355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Александр Гротендик » УРОЖАИ И ПОСЕВЫ » Текст книги (страница 20)
УРОЖАИ И ПОСЕВЫ
  • Текст добавлен: 17 сентября 2016, 23:17

Текст книги "УРОЖАИ И ПОСЕВЫ"


Автор книги: Александр Гротендик


Жанр:

   

Математика


сообщить о нарушении

Текущая страница: 20 (всего у книги 23 страниц)

Примечания

просил меня (не так давно) стать его научным руководителем и созвать ученый совет. Он обратился ко мне в последний момент, и, как мне сейчас кажется, с большой неохотой. (Ведь он рисковал стать в глазах математической общественности учеником Гротендика «после 70-го»; обстоятельства сложились так, что это могло повредить его репутации…) Я постарался выполнить эту задачу как можно лучше. Не исключено, что я тогда в последний раз в жизни оказался научным руководителем будущего кандидата наук. Ситуация была несколько необычная, и я особенно благодарен Жану Жиро за его дружескую поддержку. За месяц или два он тщательно изучил объемную рукопись и прислал мне подробный обзор в теплом и любезном письме.

(20). Это заставило меня задуматься о теме, выбранной Моникой Хаким. Тема эта, по правде говоря, была ничуть не более заманчивой, и я спросил себя, как Моника с нею справлялась. Если она и скучала иногда, то во всяком случае не выглядела совсем уж мрачной или печальной. Между нами не было и тени напряжения, и мы прекрасно работали вместе.

(21). Быть может, вернее было бы сказать, что для того, чтобы стать по-настоящему хорошим преподавателем, мне недоставало зрелости. Моя жизнь складывалась так, что я привык ценить и развивать в себе прежде всего «мужественные» черты (или «ян»). А ведь одна из сторон зрелости – как раз равновесие «инь-ян» в душе человека.

(Добавлено позднее.) Впрочем, еще больше, чем зрелости, мне тогда не хватало душевной щедрости. Я говорю здесь не о готовности уделить свое время и силы, чтобы помочь человеку в работе – нет, эта щедрость важней и тоньше по своей природе. До 1970 г. я совсем не замечал в себе этого недостатка: внешне он почти никак не проявлялся. Но ведь тогда ко мне приходили учиться люди, страстно увлеченные математикой, готовые к серьезной работе – огня в душе им было не занимать! Этим-то, без сомнения, и восполнялась нехватка. Напротив, после 70-го этот недостаток успел немало мне навредить. С ним непосредственно связано то обстоятельство, что свою преподавательскую деятельность этого периода (на уровне научной работы, то есть, начиная с курсовых работ студентов) я оцениваю, как полный провал. (См. об этом «Набросок программы», §8 и §9 под заголовком «Итоги преподавания». В этих

Примечания

отрывках многое говорится о чувстве неудовлетворенности, накопившемся у меня за восемь лет преподавания{89}).

(22). И это еще надолго, по-видимому, раз уж я решился ходатайствовать о том, чтобы меня приняли в CNRS: это дало бы мне возможность уйти из университета. С годами мне становится все труднее преподавать студентам.

(22 ). Даже после 1970 г., когда математика отошла для меня на второй план, я, кажется, ни разу не отказал человеку, который выразил бы желание со мной работать. Более того: если не считать двух-трех исключений, темы, которые я давал своим ученикам после 70-го, увлекали меня значительно сильнее, чем их самих. Так было даже в те времена, когда я совсем не занимался математикой вне положенных по графику университетских часов. Работать с новыми учениками так же напряженно, как с прежними, и требовать от них той же самоотдачи было бы просто немыслимо. Они занимались математикой без какого-либо воодушевления, словно постоянно совершали насилие над собой…

