355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Китайгородский » Физика для всех. Молекулы » Текст книги (страница 12)
Физика для всех. Молекулы
  • Текст добавлен: 12 октября 2016, 00:58

Текст книги "Физика для всех. Молекулы"


Автор книги: Александр Китайгородский


Соавторы: Лев Ландау
сообщить о нарушении

Текущая страница: 12 (всего у книги 15 страниц)

Звуковые колебания и волны

Мы уже сообщили читателю много сведений о колебаниях, Как колеблется маятник, шарик на пружинке, каковы закономерности колебания струны – этим вопросам была посвящена одна из глав книги 1. Мы не говорили о том, что происходит в воздухе или другой среде, когда находящееся в ней тело совершает колебания. Не вызывает сомнения, что среда не может остаться равнодушной к колебаниям. Колеблющийся предмет толкает воздух, смещает частицы воздуха из тех положений, в которых они находились ранее. Понятно также что дело не может ограничиться влиянием лишь на близлежащий слой воздуха. Тело сожмет ближайший слой, этот слой давит на следующий – и так слой за слоем, частица за частицей приводится в движение весь окружающий воздух. Мы говорим, что воздух пришел в колебательное состояние или что в воздухе происходят звуковые колебания.

Мы называем колебания среды звуковыми, но это не значит, что все звуковые колебания мы слышим. Физика пользуется понятием звуковых колебаний в более широком смысле. Какие звуковые колебания мы слышим – об этом будет рассказано ниже.

Речь идет о воздухе лишь потому, что звук чаще всего передается через воздух. Но, разумеется, нет никаких особых свойств у воздуха, чтобы за ним оказалось монопольное право совершать звуковые колебания. Звуковые колебания возникают в любой среде, способной сжиматься, а так как несжимающихся тел в природе нет, то, значит, частицы любого материала могут оказаться в этих условиях. Учение о таких колебаниях обычно называют акустикой.

При звуковых колебаниях каждая частица воздуха в среднем остается на месте – она совершает лишь колебания около положения равновесия. В самом простейшем случае частица воздуха может совершать гармоническое колебание, которое, как мы помним, происходит по закону синуса. Такое колебание характеризуется максимальным смещением от положения равновесия – амплитудой и периодом колебания, т. е. временем, затрачиваемым на совершение полного колебания.

Для описания свойств звуковых колебаний чаще пользуются понятием частоты колебания, нежели периодом. Частота v = 1/T есть величина, обратная периоду. Единица частоты – обратная секунда (с-1), однако такое слово не распространено. Говорят – секунда в минус первой степени или герц (Гц). Если частота колебания равна 100 с-1, то это значит, что за одну, секунду частица воздуха совершит 100 полных колебаний. Так как в физике весьма часто приходится иметь дело с частотами, которые во много раз больше герца, то имеют широкое применение единицы килогерц (1 кГц = 103 Гц) и мегагерц (1 МГц = 106 Гц).

При прохождении равновесного положений скорость колеблющейся частицы максимальна. Напротив, в положениях крайних смещений скорость частицы, естественно, равняется нулю. Мы уже говорили, что если смещение частицы подчиняется закону гармонического колебания, то и изменение скорости колебания следует тому же закону. Если обозначить амплитуду смещения через s0, а амплитуду скорости через v0, то v0 = 2πs0/T иди ν0 = 2πvs0. Громкий разговор приводит частицы воздуха в колебание с амплитудой смещения всего лишь в несколько миллионных долей сантиметра. Амплитудное значение скорости будет величиной порядка 0,02 см/с.

Другая важная физическая величина, колеблющаяся вместе со смещением и скоростью частицы,– это избыточное давление, называемое также звуковым. Звуковое колебание воздуха состоит в периодическом чередовании сжатия и разрежения в каждой точке среды. Давление воздуха в любом месте то больше, то меньше давления, которое было при отсутствии звука. Этот избыток (или недостаток) давления и называется звуковым. Звуковое давление составляет совсем небольшую долю нормального давления воздуха. Для нашего примера – громкий разговор – амплитуда звукового давления будет равна примерно миллионной доле атмосферы. Звуковое давление прямо пропорционально скорости колебания частицы, причем отношение этих физических величин зависит только от свойств среды. Например, звуковому давлению в воздухе в 1 дин/см2 соответствует скорость колебания 0,025 см/с.

