживаем при температуре окружающей среды.

ВЕЧНОЕ ДВИЖЕНИЕ!

Повторяем еще раз, все это азбука термодинамики, и мы тратим на это время только потому, что в последнее время в литературе начали проскальзывать следующие рассуждения. Представим еще раз цепочку стержней, холодные контакты которых расположены на улице, а горячие – в комнате. Авторы тепловых насосов рассуждают так. При протекании тока горячие контакты нагреваются, а холодные охлаждаются. Охлаждаясь, холодные контакты отнимают определенное количество тепла от окружающей среды. Это количество тепла «перекачивается» к горячим контактам, а от них – в комнату.Все это опять-таки верно, но при одном совершенно обязательном условии. Необходимо, чтобы количество затраченной при этом электрической энергии было бы в пределе равно, а на самом деле с учетом необратимости процессов больше количества перекачанного таким образом тепла. А вот в статье И. Когана «От чугунного радиатора до теплового насоса», помещенной в десятом номере журнала «Наука и жизнь» за 1973 год, написано следующее:«Энергетические затраты на «перекачку» тепла невелики. Расчеты показывают, что при температуре + 17° С в комнате и +7° С на улице на один киловатт-час электрической энергии можно получить почти 30 киловатт-часов тепла».Мы, правда, не знаем, что точно имел в виду И. Коган под словом «тепло», но если он имел в виду то же самое, что обычно понимается в термодинамике под словами «количество тепла», то получается совершенно изумительная картина. Даже с помощью «плохих» преобразователей 30 киловатт избыточного тепла можно преобразовать, скажем, в 2 киловатта электрической энергии. Из них один киловатт затрачивается на работу теплового насоса, а второй – на создание вечного движения. Описание вечного двигателя в 70-х годах нашего столетия, согласитесь, – это здорово!Ошибка этого и подобных ему рассуждений кроется в следующем. Представим себе две одинаковые комнаты и цепочку стрежней, расположенных так, что все холодные спаи помещены в одной комнате, а горячие – в другой. При прохождении тока одна комната будет нагреваться, а вторая – охлаждаться. Количество затрачен ной электрической энергии окажется в точности равным сумме энергии, необходимой на нагревание одной комнаты, и энергии, необходимой для охлаждения второй комнаты. Пусть, затратив определенное количество энергии, мы достигли равновесного состояния, характеризуемого, например, температурой 4-20° С в одной комнате и —20° С в другой. Теперь вместо второй комнаты вынесем холодные контакты на улицу. Пусть температура окружающего воздуха на улице равна —10° С и благо даря хорошему теплообмену температура холодных спаев поддерживается при той же температуре. Тогда при тех же затратах электрической энергии температура в комнате, где расположены горячие контакты, установится + 30° С (напомним, что количество энергии пропорционально разности температур).Такое кажущееся увеличение температуры и является причиной не только для рассуждений, подобных приведенному выше рассуждению И. Когана, но и для экспериментальных «подтверждений» теории тепловых насосов. Просто вынося холодные спаи на улицу, мы не затрачиваем дополнительной энергии на охлаждение холодной комнаты. Измерить же точно количество выделившегося тепла очень трудно из-за несовершенной теплоизоляции нагреваемых помещений.Мы должны твердо запомнить одно: электрические нагреватели и холодильники – это в принципе одно и то же. И в том и в другом случае, затрачивая одинаковое количество энергии, мы получаем одинаковую разность температур и, следовательно, одинаковое количество информации.В этой главе мы, кроме всего прочего, будем всякий раз подводить своеобразные итоги всему сказанному в книге. Поэтому, прощаясь сейчас не только с тепловыми насосами, но и вообще с термодинамическими системами, можно сказать следующее. Шенноновская мера количества информации справедлива для систем, рассматриваемых в классической физике, и, в частности, для термодинамических систем. В силу необратимости отдельных процессов в термодинамике количество информации, измеренное по Шеннону, всегда оказывается несколько меньше максимально возможного. Лишь в случае полной равновероятности микросостояний количество информации достигает максимума.


    Ваша оценка произведения:

Популярные книги за неделю