(23). Слово «передать» здесь не на месте: истинное положение дел, как всегда, намного скромнее. Эта строгость так просто не передается. Ее можно лишь пробудить, или поддержать, как раздувают и поддерживают огонь. На эту строгость в человеке, как правило, не обращают внимания или загоняют ее в угол с самого раннего возраста: сперва в семейном кругу, затем в школе и в университете. С тех пор как я себя помню, эта строгость всегда сопровождала меня в моих исканиях. Не думаю, чтобы она досталась мне «в наследство» от родителей, и уж во всяком случае не от учителей – даже не от старших математиков. Мне кажется, скорее, что эта строгость – неотъемлемое свойство невинности. То есть ее нельзя передать: она заложена в каждом из нас от рождения. Эта невинность слишком явно ассоциируется с младенческим лепетом, то есть с поведением «не мужа, но мальчика» – таких вещей мы, взрослые, стесняемся. Зачастую мы так стараемся поглубже ее запрятать, что она просто теряется, исчезает навсегда. Каким-то образом (я еще не задумывался над причиной) у меня такая невинность все же сохранилась – правда, лишь как пытливость ума, что сравнительно безобидно. В остальном ее не видать и не слыхать; что же, почти

Примечания

все люди так и живут без нее. Может быть, секрет или, скорее, великая тайна преподавания, «обучения» в полном смысле этого слова, и состоит в умении разбудить в человеке невинность, дремлющую где-то в глубине. Но нечего и толковать о возможности восстановить забытую связь в душе ученика, если ее недостает самому преподавателю. А если повезет, то «перейдет» к ученику от преподавателя вовсе не строгость, или невинность – ведь люди с нею рождаются. Нет, передать можно лишь уважение, молчаливое благоговение перед тем, чему обыкновенно отказывают в какой-либо значимости.

(23 ). Пожалуй, все-таки не единственный. Семь-восемь лет назад в моей жизни как математика появился другой «источник постоянной неудовлетворенности» – правда, выявить его все эти годы было гораздо сложнее. Но, как это бывает, недовольство собой накапливалось, одни и те же истории повторялись, и в конце концов стало ясно, откуда все это исходит. Причиной всему были постоянные неудачи в моей работе с учениками. Чем дальше, тем быстрее я терял надежду поправить положение, так что под конец готов был закричать во весь голос: «Довольно!» С тех пор я решил оставить всякую деятельность, связанную с «руководством научной работой». Раз или два я уже касался здесь этого вопроса и в какой-то момент надумал разобраться в нем более или менее основательно. По крайней мере, я сумел описать это чувство неудовлетворенности и изучить роль, которую оно сыграло в моем «возвращении в математику» (ср. §50, «Груз прошлого»).

(23 ). Этот ученик готовил со мной свой диплом целый год. Работа шла у него неровно: все это время он не мог избавиться от какого-то «напряжения». Это не мешало нашей (мне кажется, искренней) дружбе. И все же, была в нем какая-то нервическая робость. Могло показаться, будто он меня «побаивается» – но, конечно же, дело было совсем не в этом. Я бы, наверное, так ничего и не заметил, если бы он сам не сказал мне об этом однажды – чтобы объяснить, почему весь год ему так трудно давалась работа, словно бы на дороге стоял неодолимый барьер.

Как это бывало и с другими учениками, которые поначалу с увлечением погружались в созерцание той или иной геометрической «сущности», трудности начинались в тот момент, когда заходила речь о более формальной части труда, требующей тщательности и напряжения.