Рис. 6.9

Струна, колеблющаяся по закону синуса, приводит и частицы воздуха в гармоническое колебание. Шумы и музыкальные аккорды приводят к значительно более сложной картине. На рис. 6.9 показана запись звуковых колебаний, а именно звукового давления в зависимости от времени. Эта кривая мало похожа на синусоиду. Оказывается, однако, что любое сколь угодно сложное колебание может быть представлено как результат наложения одной на другую большого числа синусоид с разными амплитудами и частотами. Эти простые колебания, как говорят, составляют спектр сложного колебания. Для простого примера такое сложение колебаний показано на рис. 6.10.

Рис. 6.10

Если бы звук распространялся мгновенно, то все частицы воздуха колебались бы, как одна. Но звук распространяется не мгновенно, и объемы воздуха, лежащие на линии распространения, приходят в движение по очереди, как бы подхватываются волной, идущей от источника. Так же точно щепка лежит спокойно на воде до тех пор, пока круговые водяные волны от брошенного камешка не подхватят ее и не приведут в колебание.

Остановим наше внимание на одной колеблющейся частице и сравним ее поведение с движением других частиц, лежащих на той же линии распространения звука. Соседняя частица придет в колебание немного позже, следующая – еще позже. Запаздывание будет нарастать, пока, наконец, мы не встретимся с частицей, отставшей на целый период и поэтому колеблющейся в такт с исходной. Так отставший на целый круг неудачный бегун может пройти линию финиша одновременно с лидером. На каком же расстоянии встретим мы точку, колеблющуюся в такт с исходной? Нетрудно сообразить, что это расстояние λ равно произведению скорости распространения звука с на период колебания Т. Расстояние λ называется длиной волны:

λ = cT.

Через промежутки λ мы будем встречать колеблющиеся в такт точки. Точки, находящиеся на расстоянии λ/2, будут совершать движение одна по отношению к другой, как предмет, колеблющийся перпендикулярно к зеркалу, по отношению к своему изображению.

Если изобразить смещение (или скорость, или звуковое давление) всех точек, лежащих на линии распространения гармонического звука, то получится опять синусоида.

Не следует путать графики волнового движения и колебаний. Рис. 6.11 и 6.12 очень похожи, но на первом по горизонтальной оси отложено расстояние, а на втором – время. Один рисунок представляет собой временную развертку колебания, а другой – мгновенную "фотографию" волны. Из сопоставления этих рисунков видно, что длина волны может быть названа также ее пространственным периодом: роль Т во времени играет в пространстве величина λ.

Рис. 6.11

На рисунке звуковой волны смещения частицы отложены по вертикали, а направлением распространения волны, вдоль которого отсчитывается расстояние, является горизонталь. Это может навести на неверную мысль, что частицы смещаются перпендикулярно к направлению распространения волны. В действительности частицы воздуха всегда колеблются вдоль направления распространения звука. Такая волна называется продольной.

Рис. 6.12

Свет распространяется несравненно быстрее, чем звук,– практически мгновенно. Гром и молния происходят в один и тот же момент, но молнию мы видим в момент ее возникновения, а звук грома доходит до нас со скоростью примерно один километр за три секунды (скорость звука в воздухе составляет 330 м/с). Значит когда слышен гром, опасность удара молнии уже миновала.

Зная скорость распространения звука, обычно можно определить, как далеко проходит гроза. Если от момента вспышки молнии до раската грома прошло 12 с, значит, гроза от нас за 4 км.

