355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ТУ) » Текст книги (страница 17)
Большая Советская Энциклопедия (ТУ)
  • Текст добавлен: 17 сентября 2016, 19:56

Текст книги "Большая Советская Энциклопедия (ТУ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 17 (всего у книги 40 страниц)

Турбостроение

Турбострое'ние, см. в ст. Энергетическое машиностроение.

Турбоход

Турбохо'д, судно, приводимое в движение паровой или газовой турбиной. Первый паротурбоход – английский «Турбиния» с тремя паровыми турбинами общей мощностью 1,47 Мвт (2000 л. с.), водоизмещением 44 т, развивавшая скорость около 34 уз (62 км/ч)построен в 1894. Практическое применение паровые турбины нашли почти одновременно на военных кораблях (с 1899) и пассажирских судах (с 1901). Паротурбинные установки – самые мощные из судовых главных двигателей (1976) – устанавливаются на крупнейших морских танкерах, навалочниках, лихтеровозах, быстроходных контейнеровозах, пассажирских судах, военных кораблях. К 1976 почти треть (по валовой вместимости) находящихся в эксплуатации морских транспортных судов была оборудована паровыми турбинами с наибольшей единичной мощностью свыше 40 Мвт; проектируются грузовые суда с паротурбинными установками мощностью 88—110 Мвт.

 Энергетическая установка паротурбохода состоит из главной паровой турбины с зубчатой передачей на гребной винт, 1—2 паровых котлов; некоторые паротурбоходы имеют 2 винта и более. В качестве топлива обычно используется мазут.

  Газотурбоходы появились в военно-морском флоте в 1943—48, использование газовых турбин на транспортных морских судах началось с 1951 (английский танкер «Аурис»). Газовые турбины применяют обычно на судах с повышенной мощностью главных двигателей. В советском транспортном флоте с 1968 эксплуатируются сухогрузное универсальное судно – Т. «Парижская Коммуна» с газовой турбиной мощностью 9,5 Мвт, с 1960 – лесовозы типа «Павлин Виноградов» с турбиной мощностью 2,94 Мвт. В 1977 будет построено судно с горизонтальным способом грузовых операций «Атлантика» с 2 турбинами мощностью по 18,4 Мвт. Лёгкие авиационные и судовые газовые турбины получили распространение на судах на подводных крыльях и судах на воздушной подушке. Энергетическая установка газотурбохода состоит из генератора газа (камера сгорания или свободнопоршневой генератор газа) и газовой турбины с зубчатой передачей на гребной вал. Работают турбины на газотурбинном топливе.

  Лит. см. при ст. Судно.

  Э. Г. Логвинович.

Турбулентное течение

Турбуле'нтное тече'ние (от лат. turbulentus – бурный, беспорядочный), форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа (см. Турбулентность). Наиболее детально изучены Т. т. в трубах, каналах, пограничных слоях около обтекаемых жидкостью или газом твёрдых тел, а также так называемых свободные Т. т. – струи, следы за движущимися относительно жидкости или газа твёрдыми телами и зоны перемешивания между потоками разной скорости, не разделёнными какими-либо твёрдыми стенками. Т. т. отличаются от соответствующих ламинарных течений как своей сложной внутренней структурой (рис. 1), так и распределением осреднённой скорости по сечению потока и интегральными характеристиками – зависимостью средней по сечению или максимальной скорости, расхода, а также коэффициента сопротивления от Рейнольдса числа Re. Профиль осреднённой скорости Т. т. в трубах или каналах отличается от параболического профиля соответствующего ламинарного течения более быстрым возрастанием скорости у стенок и меньшей кривизной в центральной части течения (рис. 2). За исключением тонкого слоя около стенки профиль скорости описывается логарифмическим законом (то есть скорость линейно зависит от логарифма расстояния до стенки). Коэффициент сопротивления l= 8tw /rv2cp (где tw – напряжение трения на стенке, r – плотность жидкости, vcp её скорость, средняя по сечению потока) связан с Re соотношением

l–1/2=(1/ xÖ8 ) In (l1/2 Re) + B,

 где x и В – числовые постоянные.