Примечания

То есть о том, чтобы записать черным по белому и по всей форме найденные утверждения или хотя бы попытаться уловить на слух те, которые формулировал я (предлагая принять их в качестве «основы языка», правил игры). «Школярские» инстинкты всегда тянут ученика назад, в привычную ситуацию, когда учитель назначает туманные, но в то же время обязательные правила игры, которые тебе приходится принимать как данность. Разъяснению эти правила не подлежат; стараться их понять – только время убьешь, да и незачем. Как же конкретно выглядели для него эти правила? Например, это могли быть «рецепты» семантики и исчисления в том виде, в каком их предлагают пособия для спецшкол (или любые другие современные учебники). К тому же, ученик всегда получал от преподавателя задачу в форме: «Докажите, что…» – вот вам и весь опыт математического «размышления». (Впрочем, я бы не сказал, что большинство профессиональных математиков, да и ученых вообще, в этом смысле чувствуют себя намного свободнее. В «большой науке» роль учителя играет всеобщее соглашение, которое и устанавливает правила игры – и это, опять-таки, непреложная данность. Это же соглашение определяет проблемы, над которыми ученым положено размышлять. А там уже, конечно, каждый волен выбирать себе задачу по вкусу. Можно даже позволить себе немного изменить ее в ходе работы, а то и выдумать новую – в рамках контекста…) Я уже отмечал, что смотрю на исследовательскую работу совершенно иначе. Ученика же мой совершенно непривычный для него подход, естественно, приводит в замешательство; отсюда – неуверенность, даже тревога. Она идет изнутри, но сам человек склонен искать ее источник где-то «снаружи». Вот почему это замешательство так часто переходит в «страх» перед преподавателем.

Таких трудностей у меня не бывало до семидесятого года – если не считать двух случаев, когда мне не удавалось сработаться с учеником, и мы с ним через несколько недель расставались. Еще, быть может (я не уверен), такая неловкость в свое время возникла между мной и «печальным учеником», о котором я как-то рассказывал. Не исключено, что он чувствовал себя словно бы прикованным к теме, которая его совершенно не увлекала. Впрочем, ничто ему не мешало ее сменить. В те годы у меня был и другой ученик, которого все время нашего общения мучила какая-то робость (о нем я также уже упоминал). Но у него, без сомнения, это было связано с какой-то посторонней причиной. Работа

Примечания

шла у него легко, без напряжения: никакого психологического барьера здесь не было и в помине. Напротив, тема, которую он сам себе выбрал, прекрасно ему подходила: то была работа по заложению основ в новой области математики, и он с ней справился превосходно. Впрочем, почти все мои ученики того периода окончили Ecole Normale, где, как известно, преподавал математику Анри Картан. Поэтому они уже знали, что на свете есть и другой подход к математике помимо «стандартного». Студенты университета Монпелье в этом смысле были полной противоположностью моим прежним ученикам. Там мой подход, как я уже говорил, вызывал у первокурсников неуверенность и беспокойство, которое по меньшей мере заметно влияло на их работу. Впрочем, у многих из них тревоги как раз и не возникало: они удивлялись, но не отступали при виде нового и непривычного, не уходили в себя. Они даже как-то раскрывались, у них загорались глаза: «Отлично, займемся на этот раз чем-нибудь интересным!» По моим наблюдениям, несколько лет, проведенных в университете, влияют на способность студентов к творчеству самым опустошительным образом. Странно, что в этом смысле воздействие многолетнего опыта школьной зубрежки выглядит сравнительно безобидным. Вероятно, это объясняется тем, что мы поступаем в университет в том возрасте, когда врожденная наклонность к творчеству непременно должна проявиться в самостоятельной работе – иначе она может погибнуть в нас навсегда. По крайней мере, задохнется свободная мысль, и исследование «в интеллектуальной сфере» станет для нас невозможным. Похоже, что прогуливать почти все занятия в том же самом университете, проводя время за размышлениями о математике «не из учебника», меня в свое время толкал здоровый инстинкт самосохранения.

(23"'). У этого ученика недовольство и раздражение с самого начала носило какой-то «классовый» характер. В его глазах я был «начальник» – человек, который волен «распоряжаться его судьбой» в математике на свое усмотрение. Разумеется, дальнейший ход событий мог лишь укрепить его в этом убеждении: я не замедлил отказаться от обязанностей научного руководителя по отношению к этому ученику – исполнять их стало исключительно тяжело. Он оказался в непростом положении: в те времена становилось все сложнее найти себе нового руководителя, особенно если человек уже выбрал тему. У другого ученика, который был обманут в своих законных надеждах (я уже упоминал о нем: он написал под моим руководством очень хорошую работу, но в «высшем свете» ее приняли неблагожелательно), обида превратилась в такой же «классовый антагонизм»: кажется, он видел меня этаким самовластным мандарином, не терпящим возражений со стороны тех, кого он держит за подчиненных – то есть учеников и коллег низшего ранга.