Скорость звука в газах примерно равна средней скорости движения молекул газа. Она также зависит от плотности газа и пропорциональна корню квадратному из абсолютной температуры. Жидкости проводят звук быстрее, чем газы. В воде звук распространяется со скоростью 1450 м/с, т. е. в 4,5 раза быстрее, чем в воздухе. Еще больше скорость звука в твердых телах, например, в железе – около 6000 м/с.

Когда звук переходит из одной среды в другую, меняется скорость его распространения. Но одновременно происходит и другое интересное явление – частичное отражение звука от границы между двумя средами. Какая доля звука отразится – это зависит главным образом от соотношения плотностей. В случае падения звука из воздуха на твердые или жидкие поверхности или, наоборот, из плотных сред в воздух звук отражается почти полностью. Когда звук попадает в воду из воздуха или, наоборот, из воды в воздух, то во вторую среду проходит всего лишь 1/1000 силы звука. Если обе среды плотные, то отношение между проходящим и отраженным звуком может быть и невелико. Например, из воды в сталь или из стали в воду пройдет 13%, а отразится 87% звука.

Явление отражения звука широко применяется в навигации. На нем основано устройство прибора для измерения глубины – эхолота. У одного борта корабля под водой помещают источник звука (рис. 6.13). Отрывистый звук создает звуковые лучи, которые проберутся сквозь водяную толщу ко дну моря или реки, отразятся от дна, и часть звука вернется на корабль, где ее улавливают чувствительные приборы. Точные часы укажут, сколько времени понадобилось звуку на это путешествие. Скорость звука в воде известна, и простым вычислением можно получить точные сведения о глубине.

Рис. 6.13

Направляя звук не вниз, а вперед или в стороны, можно при его помощи определить, нет ли около корабля опасных подводных скал или глубоко погруженных в воду айсбергов. Все частицы воздуха, окружающего звучащее тело, находятся в состоянии колебания. Как мы выяснили в книге 1, колеблющаяся по закону синуса материальная точка обладает определенной и неизменной полной энергией.

Когда колеблющаяся точка проходит положение равновесия, скорость ее максимальна. Так как смещенные точки в это мгновение равняется нулю, то вся энергия сводится к кинетической:

Следовательно, полная энергия пропорциональна квадрату амплитудного значения скорости колебания.

Это верно и для частиц воздуха, колеблющихся в звуковой волне. Однако частица воздуха – это нечто неопределенное. Поэтому энергию звука относят к единице объема. Эту величину можно назвать плотностью звуковой энергии.

Так как масса единицы объема есть плотность ρ, то плотность звуковой энергии

Мы говорили выше еще об одной важной физической величине, совершающей колебания по закону синуса с той же частотой, что и скорость. Это – звуковое или избыточное давление. Так как эти величины пропорциональны, то можно сказать, что плотность энергии пропорциональна квадрату амплитудного значения звукового давления.

Амплитуда скорости звукового колебания при громком разговоре равняется 0,02 см/с. 1 см3 воздуха весит около 0,001 г. Таким образом, плотность энергии равняется

1/2 *10-3 * (0,02)2 эрг/см3 = 2*10-7 эрг/см3.

Пусть колеблется источник звука. Он изучает звуковую энергию в окружающий воздух. Энергия как бы "течет" от звучащего тела. Через каждую площадку, расположенную перпендикулярно к линии распространения звука, за секунду протекает определенное количество энергии. Эта величина называется потоком энергии, прошедшим через площадку. Если, кроме того, взята площадка в 1 см2, то протекшее количество энергии называют интенсивностью звуковой волны.

Нетрудно видеть, что интенсивность звука I равна произведению плотности энергии w на скорость звука с. Представим цилиндрик высотой 1 см и площадью основания 1 см2, образующие которого параллельны направленно распространения звука. Содержащаяся внутри такого цилиндра энергия w будет полностью покидать его через время 1/с. Таким образом, через единицу площади за единицу времени пройдет энергия w/(1/c), т. е. wc. Энергия как бы сама движется со скоростью звука.