  В отличие от ламинарных пограничных слоев, турбулентный пограничный слой обычно имеет отчётливую границу, беспорядочно колеблющуюся со временем (в пределах 0,4 d – 1,2 d, где d – расстояние от стенки, на котором осреднённая скорость равна 0,99 v, a v – скорость вне пограничного слоя). Профиль осреднённой скорости в пристенной части турбулентного пограничного слоя описывается логарифмическим законом, а во внешней части скорость растет с удалением от стенки быстрее, чем по логарифмическому закону. Зависимость l от Re здесь имеет вид, аналогичный указанному выше.

  Струи, следы и зоны перемешивания обладают приблизительно автомодельностью: в каждом сечении х = const любого из этих Т. т. на не слишком малых расстояниях х от начального сечения можно ввести такие масштабы длины и скорости L (x) и v (x), что безразмерные статистические характеристики гидродинамических полей (в частности, профили осреднённой скорости), полученные при применении этих масштабов, будут одинаковыми во всех сечениях.

  В случае свободных Т. т. область пространства, занятая завихренным Т. т., в каждый момент времени имеет чёткую, но очень неправильную форму границ, вне которых течение потенциально. Зона перемежающейся турбулентности оказывается здесь значительно более широкой, чем в пограничных слоях.

  Лит. см. при ст. Турбулентность.

  А. С. Монин.

Рис. 1. Турбулентное течение.

Рис. 2. Профиль осреднённой скорости: а – при ламинарном, б – при турбулентном течении.

Турбулентность

Турбуле'нтность, явление, наблюдаемое во многих течениях жидкостей и газов и заключающееся в том, что в этих течениях образуются многочисленные вихри различных размеров, вследствие чего их гидродинамические и термодинамические характеристики (скорость, температура, давление, плотность) испытывают хаотические флуктуации и потому изменяются от точки к точке и во времени нерегулярно. Этим турбулентные течения отличаются от так называемых ламинарных течений. Большинство течений жидкостей и газов в природе (движение воздуха в земной атмосфере, воды в реках и морях, газа в атмосферах Солнца и звёзд и в межзвёздных туманностях и т.п.) и в технических устройствах (в трубах, каналах, струях, в пограничных слоях около движущихся в жидкости или газе твёрдых тел, в следах за такими телами и т.п.) оказываются турбулентными.

  Благодаря большой интенсивности турбулентного перемешивания турбулентные течения обладают повышенной способностью к передаче количества движения (и потому к повышенному силовому воздействию на обтекаемые твёрдые тела), передаче тепла, ускоренному распространению химических реакций (в частности, горения), способностью нести и передавать взвешенные частицы, рассеивать звуковые и электромагнитные волны и создавать флуктуации их амплитуд и фаз, а в случае электропроводной жидкости – генерировать флуктуирующее магнитное поле и т.д.

  Т. возникает вследствие гидродинамической неустойчивости ламинарного течения, которое теряет устойчивость и превращается в турбулентное, когда так называемое Рейнольдса число Re = l u/n превзойдёт некоторое критическое значение Rekp(l и u – характерные длина и скорость в рассматриваемом течении, n – кинематический коэффициент вязкости). По экспериментальным данным, в прямых круглых трубах при наибольшей возможной степени возмущённости течения у входа в трубу Rekp » 2300 (здесь l – диаметр трубы, u средняя по сечению скорость). Уменьшая степень начальной возмущённости течения, можно добиться затягивания ламинарного режима до значительно больших Rekp, например в трубах до Rekp » 50 000. Аналогичные результаты получены для возникновения Т. в пограничном слое.