До семидесятого года я не припомню, чтобы такая «классовая позиция» каким-либо образом проявлялась в моих отношениях с учениками. Очевидно, дело в том, что в те времена всякий, защитившись, легко находил себе место профессора в университете. В те годы каждый из моих учеников знал наверное, что он «сравняется со мной по рангу», как только закончит работу. Одиннадцать учеников, начавших работать со мной до 1970 г. сразу после защиты диссертации устроились в университеты. Зато ни один из тех двадцати, что позднее работали более или менее под моим руководством, профессорского поста не получил; цифры говорят за себя. Правда, лишь двое из моих учеников «после семидесятого» были настолько увлечены математикой, чтобы взяться за работу над кандидатской диссертацией (которую, впрочем, оба выполнили превосходно).

Итак, нет ничего удивительного в том, что после семидесятого года определенная амбивалентность (при том, что ее истинные истоки еще лежат где-то в неизвестности, скрытые глубоко в душе) развивала в моих новых учениках эдакое «классовое чувство» – как будто инстинктивную настороженность, недоверие к «руководителю». С одним из этих молодых людей, тоже моим учеником в той или иной мере, мы дружили десять лет кряду, ни разу не поссорившись. И все же, между нами, скрываясь за ширмой дружеской симпатии, неизменно вставала все та же странная двусмысленность: что-то оставалось невыясненным, что-то недоговаривалось. Я, впрочем, никогда не обманывался на счет этой, якобы шедшей изнутри, недоверчивости. Мне всегда казалось, что моему другу она нужна как предлог для того, чтобы не переступать определенных границ, которые он сам себе наметил – как в математике, так и в жизни вообще. Конечно, в этом он волен поступать, как ему заблагорассудится, и ни одна живая душа (разве что его собственная…) не вправе требовать от него объяснений.

Впрочем, «учет» на этом кончается: у меня было всего три ученика с ярко выраженной «классовой позицией». Конечно, бывает, что внутри

Примечания

«преподавательского состава» университета между коллегами разыгрывается ссора на «классовой» почве. Это выглядит тем более нелепо, что обе «враждующие стороны» пользуются, по сравнению с простым смертным, невероятными привилегиями; различие в чинах (и в зарплате) на этом фоне практически исчезает. Я заметил, что продвижение по службе всегда, как по волшебству, смягчает в людях «революционные настроения» – наверное, неспроста.

По моим наблюдениям, когда внутри математического мира (да и за его пределами) возникает конфликт, за ним почти всегда стоит некая двусмысленность. Повсюду я видел одно и то же: люди «устроенные» (по заслугам или нет – не так уж важно) пользовались беспримерными привилегиями. Никакая другая профессия или карьера не могла бы им предложить ничего подобного. Те же, кому в этом смысле не посчастливилось, стремились к той же надежности и к тем же привилегиям (это не значит, что математика сама по себе их не привлекала: они вполне могли успешно работать, находить красивые вещи). В наше время, когда конкуренция стала жестокой, а на неустроенных людей принято смотреть, как на эдаких горемык-недотеп, я не раз замечал как будто немой сговор между теми, кому нравится унижать других, и теми, кто сдается и сносит обиды. Ведь для проигравшего истинный объект горечи и озлобления – не тот, кто стоит у власти. Скорее, это не кто иной, как он сам, сдавшийся, позволивший другому вертеть своей судьбой, как тому заблагорассудится. Тот же, которому доставляет удовольствие унижать своего ближнего, на деле лишь отыгрывается за свои собственные обиды. Он пытается расплатиться (за ценой ему не угнаться: проценты растут…) за то, что сам в свое время перенес от других – что с того, что он успел с тех пор похоронить и забыть свое прошлое? А тот, кто готов терпеть его высокомерие, по природе своей его брат и соперник. Втайне завидуя богатому родственнику, он в своей горечи хоронит и унижение – и ту весточку к самому себе, которую мог бы в нем обрести, с досадой рвет и бросает прочь.