При громком разговоре интенсивность звука вблизи собеседников будет примерно равна (мы воспользуемся числом, полученным выше)

2*10-7*3*104 = 0,006 эрг/(см2*с).

Слышимый и неслышимый звуки

Какие же звуковые колебания воспринимаются человеком на слух? Оказывается, ухо способно воспринимать лишь колебания, лежащие примерно в интервале от 20 до 20 000 Гц. Звуки с большой частотой мы называем высокими, с малой частотой – низкими.

Какие же длины волн соответствуют предельным слышимым частотам? Так как скорость звука примерно равна 300 м/с, то по формуле λ = cT = c/v находим, что длины слышимых звуковых волн лежат в пределах от 15 м для самых низких тонов до 1,5 см для самых высоких.

Каким же образом мы "слышим" эти колебания?

Работа нашего органа слуха до сих пор не выяснена до конца. Дело в том, что во внутреннем ухе (в улитке – канале длиной несколько сантиметров, заполненном жидкостью) имеется несколько тысяч чувствительных нервов, способных воспринимать звуковые колебания, передающиеся в улитку из воздуха через барабанную перепонку. В зависимости от частоты тона сильнее всего колеблется та или иная часть улитки. Хотя чувствительные нервы расположены вдоль улитки так часто, что возбуждается сразу большое их число, человек (и животные) способен – особенно в детстве – различать изменения частоты на ничтожные (тысячные) ее доли. Каким образом это происходит, до сих пор точно не известно. Ясно только, что важнейшую роль здесь играет анализ в мозгу раздражений, приходящих от множества отдельных нервов. Придумать механическую модель, которая – при той же конструкции – столь же хорошо различала бы частоту звука, как и ухо человека, пока еще не удалось.

Частота звука в 20 000 Гц является пределом, выше которого человеческое ухо не воспринимает механические колебания среды. Различными способами можно создать колебания более высокой частоты, человек их не услышит, но приборы смогут записать. Впрочем, не только приборы фиксируют такие колебания. Многие животные, например летучие мыши, пчелы, киты и дельфины (как видно, дело не в размерах живого существа), способны воспринимать механические колебания с частотой вплоть до 100 000 Гц.

Сейчас удается получать колебания с частотой вплоть до миллиарда герц. Такие колебания, хотя они и неслышимы, называют ультразвуковыми, чтобы подтвердить их родственность звуку. Ультразвуки наибольших частот получают при помощи кварцевых пластинок. Такие пластины вырезаются из монокристаллов кварца.

Превращение молекул

Химические реакции

Физика является фундаментом всего естествознания. Поэтому отделить физику от химии, геологии, метеорологии, биологии и т. д. совершенно невозможно. Ведь основные законы природы относятся к предмету физики. Учение о строении вещества также неотъемлемая глава физики. Не случайно написаны книги под названиями: геологическая физика, биологическая физика, химическая физика, строительная, физика и т. д. Так что сказать несколько слов о химических реакциях в этой книге, трактующей об основных законах природы, будет вполне уместно.

Строго говоря, химия начинается там, где молекула разламывается на части, или там, где из двух молекул образуется одна, или в случае, когда из двух столкнувшихся молекул образуются две другие. Если в начале и конце явления мы сталкиваемся с тем, что химический состав тел, участвующих в событии, изменился – значит, произошла реакция.

Химические реакции могут происходить "сами по себе", т. е. благодаря движениям молекул, свойственным данной температуре. Так, часто говорят: "вещество разлагается". Это означает, что внутренние колебания атомов молекулы приводят к тому, что связи между атомами разрываются – молекула разваливается.

Чаще всего химическая реакция является результатом встречи молекул. Металл проржавел. Это химическая реакция: встретились атом металла с молекулой воды – образовалась окись. Бросили в стакан воды щепотку лимонной кислоты и ложечку соды. Начинается бурное образование пузырьков газа. В результате встречи этих двух молекул получились новые вещества и в том числе углекислый газ, пузырьки которого и выделяются из воды.

