Текст книги "Информация или интуиция?"
Автор книги: Алексей Шилейко
Соавторы: Тамара Шилейко
Жанр:
Научпоп
сообщить о нарушении
Текущая страница: 7 (всего у книги 16 страниц)
ЗАДАЧИ КАВАЛЕРА де МЕРЕ
Первая состояла в том, чтобы узнать, сколько раз надо метать две кости, чтобы надеяться получить наибольшее число очков, то есть двенадцать. Как мы скоро увидим, эта задача весьма простая.Вторая задача много сложнее. Страстный игрок, де Мере чрезвычайно интересовался следующим вопросом: каким образом разделить ставку между игроками в случае, если игра не была окончена?Пытаясь решить, задачи де Мере (главным образом вторую из них), Б. Паскаль в 1654 году начал переписываться с другим крупнейшим французским математиком – П. Ферма. Не будучи знакомы лично, благодаря переписке они стали близкими друзьями. П. Ферма решил обе задачи с помощью придуманной им «теории сочетаний». Решение Б. Паскаля было значительно проще. Он исходил из чисто арифметических соображений. Нисколько не завидуя П. Ферма, Б. Паскаль, наоборот, радовался совпадению результатов и писал ему: «С этих пор я желал бы раскрыть перед вами свою душу, так я рад тому, что наши мысли встретились. Я вижу, что истина одна и та же в Тулузе и в Париже».Приведем вкратце решение Б. Паскаля для второй задачи кавалера де Мере. Предположим, говорит Б. Паскаль, что играют два игрока и что выигрыш считается окончательным после выигрыша одним из них трех партий. Пусть ставка каждого игрока составляет 32 луидора, и предположим, что первый уже выиграл две партии (ему не хватает одной), второй выиграл одну (ему не хватает двух). Им предстоит сыграть еще партию. Если ее выиграет первый, он получит всю сумму, то есть 64 луидора; если второй, у каждого будет по две выигранные партии, шансы обеих будут равны, и в случае прекращения игры каждому, очевидно, надо дать поровну.Итак, если выиграет первый, он получит 64 луидора. Если выиграет второй, то первый получит лишь 32 луидора. Поэтому, если оба согласны не играть предстоящей партии, то первый вправе сказать:– Тридцать два луидора я получу во всяком случае, даже если я проиграю предстоящую партию, которую мы согласились признать последней. Стало быть, 32 луидора мои. Что касается остальных 32, может быть, их выиграю, я, может быть, вы. Поэтому разделим сомнительную сумму пополам!Значит, если игроки разойдутся, не сыграв последней партии, то первому надо дать 48 луидоров, или же три четверти всей суммы, второму 16 луидоров, или одну четверть, из чего видно, что шансы первого из них на выигрыш втрое больше, чем второго (а не вдвое, как можно было бы подумать при поверхностном рассуждении).Конечно, все это пока еще не математика, а скорее рассуждения, основанные на здравом смысле. Но вот что главное – здесь делается попытка оценить количественно то, что, казалось бы, по самой своей сути никакой количественной оценке не подлежит. И до Б. Паскаля ничего подобного никому и в голову не приходило. Математики всегда гордились (да и сейчас гордятся) именно тем, что выводы их науки справедливы всегда, при любых условиях. Дважды два, говорят они; всегда четыре – и сегодня, и через миллион лет, и на Земле, и на любой другой планете. А тут – на тебе! Спрашиваете вы, допустим, у некоего специалиста: будет ли завтра дождь? Специалист отвечает, мол, девяносто шансов из ста за то, что дождя не будет, а десять шансов за то, что дождь пойдет. Как это понимать? Особенно в том случае, если дождь все-таки пойдет. Куда тогда подеваются эти самые девяносто шансов?И вот оказывается, что человеческому гению под силу даже такая задача: применить точные количественные меры именно там, где по самой сути ничего точного, казалось бы, быть не может. Конечно, большую роль здесь сыграло и то, что к этому времени человечеству уж очень нужны были такие методы.И здесь невозможно удержаться, чтобы не поудивляться еще раз, до чего же все-таки везет дуракам! Ведь кавалер де Мере, формулируя свои задачи, явно ни о чем, кроме игры в кости, не думал. А что получилось? .Возьмем хотя бы первую задачу: сколько раз надо метать кости, чтобы надеяться получить наибольшее число очков? Заметьте, что, например, вопрос, сколько надо бросить в землю семян, чтобы надеяться получить столько-то растений, или вопрос, сколько надо выпустить снарядов, чтобы надеяться поразить цель, это та же самая первая задача кавалера де Мере. Вряд ли нужно добавлять еще что-нибудь для доказательства важности подобных задач. Обратите также внимание на словечко «надеяться». Оно имеет очень большое значение, так как входит в терминологию науки теории вероятностей.