(23™). С тех пор, как были написаны эти строки, мне уже довелось побеседовать с двумя бывшими учениками «после семидесятого». С их помощью я надеялся понять, почему наша совместная работа с ними в целом не удалась. Они сказали мне, что я, как правило, недооценивал сложности материала, который предлагал им взять на вооружение.

Примечания

Определенные технические тонкости, привычные для меня, но не для них, давались им нелегко; я, как выяснилось, не отдавал себе в этом отчета. Они же падали духом: им казалось, что они не оправдывают моих ожиданий. К тому же (и это мне представляется еще более важным), я иногда «выбалтывал секреты»: сообщал им готовое утверждение вместо того, чтобы дать им возможность прийти к нему самостоятельно, причем как раз тогда, когда они были уже совсем близки к ответу. Это их разочаровывало: им оставалось лишь доказать утверждение – то есть, выполнить упражнение, а ведь это далеко не так интересно. В том-то и проявлялся мой «недостаток щедрости», о котором я говорил несколько раньше (в примечании (21)). Оба ученика, поделившиеся со мной впечатлениями о нашей совместной работе, в свое время начинали превосходно, но постепенно утратили интерес к математическим исследованиям. Часть ответственности за это (теперь стало ясно, какая именно), безусловно, лежит на мне.

Едва ли щедрости во мне было больше до 1970 г., чем после – это я хорошо понимаю. Если в те годы у меня не возникало подобных трудностей, то дело здесь не во мне, а в учениках. Молодые люди, приходившие работать со мной в те давние времена, были уже достаточно увлечены математикой, чтобы находить радость даже в «длинном упражнении», которое давало им лишнюю возможность изучить ремесло и попутно узнать массу полезных вещей. Всякий раз, когда я им «выбалтывал» одно исходное утверждение, они, оттолкнувшись от него, самостоятельно доходили до целой груды новых, куда более мощных. Перебравшись в Монпелье, я, естественно, изменил набор тем, который обыкновенно предлагал ученикам для работы. Теперь я стал выбирать такие объекты в математике, которые, даже не имея технической подготовки, было нетрудно представить себе и «почувствовать». Сделать это было необходимо – но не достаточно. Ведь мои новые ученики были настроены совсем иначе, чем прежние. И это оказалось куда существеннее, чем разница в уровне чисто технической подготовки. А впрочем, я ведь уже говорил (в начале §25): мне многого недостает, чтобы быть по-настоящему хорошим учителем. После семидесятого года эта нехватка ощущалась особенно остро.

(23v). Особенно ярко это различие проявилось в «истории с иностранцем», о которой говорится в §24. Многие совершенно незнакомые

Примечания

люди тогда выражали мне свое сочувствие – но я не помню, чтобы кто-либо из моих учеников «до семидесятого» хотя бы словом обмолвился на этот счет, не говоря уже о том, чтобы предложить мне помощь. Напротив, по моим воспоминаниям, никто из моих позднейших учеников не остался в стороне, а некоторые из них даже приняли деятельное участие в кампании, которую я проводил в Монпелье, «на местном уровне». Дело, связанное с распоряжением от 1945 г., взволновало не только моих учеников: многие студенты Университета Монпелье, едва лишь знавшие меня по имени, явились в день суда во Дворец Правосудия, чтобы оказать мне поддержку. Это, между прочим, позволяет предположить, что мои ученики «до 70-го» в этой ситуации вели себя совсем иначе, чем ученики «после 70-го» не только оттого, что те и другие по-разному ко мне относились: они просто мыслили по-разному. Очевидно, мои ученики «из прежних времен» сделались важными особами; солидного человека задеть за живое не так-то просто… Но история с моим уходом из IHES как будто показывает, что дело не только в этом. В то время они еще не достигли такого высокого положения в научном мире, и все же никто из них на моей памяти не проявил интереса к делу, которому я тогда отдавал все свои силы. Скорее, мое поведение внушало им беспокойство – всем без исключения. Итак, похоже, мои «прежние» и «новые» ученики действительно по-разному смотрят на вещи. Во всяком случае, одним лишь различием в «чинах» всего не объяснить.