Итак, самопроизвольный развал молекулы и столкновения молекул – вот две причины химической реакции.

Но реакции могут быть вызваны и другими причинами. Вы с досадой рассматриваете костюм, который побывал с вами на юге. Материал выцвел, выгорел. Под действием солнечных лучей произошло химическое превращение краски, которой был выкрашен материал.

Реакции, происходящие под действием света, называются фотохимическими. Исследователю надо тщательно проводить соответствующие опыты, чтобы не свалить в одну кучу нагревание, происходящее под действием света (оно приводит к увеличению кинетической энергии движения молекул, и удары между ними будут более частыми и более сильными), с непосредственным действием света, которое состоит в том, что частица света – фотон – "рвет" химические связи.

Под действием света происходит цепь химических реакций, протекаемых в зеленых растениях, называемая фотосинтезом. Благодаря фотохимическому превращению, происходящему в растениях, осуществляется тот великий круговорот углерода, без которого не было бы жизни.

Разрыв химических связей, сопровождающийся различными химическими реакциями, могут производить и другие энергичные частицы – электроны, протоны и т. д.

Химическая реакция может идти как с поглощением тепла, так и с выделением тепла. Что это значит на языке молекул? Если встретились две медленные молекулы, а из них образовались две быстрые, то, значит, тепло выделилось. Ведь мы знаем, что увеличение температуры эквивалентно убыстрению молекул. К таким реакциям относятся горение и взрыв, о которых мы поговорим чуть ниже.

Теперь нам надо перевести на язык молекул скорость реакций. Превосходно известно, что есть реакции, которые происходят в мгновение ока (взрыв), а есть реакции, которые протекают годами. Положим, что опять-таки речь идет о таких реакциях, в которых сталкиваются две молекулы, а из них образуются две другие. Следующее предположение похоже на правду. Во-первых существенна та энергия столкновения, которой достаточно для того, чтобы произошел разлом молекул и их перестройка; во-вторых, важно и другое: под любым углом атаки или лишь под некоторыми должны встретиться молекулы, чтобы реакция произошла.

Минимальная энергия, необходимая для того, чтобы реакция прошла, носит название энергии активации. Она играет основную роль в ходе реакции, но все же не нужно забывать и второй фактор – долю "удачных" соударений частиц с данной энергией.

Химическую реакцию, идущую с выделением тепла, можно моделировать картинкой, приведенной на рис. 7.1. Шарик вкатывается на горку, переваливает через барьер и скатывается вниз. Поскольку начальный уровень выше конечного, то энергии потратится меньше, чем выделится.

Рис. 7.1

Эта модель наглядно иллюстрирует причину резкой зависимости скорости реакции от температуры. Если температура мала, то "скорость шара" недостаточна, чтобы забраться на гору. По мере роста температуры все более и более будет расти число шариков, которые будут перемахивать через горку. Скорости химических реакций очень сильно зависят от температуры. Как правило, повышение температуры на 10 градусов увеличивает скорость реакции в 2-4 раза. Если скорость реакции увеличивается, скажем, в 3 раза при повышении температуры на 10 градусов, то повышение температуры на 100 градусов дает увеличение в 310≈60 000 раз, на 200 градусов – уже в 320≈4*109, а на 500 градусов– в З50, т. е. примерно в 1024 раз. Неудивительно, что реакция, которая идет с нормальной скоростью при температуре 500°С, при комнатной температуре не происходит вообще.

Горение и взрыв

Для того чтобы началось горение, надо, как известно, поднести к горючему предмету горящую спичку. Но и спичка не зажигается сама, ею надо чиркнуть о коробку. Таким образом, для того чтобы началась такая химическая реакция, необходимо предварительное нагревание. Поджигание создает в начальный момент необходимую для реакции температуру. Дальше высокую температуру поддерживает уже тепло, которое выделяется при реакции.