ВЕРОЯТНОСТЬ И ЧАСТОТА
Итак, теория вероятностей – это раздел математики, занимающийся вычислением количественных оценок в условиях, когда некоторые события могут или наступить, или не наступить, и при этом считается, что отсутствует даже принципиальная возможность точно предсказать наступление каждого такого события. Подобные события получили название случайных. Случайное событие представляет собой основной объект изучения в теории вероятностей. Любой из вас приведет какое угодно количество примеров случайных событий, а мы пока что воздержимся от этого.Первое, что сделал Б. Паскаль, – это предложил присваивать каждому случайному событию некоторую численную меру, называемую вероятностью его наступления. Вероятность – положительное число, заключенное между нулем и единицей. Вероятность достоверного события, то есть такого, наступление которого можно предсказать заранее (утром солнце взойдет), принимается равной единице. Вероятность невозможного события, то есть такого, которое в рассматриваемой ситуации никогда не наступает, принимается равной нулю. Вероятность события, которое может наступить или не наступить, – больше нуля и меньше единицы. Интересно заметить, что обратные утверждения неверны. Событие, вероятность наступления которого равна единице, все-таки может и не наступить, а событие, вероятность которого равна нулю, может наступить хотя бы принципиально. Но это уже тонкости теории вероятностей.Чтобы все сказанное стало более понятным, давайте рассмотрим такой пример. Предположим, что мы хотим определить частоту выпадания герба при бросании монеты. (Частотой в данном контексте называется отношение числа случаев, в которых получен рассматриваемый исход (выпал герб) к общему числу случаев.) Ясно, что эта частота должна приближаться к величине 0,5. Обычно, когда монету бросают много раз подряд, все так и получается: при увеличении количества бросаний частота выпадания герба, то есть количество случаев, когда выпал герб, поделенное на общее количество бросаний, приближается к 0,5.Знаменитый статистик К. Пирсон подбрасывал монету 24000 раз подряд – то ли делать ему было нечего, то ли уж очень захотелось воочию увидеть, как эта самая, частота приближается. И действительно, оказалось, что из 24000 бросаний герб выпал 12012 раз. Как видите, частота оказалась очень близкой к 0,5.Все-таки хочется обратить ваше внимание, во-первых, на то, что герб выпал не ровно 12000, а 12012 раз. Эти 12 еще составят предмет самостоятельного разговора. Второе замечание – более общее. Нет никакой гарантии, что при дальнейшем увеличении количества бросаний частота не начнет отклоняться от величины, принимаемой за вероятность.Теперь мы вплотную подошли к рассмотрению еще одного примера. Состоит он в» следующем. Предположим, что мы бросили монетку сто раз подряд и сто раз подряд выпал герб. Такое, хоть и редко, но вполне может случиться. Бросаем монетку в сто первый раз, но перед этим задаем себе вопрос: что вероятнее при сто первом бросании – выпадание герба или выпадание решки? Вы, конечн., скажете, что если только что сто раз подряд выпадал герб (предполагается, что монета правильная), то уж сейчас-то наверняка выпадет решка. Как бы не так! Вероятность выпадания решки при сто первом бросании точно такая же, как и вероятность выпадания герба, и равна она 0,5.Действительно, ведь события, состоящие в выпадании герба или решки при данном бросании, суть события независимые. Их вероятность ничуть не зависит от того, что происходило при предыдущих бросаниях. И вообще, при подсчете частот нет никакого рецепта, подсказывающего, с какого момента надо начинать считать. Вот и получается: как бы сильно частота ни отклонилась от вероятности (в только что рассмотренном примере (сто бросаний – сто гербов), частота выпадания герба оказалась 1 вместо 0,5), это совсем не значит, что вот теперь-то она должна начать приближаться. Приближается она опять же в среднем. Иначе говоря, чем больше серий опытов мы проведем, тем вероятнее, что средняя частота окажется достаточно близкой к вероятности, Но опять-таки «вероятнее».