(24). Это не просто этика математического ремесла: она приложима к любой научной среде. Для всякого ученого возможность придать гласности свои результаты и получить признание – вопрос жизни и смерти, и не только для его социального статуса. Речь идет о «выживании» человека как члена данной среды, со всеми вытекающими отсюда последствиями для него самого и для его семьи.

(25). Кроме этого разговора с Дьедонне, за всю мою жизнь как математика я не помню ни одного случая, чтобы при мне обсуждались в какой бы то ни было форме вопросы профессиональной этики. Сам я не задумывался о «правилах игры» и, кажется, никто из моих друзей об этом не заговаривал. (Здесь я не беру в расчет дискуссий о том, вправе ли ученые сотрудничать с военным министерством. В начале 70-х вокруг движения «Survivre et Vivre» такие разговоры велись

Примечания

в изобилии. Они, однако же, не имели прямого отношения к жизни математиков в рамках научной среды. Многие мои друзья, в том числе Шевалле и Гедж, считали, что в ту пору, особенно поначалу, я придавал слишком много значения «военному вопросу» (к которому я и впрямь был особенно чувствителен), не замечая более насущных проблем – как раз таких, о которых говорится на этих страницах.) С учениками я также никогда об этом не беседовал. Насколько я понимаю, по умолчанию всеми и всюду принималось одно-единственное правило (к которому, собственно, и сводилась этика ремесла): не выдавать намеренно чужих идей за свои. Это соглашение насчитывает века; мне думается, ни в одной научной среде его, вплоть до наших дней, еще никто не оспаривал. Но если не прибавить к нему второго правила, о праве всякого ученого предать гласности свои идеи и результаты, оно становится мертвой буквой. В современном научном мире те, кто стоят у власти, держат в своих руках всю научную информацию. Это – неограниченный контроль: теперь он уже не уравновешивается никаким соглашением, подобным тому, о котором говорил Дьедонне (и которое, возможно, даже в лучшие времена не распространялось за пределы узкого круга математиков). Ученый, занимающий высокое положение в научном мире, получает столько информации, сколько сочтет нужным (а зачастую и сверх того). В его власти не пропустить в печать большую часть работ со словами: «неинтересно», «более или менее известно», «тривиально» и проч. – и, однако же, использовать приобретенные знания с выгодой для себя. Я возвращаюсь к этому в примечании (27).

(26). «Члены-основатели» Бурбаки – это Анри Картан, Клод Шевалле, Жан Дельсарт, Жан Дьедонне, Андре Вейль. Все они живы, кроме Дельсарта, преждевременно ушедшего от нас в пятидесятые годы. В его время этика ремесла, как правило, все еще соблюдалась.

Перечитывая эти страницы, я боролся с искушением вычеркнуть абзац, в котором я будто бы объявляю одних – порядочными, других – бесчестными, не спрашивая, интересует ли их мое мнение на этот счет. А ведь я решительно не вправе здесь никого судить. Настороженность, которую может вызвать у читателя этот абзац, безусловно, оправдана. Я все же его сохранил, заботясь об аутентичности своего свидетельства. Кроме того, этот отрывок правдиво передает мои ощущения, даже если они не слишком уместны.