Начальный местный подогрев должен быть достаточен для того, чтобы выделение тепла при реакции превышало теплоотдачу в окружающую холодную среду. Поэтому каждая реакция имеет свою, как говорят, температуру воспламенения. Горение начинается, только если начальная температура выше температуры воспламенения. Например, температура воспламенения дерева 610°С; бензина – около 200°С, белого фосфора – 50°С.

Горение дров, угля или нефти – это химическая реакция соединения этих веществ с кислородом воздуха. Поэтому такая реакция идет с поверхности: пока не выгорит внешний слой, следующий не может принять участие в горении. Этим и объясняется относительная медленность горения. В справедливости сказанного нетрудно убедиться на практике. Если размельчать горючее, то скорость горения можно значительно увеличить. Для этой цели во многих печных устройствах производится распыление угля в топках.

Так же размельчается и смешивается с воздухом топливо в цилиндре мотора. Горючим в моторе служит не уголь, а более сложные вещества, например, бензин. Молекула октана, входящего в состав этого вещества (рис. 7.2 слева), состоит из 8 атомов углерода и 18 атомов водорода, соединенных так, как показано на рисунке. При горении эта молекула подвергается ударам кислородных молекул. Встречи с молекулами кислорода разрушают молекулу октана. Силы, соединяющие в молекуле октана один или два атома углерода с атомом водорода, а также силы, соединяющие два атома кислорода в молекулу кислорода, не могут -противостоять более, сильному, как говорят химики, "сродству" между атомами кислорода, с одной стороны, и атомами' углерода и водорода – с другой. Поэтому старые связи между атомами молекул нарушаются, атомы перегруппировываются и создают новые молекулы. Как показывает рис. 7.2 справа, новыми молекулами – продуктами горения – и в этом случае являются углекислый газ и вода. Вода при этом образуется в форме пара,

Рис. 7.2

Совершенно иначе обстоит дело в том случае, когда воздушная атмосфера не нужна, а все необходимое для реакции содержится внутри вещества. Примером такого вещества является смесь водорода с кислородом (ее называют гремучим газом). Реакция идет не с поверхности, а происходит1 внутри вещества. В отличие от случая горения вся энергия, образующаяся при реакции, отдается почти мгновенно, вследствие этого резко повышается давление и происходит взрыв. Гремучий газ не горит, а взрывается.

Итак, взрывчатое вещество должно содержать внутри себя атомы или молекулы, нужные для реакции. Понятно, что можно приготовить взрывающиеся газовые смеси. Существуют и твердые взрывчатые вещества. Они являются взрывчатыми именно потому, что в их состав входят все атомы, необходимые для химической реакции, дающей тепло и свет.

Химическая реакция, происходящая при взрыве,– это реакция распада, расщепления молекулы на части. На рис. 7.3 показана для примера взрывная реакция – расщепление на части молекулы нитроглицерина. Как видно на правой части схемы, из исходной молекулы образуются молекулы углекислого газа, воды, азота. В составе продуктов реакции мы находим обычные продукты горения, но горение произошло без участия молекул кислорода воздуха – все необходимые для горения атомы содержатся внутри молекулы нитроглицерина.

Рис. 7.3

Как распространяется взрыв по взрывчатому веществу, например гремучему газу? Когда поджигают взрывчатое вещество, возникает местный нагрев. Реакция происходит в нагретом объеме. Но при реакции выделяется тепло, которое путем теплопередачи переходит в соседние слои смеси. Этого тепла достаточно для того, чтобы и в соседнем слое произошла реакция. Вновь выделившееся тепло поступит в следующие слои гремучего газа, и так со скоростью, связанной с передачей тепла, реакция распространяется по всему веществу. Скорость такой передачи – порядка 20-30 м/с. Разумеется, это очень быстро. Метровая трубка с газом взрывается за 1/20 с, т. е. почти мгновенно, в то время как скорость горения дров или кусков углей, происходящего с поверхности, а не в объеме, измеряется сантиметрами в минуту, т. е. в несколько тысяч раз меньше.

Тем не менее можно назвать и этот взрыв медленным, так как возможен другой взрыв, в сотни раз более быстрый, чем описанный.