Мы с вами достаточно подготовлены, чтобы решить первую задачу кавалера де Мере. Итак, сколько раз надо метнуть две кости, чтобы можно было надеяться на выпадание 12 очков?На первый взгляд задача кажется очень простой (ее решил сам кавалер де Мере). Но на деле это не так. Вся загвоздка в том, как понимать слово «надеяться». Начнем рассуждать так, как мы это делали уже не раз. Две игральные кости могут упасть на стол 36 различными способами: 1 и 1, 1 и 2, и т. д. Поскольку мы считаем кости правильными, то у нас нет никаких оснований предпочесть какой-нибудь один или группу способов получить 12 очков, то есть 6 и 6 может образоваться одним-единственным способом. Отсюда мы приходим к заключению, что вероятность выпадания 12 очков равна 1/36.О чем это говорит? Ровным счетом ни о чем. Бросьте кости один раз, и у вас либо выпадут 12 очков, либо нет. (Если выпадет с первого раза, в этом случае вы можете наделить кости (или себя!) свойством иметь интуицию.) Будем, однако, рассуждать дальше. Число способов не получить 12 очков равно, очевидно, 35, а вероятность не получить 12 очков равна 35/з6. Бросаем кости 36 раз подряд. Вероятность того, что и в этом случае мы не получим 12 очков, равна, (35/з6)36~0,36. Тех, кому неясно, почему так получилось, просим посчитать число способов, которыми могут упасть две кости при 36-кратном бросании. Вероятность того, что при 36-кратном бросании выпадет 12 очков, равно 1 – 0,36 = 0,64,Если провести, скажем, сто серий по 36 бросаний в каждой, то, как нам говорит проведенный выше расчет, примерно в 64 сериях из ста с большой степенью вероятности можно ожидать однократное выпадание 12 очков. Только что сказанное есть факт, получаемый с помощью науки, называемой теорией вероятностей. А вот можно ли в таких случаях надеяться – это уж пусть кавалер де Мере решает для себя сам. Мы не будем ему в этом помогать, а удовлетворимся тем, что мы заодно ответили на такой вопрос: вероятность 1/36– это много или мало?Теперь мы знаем: если вероятность некоторого события равна 1/36, то при 3600-кратном повторении ситуации (3600 = 100-36), вызывающей появление данного события, «можно надеяться», что это событие совершится около 64 раз. Но может и не совершиться ни разу.Никаких гарантий на этот счет теория вероятностей не дает.Обычно специалисты по теории вероятностей рассуждают так. Мол, основное назначение теории вероятностей состоит в том, чтобы по известным вероятностям простых событий (предполагается, что вычислить эти вероятности достаточно просто) точно вычислять вероятности сложных событий.Все это совершенно справедливо. Теория вероятностей есть раздел математики, и, если так можно выразиться, внутри этого раздела все утверждения отвечают требованиям математической строгости. И действительно, теория вероятностей позволит определить, к примеру, вероятность аварии самолета, если известны вероятности выходов из строя каждой из нескольких десятков тысяч составляющих этот самолет Деталей. Еще раз повторяем – расчет можно выполнять совершенно точно, но при этом остаются два «но». Во-первых, мы никогда не будем знать точно вероятность для каждой из деталей, а во-вторых, даже зная вероятность аварии самолета (пусть она равна, скажем, 0,0001 – это очень малая вероятность), мы все же ничего не сможем сказать в ответ на вопрос: будет иметь место авария в данном рейсе или нет? Здесь та же самая ситуация, что и со стократным бросанием монеты.Что же это за наука такая, скажете вы, результаты которой, по существу, ничего не означают?Столь категорическое утверждение, конечно, не будет правильным. С помощью теории вероятностей уже было решено и ежедневно решается множество задач, в том числе имеющих огромное значение для науки и практики.Но справедливо и то, что в ряду других математических дисциплин теория вероятностей, прямо скажем, отличается большим своеобразием.Вернемся, однако, к самой теории и обсудим подробнее вторую задачу кавалера де Мере. Решение этой задачи, найденное самим Б. Паскалем, мы уже приводили раньше. Но в данном случае нас интересует не решение, а вообще правомочность постановки подобных задач. Вторая задача тем и отличается от первой, что в известной степени она иллюстрирует применение методов теории вероятностей к некоторой жизненной ситуации.Сформулируем ее для себя следующим образом: как справедливо разделить ставку, если игра не закончена, но можно вычислить вероятности выигрыша для каждого из игроков? Главный вопрос, на наш взгляд, состоит именно в том, можно ли говорить вообще о справедливом дележе, если игра не закончена? Кстати, совсем необязательно играть. Можно поставить вопрос шире. Как соотносятся между собой категории справедливости в общежитейском понимании этого слова и категория вероятности?Постараемся показать, что вопрос этот отнюдь не праздный.