Примечания

( 7). Рони Браун как-то пересказал мне слова своего учителя Дж. Г. К. Уайтхеда. Уайтхед удивлялся «снобизму молодых людей, которые считают, что теорема тривиальна, если у нее есть простое доказательство». Многим из моих прежних друзей было бы полезно над этим призадуматься. В наши дни к такому «снобизму» тяготеют не только молодые: я знаю несколько весьма авторитетных математиков, рассуждающих о «тривиальности» именно так. Меня это задевает за живое: ведь лучшее из того, что я сделал в математике (да и в жизни вообще…), по этой логике становится «тривиальным». Самые плодотворные (на мой взгляд) из тех структур и понятий, которые я за все эти годы ввел в математический обиход, их наиболее существенные свойства, которые мне удалось установить упорным, терпеливым трудом, – все это просто, все «тривиально». (По всей вероятности, в наши дни ни одна из моих находок не попала бы в CR, будь ее автор начинающим математиком!) Моя гордость в математике, а вернее – моя страсть и радость, всегда заключалась в умении обнаруживать очевидное; к этому я и стремился всю жизнь в своих занятиях. Страницы этой книги (вместе с настоящей вводной главой) – отнюдь не исключение. Зачастую все решает то мгновение, когда ты видишь вопрос, которым еще никто не задавался (найден ли ответ, и каким он будет – не так уж важно) или когда ты приходишь к утверждению (пускай лишь гипотетическому), которое полностью описывает совершенно новую математическую ситуацию. И тогда уже не имеет особого значения, простым или сложным окажется доказательство. Даже если поначалу, на скорую руку, ты набросаешь его неверно – пустяки, это не главное. То, о чем говорил Уайтхед – это снобизм пресыщенного гуляки, который в гостях не отведает вина, пока не убедится, что оно дорого обошлось хозяину. В последние годы, заново охваченный забытой было страстью к математике, я не раз предлагал моим прежним друзьям разделить со мною лучшие из моих находок – но лишь с тем, чтобы услышать в ответ голоса пресыщенности и безразличия. Отказ причинял мне боль; где-то в глубине она еще не утихла. Воспоминания о тех невеселых минутах по сей день обдают меня холодом, и дразнят ушедшим теплом обманутой радости. Ну что же, я ведь из-за этого не остался на улице, у меня есть крыша над головой. Я же не пытался, слава Богу, пристроить свои работы в какой-нибудь почтенный журнал.

Примечания

Снобизм, о котором говорил Уайтхед, убивает в людях чувство красоты – но этого мало. Снобизм авторитетного математика по отношению к безвестному коллеге, во всем от него зависящему – это еще и бесчестность, злоупотребление властью. А власть нешуточная: она позволяет усвоить и использовать в дальнейшем чужие идеи, при этом совершенно преградив им дорогу к публикации. Предлог известен: они, дескать, «очевидны», «тривиальны», и потому «не представляют интереса». Я не говорю здесь о плагиате в общепринятом смысле этого слова: это уже крайний случай. Вероятно, плагиат как таковой до сих пор встречается в математической среде чрезвычайно редко. Однако же с практической точки зрения для того, чьи идеи попали в чужие руки, все сводится к тому же – да и нравственная позиция человека, решившего их судьбу, так или иначе представляется мне довольно сомнительной. Она просто удобнее: разом обеспечивает тебе и чувство бесконечного превосходства над своим ближним, и незапятнанную совесть в образе неумолимого защитника безупречной чистоты Математики… А в остальном, разница невелика.

(28). Когда я писал эти страницы, особенно вначале, меня разрывали два противоположных стремления: с одной стороны, мне не терпелось выложить все начистоту, с другой – я ведь должен был заботиться и о сдержанности, скромности в изложении. Я находился меж двух огней (ясное дело, отсюда и неловкость), и никак не мог избавиться от мысли, что я «так ничему и не научился». Меня мучило чувство внутреннего неудовлетворения; кажется, несколько предыдущих страниц я успел переписать дважды. По ходу дела я все сильнее запутывался в этом клубке неясных ощущений, но в конце концов все же приблизился к сути вещей, а попутно и в самом деле «чему-то научился». Думаю даже, что мне удалось прийти к чему-то важному, в известном смысле обобщающему мой собственный опыт – и, пожалуй, далеко выходящему за его рамки.