Быстрый взрыв вызывается ударной волной. Если в каком-либо слое вещества резко повышается давление, то от этого места начнет распространяться фронт повышенного давления. В этом случае и говорят об ударной волне. Эта волна приводит к значительному скачку температуры, который передается от слоя к слою. Повышение температуры дает начало взрывной реакции, а взрыв приводит к повышению давления и поддерживает ударную волну, интенсивность которой иначе быстро падала бы по мере ее распространения. Таким образом, ударная волна вызывает взрыв, а взрыв в свою очередь поддерживает ударную волну.

Описанный нами взрыв называется детонацией. Так как детонация распространяется по веществу со скоростями ударной волны (порядка 1 км/с), то она действительно быстрее «медленного» взрыва в сотни раз.

Какие же вещества взрываются "медленно", а какие "быстро"? Так ставить вопрос нельзя: одно и то же вещество, находящееся в разных условиях, может и взрываться "медленно" и детонировать, а в некоторых случаях "медленный" взрыв переходит в детонацию.

Некоторые вещества, например йодистый азот, взрываются от прикосновения соломинки, от небольшого нагревания, от световой вспышки. Такое взрывчатое вещество, как тротил, не взрывается, если его уронить, даже если его прострелить из винтовки. Для взрыва требуется сильная ударная волна.

Существуют вещества, еще менее чувствительные к внешним воздействиям. Удобрительная смесь аммиачной Селитры и сернокислого аммония не считалась взрывчатой до трагического случая, происшедшего в 1921 г. на немецком химическом заводе в Оппау. Для дробления слежавшейся смеси там был применен взрывной способ. В результате на воздух взлетели склад и весь завод. В несчастье нельзя было упрекать инженеров завода: примерно двадцать тысяч подрывов прошло нормально и лишь один раз создались условия, благоприятные для детонации.

Вещества, которые взрываются лишь под действием ударной волны, а при обычных условиях устойчиво существуют и даже не боятся огня, весьма удобны для техники взрывного дела. Такие вещества можно производить и хранить в больших количествах. Однако для приведения этих инертных взрывчатых веществ в действие нужны зачинатели или, как говорят, инициаторы взрыва. Такие инициирующие взрывные вещества совершенно необходимы как источники ударных волн.

Примером инициирующих веществ могут служить азид свинца или гремучая ртуть. Если крупинку такого вещества положить на лист жести и поджечь, то происходит взрыв t пробивающий в жести отверстие. Взрыв таких веществ в любых условиях детонационный.

Если немного азида свинца поместить на заряд вторичного взрывчатого вещества и поджечь, то взрыв инициатора дает ударную волну, достаточную для детонации вторичного взрывчатого вещества. На практике взрыв производится при помощи капсюля-детонатора (1-2 г инициирующего вещества). Капсюль может быть подожжен на расстоянии, например при помощи длинного шнура (бикфордов шнур); исходящая от капсюля ударная волна взорвет вторичное взрывчатое вещество.

В ряде случаев технике надо бороться с детонационными явлениями. В двигателе автомобильного мотора в обычных условиях происходит "медленный взрыв" смеси бензина с воздухом. Однако иногда возникает и детонация. Ударные волны в моторе как систематическое явление совершенно недопустимы, так как под их действием стенки цилиндров мотора быстро выйдут из строя.

Для борьбы с детонацией в двигателях надо либо применять специальный бензин (так называемый бензин с высоким октановым числом), либо подмешивать в бензин специальные вещества – антидетонаторы не дающие развиваться ударной волне. Одним из распространенных антидетонаторов является тетраэтилсвинец (ТЭС). Это вещество очень ядовито, и инструкция предупреждает шоферов о необходимости осторожно обращаться с таким бензином.

Детонации нужно избегать при конструировании артиллерийского орудия. Ударные волны не должны образовываться внутри ствола при выстреле, в противном случае орудие выйдет из строя.


    Ваша оценка произведения:

Популярные книги за неделю