Все азартные (а в общем-то, и необязательно азартные) игры можно разделить на два класса. К первому классу отнесем игры, в которых вероятность выигрыша перед началом игры одна и та же для каждого игрока. (Правильно говорить не о вероятности, а о математическом ожидании выигрыша, но мы с вами не знаем, что это такое.) Ко второму классу отнесем игры, не обладающие этим свойством.Рассмотрим сначала игры первого класса. Пусть, например, два игрока играют в орлянку. Доказано, что если монета правильная и если ни один из игроков не делает явных ошибок, то вероятность выигрыша для каждого приближается к нулю по мере увеличения количества бросаний. (Ясно, что при одном-единственном бросании один из партнеров должен выиграть и, следовательно, другой – проиграть.) Спрашивается, зачем вообще начинать игру и тратить на это время, если заведомо известно, что вероятность выигрыша (кстати, и проигрыша!) равна нулю?Примером игр второго класса может служить рулетка. Здесь имеется заведомо отличная от нуля вероятность выигрыша для одного из участников, а именно хозяина рулетки – крупье – и соответственно, отличная от нуля вероятность проигрыша для всех остальных участников. Становится совсем непонятным, зачем начинать играть в рулетку и подобные игры, если заведомо известно, что имеется отличная от нуля вероятность проиграть?Все дело в том, что игрок в азартные игры рассчитывает именно на отклонение частоты событий от– их вероятности. Вспомним, что у К. Пирсона при 24 000 бросаний монеты герб выпал 12012 раз. Если представить себе двух игроков, один из которых ставит всегда на герб, а второй – всегда на решку, то именно эти 12 лишних гербов и составят чистый выигрыш одного из игроков. Остальные 23 988 бросаний в известном смысле будут совершены впустую.
ВОТ СЧАСТЛИВЧИК!
Значит ли все сказанное, что теория вероятностей неприменима к задачам о справедливом разделе? -Нет, это означает гораздо больше. Понятие вероятности применительно к одиночным событиям вообще не имеет смысла. Мы уже знаем достаточно много, чтобы прийти к такому выводу. Только что высказанное утверждение трудно принять; ведь в повседневной жизни мы привыкли, часто даже подсознательно, оценивать вероятности тех или иных имеющих к нам отношение событий и принимать решения на основе этих оценок. И все же это утверждение справедливо. Давайте порассуждаем еще немного’.Вот перед нами монета и игральная кость. Пусть некто подбросит монету, и у него выпал герб. Это не производит на нас никакого впечатления. Должно было выпасть одно из двух: или герб, или решка – причем мы хорошо знаем, что оба эти события имеют одинаковую вероятность наступить. Выпадание двух гербов подряд тоже в общем-то оставит нас равнодушными: мы знаем, что так случается, и довольно часто.Возьмем теперь игральную кость. Пусть некто бросает ее, и с первого же раза выпадает шестерка. Если он к тому же предварительно заключил пари, что так и произойдет, впечатление будет достаточно сильным. А если две шестерки подряд?– Вот счастливчик! – скажем мы и тем самым сразу раскроем наше подсознательное отношение к происходящим событиям.Действительно, если сто человек одновременно бросят по две кости, то две шестерки выпадут лишь у одного, двух, от силы – трех. Это и дает нам основание как-то выделить этих двоих-троих, назвать их счастливчиками. Добавим, однако, что даже у ста человек при одном бросании может не выпасть двух шестерок ни у кого.Наша подсознательная оценка вероятности есть не что иное, как рефлекс, который вырабатывается в результате определения частоты тех или иных событий.События, происходящие часто, мы считаем более вероятными, а события, происходящие редко, – менее вероятными. Если же некоторое событие (например, бросание кости) совершается один раз, то предварительное знание вероятности этого события ровным счетом ничего не дает. Пусть некто выбросил кость. Происходит одно из двух: или выпадает шестерка, или не выпадает. И то и другое может произойти (подчеркнем это еще раз) вне всякой зависимости от величины вероятности того и другого события.На первый взгляд представляется, что в случае так называемых практически достоверных или практически невозможных событий ситуация должна быть несколько иной. Ясно, например, что на Землю падают метеориты, и, следовательно, событие, состоящее в том, что метеорит попадет, скажем, вам на голову, в принципе возможно. Однако вероятность такого события исчезающе мала, мы с полным основанием считаем его практически невозможным. Поэтому и выходим на улицу без противометеоритных зонтиков.