(29). Я говорю здесь о том, что происходит, если долгое время отдаешь все свои душевные силы математике или любой другой чисто умственной деятельности. Но страсть, которая так или иначе ведет нас к источникам знания, скрытым внутри нас самих, может и в самом деле наградить нас духовной зрелостью. В погоне за мечтой, в попытке

Примечания

нащупать сквозь туман очертания какой-нибудь близкой нам по духу и вечно ускользающей сущности, нам нет-нет да и выпадет случай узнать кое-что о себе. Тогда наше самоощущение обновляется, и это само по себе прибавляет нам зрелости.

(30). Несколько лет назад эстафету переняли мои дети. Теперь им приходится учить подчас несговорчивого ученика тайнам человеческого бытия…

(31). Я думаю, здесь речь идет о «мужественной» («ян») стороне стремления к познанию – о том, что зовет нас искать, открывать, называть то, что является взгляду… Получив имя. мечта, захваченная в плен, уже не может вернуться в ничто (даже если в реальном мире новое знание сразу же похоронят, забудут, если за ним не пойдут к новым открытиям…). Форма «инь», женская – в открытости, в восприимчивости, в молчаливом ожидании знания, зреющего в самых сокровенных пластах нашего бытия; доступ мысли в эти края заказан. Открытость, а с ней внезапное прозрение, которое дарует согласие и лечит душевные раны, тоже приходят, как милость. На первый взгляд мимолетная, она, однако, затрагивает в душе глубокие струны. В эти редкие моменты какое-то знание без слов осеняет нас – и мне кажется, оно остается с нами, не в памяти, а где-то еще глубже, у самого дна души.

(32). Во времена, когда я еще занимался функциональным анализом, то есть до 1954 г., мне случалось подолгу и безрезультатно биться над одним и тем же вопросом. Исчерпав все свои идеи и не зная, как двигаться дальше, я все же упорствовал – и ходил кругами, в целом не двигаясь с места, хоть и видел, что там уже давно «не клюет». Так у меня было с «проблемой аппроксимации» в топологических векторных пространствах, с которой я мучился целый год. Разрешили ее лишь двадцать лет спустя, применив методы, о которых я не мог иметь представления в пятидесятые годы. Я ломал голову над этой проблемой не из настоящего желания узнать, а из пустого упрямства, не понимая толком, что же со мной происходит. То был тяжелый год – а ведь математика никогда до тех пор не бывала для меня в тягость. Этого опыта мне хватило, чтобы понять, что подолгу «томиться» над одной и той же задачей не имеет смысла: как только ты заметил, что работа застопорилась, нужно бросать ее и браться за что-то другое. Когда придет время, можно будет вернуться к этой задаче. Как правило, подходящий момент не заставляет себя ждать: просто вопрос должен сначала созреть сам по себе, без твоего непосредственного вмешательства. Достаточно того, что ты продолжаешь с воодушевлением работать над чем-то другим, пусть даже (на первый взгляд) весьма далеким от исходной темы. Я убежден, что, не отложи я тогда этой задачи, я не разрешил бы ее и за десять лет! С 1954 г. я завел себе привычку заниматься параллельно несколькими вещами, держать сразу много подков на огне. В каждый момент я работаю лишь с одной, но при этом всякий раз случается чудо: всем прочим, казалось бы, лежащим без дела, мой труд неизменно идет на пользу. Точно так же у меня всегда было с медитацией, хоть я и не добивался этого нарочно. По мере того, как размышление продвигалось, накапливались жгучие вопросы, требующие скорейшего разрешения; число их росло день ото дня…


    Ваша оценка произведения:

Популярные книги за неделю