Однако мы не пользовались противометеоритными зонтиками и тогда, когда самого понятия вероятности еще не существовало. Рассуждая более строго, можно сказать, что наше поведение или, в более общем случае, реакция некоторой системы будет одной и той же независимо от того, равна ли вероятность данного события, скажем, 0,001 или 0,0001. Иными словами, здесь важна не количественная оценка вероятности, а лишь то обстоятельство, что она очень мала. Причем малость вероятности оценивается опять-таки через частоту (мы не реагируем на очень редкие события) главным образом на основе здравого смысла.Возможно, у некоторых читателей создалось впечатление, что авторы без достаточного почтения относятся к теории вероятностей. Спешим заверить, что это совсем не так. Современная теория вероятностей представляет собой весьма развитый раздел математики, обладающий внутренним совершенством и большой практической ценностью.Все, что говорилось в этой главе, коротко можно сформулировать так. Теория вероятностей оперирует со специальными величинами, исторически получившими название вероятностей. Окружающий нас мир устроен так, что при многократном повторении ситуаций, в которых возможны различные исходы, частота каждого з исходов по мере увеличения числа повторений стремится к некоторой постоянной величине, которая в большинстве случаев совпадает с вероятностью. Поэтому теория вероятностей представляет собой мощное средство для оценки частот. При этом, однако, весьма существенно, что само приближение частоты к вероятности происходит достаточно своеобразно, или, как мы говорим, сходится по вероятности. Именно тот, кто никогда не забывает этого последнего обстоятельства и умеет учитывать его при вычислениях, может считаться хорошим специалистом в теории вероятностей.Мы достаточно хорошо ознакомились с основными свойствами вероятности и можем вернуться к рассмотрению некоего обстоятельства, в котором существенным образом проявляется случайность.
ВОШЕДШИЕ, ОСТАВЬТЕ УПОВАНИЯ!
Обстоятельство, на которое мы намекнули, связано с необратимостью термодинамических процессов. Чтобы разобраться, что это такое, обратимся снова к бильярду – этой поистине универсальной модели, Совершен первый удар, и шары пришли в движение. Может ли случиться так, что, подвигавшись какое-то время, шары снова соберутся в пирамидку?Весь наш жизненный опыт говорит нам, что такого быть не может. Точно так же, как осколки разбитой чашки могут двигаться после ударов достаточно долго, по никто никогда еще не наблюдал, чтобы осколки снопа собрались в целую чашку. Как и частички дыма от сгоревшего полена не собираются снова вместе с тем, чтобы образовать целое полено. А что говорит на сей счет теория?Наше основное положение сводится к тому, что любой бильярдный шар в своем движении обязательно посетит все без исключения области бильярдного стола.Раз все без исключения, значит, рано или поздно он посетит и ту область, где он находился еще в составе пирамидки. Более того, с течением времени он будет посещать эту область вновь и вновь, поскольку среднее количество времени, которое он проведет в этой области, пропорционально ее размерам и времени наблюдений.Значит, с увеличением времени наблюдений будет увеличиваться и время, проведенное шаром в пределах рассматриваемой области.Сказанное справедливо для любого шара. Следовательно, обязательно рано или поздно наступит момент, когда шары снова соберутся в пирамидку. Однако расчеты показывают, что ждать этого придется, возможно, миллион лет, а пирамидка будет существовать лишь мгновение, после чего снова на миллион лет шары разойдутся и равномерно покроют поверхность бильярдного стола. Наблюдения подобного рода заставляют сделать вывод, что для природы естественны процессы, сопровождающиеся превращением пирамидки в равномерно распределенные шары, и, наоборот, неестественны, а точнее говоря, встречаются настолько редко, что практически этим можно пренебречь, процессы, когда произвольно движущиеся шары снова собираются в пирамидку.Все то же самое справедливо и для реальных физических систем. Теоретически процессы, происходящие в паровой машине, обратимы. Действительно, газ, заключенный в рабочем объеме цилиндра, оказывает давление на поршень. Мы говорим, что состояние газа характеризуется двумя параметрами: объемом и давлением. Расширяясь, газ приводит в движение поршень, и при этом совершается механическая работа. Однако если после этого работу совершим мы и вернем поршень в прежнее положение, то давление газа вернется к прежнему значению и все можно будет начинать сначала. Поэтому процесс расширения газа теоретически можно считать обратимым. На самом деле, однако, все обстоит не так. Расширяясь, газ не только совершает механическую работу по перемещению поршня, но и сообщает поршню определенную скорость, то есть кинетическую энергию. Вернув поршень назад, мы уже не получим прежних значений давления.Наконец, тепло всегда переходит от более нагретого тела к более холодному и никогда в противоположном направлении.На этом обстоятельстве, как уже говорилось, базируется теория, предсказывающая тепловую смерть вселенной.