  Возникновение Т. при обтекании твёрдых тел может проявляться не только в виде турбулизации пограничного слоя, но и в виде образования турбулентного следа за телом в результате отрыва пограничного слоя от его поверхности. Турбулизация пограничного слоя до точки отрыва приводит к резкому уменьшению полного коэффициента сопротивления тела. Т. может возникнуть и вдали от твёрдых стенок, как при потере устойчивости поверхности разрыва скорости (например, образующейся при отрыве пограничного слоя или являющейся границей затопленной струи или поверхностью разрыва плотности), так и при потере устойчивости распределения плотностей слоев жидкости в поле тяжести, то есть при возникновении конвекции. Дж. У. Рэлей установил, что критерий возникновения конвекции в слое жидкости толщиной h между двумя плоскостями с разностью температур dT имеет вид Ra = gbh3dT/nc, где g – ускорение силы тяжести, b – коэффициент теплового расширения жидкости, c коэффициент её температуропроводности. Критическое число Рэлея Rakpимеет значение около 1100—1700.

  Вследствие чрезвычайной нерегулярности гидродинамических полей турбулентных течений применяется статистическое описание Т.: гидродинамические поля трактуются как случайные функции от точек пространства и времени, и изучаются распределения вероятностей для значений этих функций на конечных наборах таких точек. Наибольший практический интерес представляют простейшие характеристики этих распределений: средние значения и вторые моменты гидродинамических полей, в том числе дисперсии компонент скорости  (где  пульсации скорости, а чёрточка наверху – символ осреднения); компоненты турбулентного потока количества движения  (так называемое напряжения Рейнольдса) и турбулентного потока тепла  (r плотность, с — удельная теплоёмкость, Т — температура). Статистические моменты гидродинамических полей турбулентного потока должны удовлетворять некоторым уравнениям (вытекающим из уравнений гидродинамики), простейшие из которых – так называемые уравнения Рейнольдса, получаются непосредственным осреднением уравнений гидродинамики. Однако точного решения их до сих пор не найдено, поэтому используются различные приближённые методы.

  Основной вклад в передачу через турбулентную среду количества движения и тепла вносят крупномасштабные компоненты Т. (масштабы которых сравнимы с масштабами течения в целом); поэтому их описание – основа расчётов сопротивления и теплообмена при обтекании твёрдых тел жидкостью или газом. Для этой цели построен ряд так называемых полуэмпирических теорий Т., в которых используется аналогия между турбулентным и молекулярным переносом, вводятся понятия пути перемешивания, интенсивности Т., коэффициента турбулентной вязкости и теплопроводности и принимаются гипотезы о наличии линейных соотношений между напряжениями Рейнольдса и средними скоростями деформации, турбулентным потоком тепла и средним градиентом температуры. Такова, например, применяемая для плоскопараллельного осреднённого движения формула Буссинеска t = Adu/dy с коэффициентом турбулентного перемешивания (турбулентной вязкости) А, который, в отличие от коэффициента молекулярной вязкости, уже не является физической постоянной жидкости, а зависит от характера осреднённого движения. На основании полуэмпирической теории Прандтля можно принять , где путь перемешивания l – турбулентный аналог длины свободного пробега молекул.

  Большую роль в полуэмпирических теориях играют гипотезы подобия (см. Подобия теория). В частности, они служат основой полуэмпирической теории Кармана, по которой путь перемешивания в плоскопараллельном потоке имеет вид l = – cu’/u’’, где u = u(у) скорость течения, а c – постоянная. А. Н. Колмогоров предложил использовать в полуэмпирических теориях гипотезу подобия, по которой характеристики Т. выражаются через её интенсивность b и масштаб l (например, скорость диссипации энергии e ~ b3/ l). Одним из важнейших достижений полуэмпирической теории Т. является установление универсального (по числу Рейнольдса, при больших Re) логарифмического закона для профиля скорости в трубах, каналах и пограничном слое: ,

 справедливого на не слишком малых расстояниях y от стенки; здесь  (tw, – напряжение трения на стенке), А и В – постоянные, а , в случае гладкой стенки и пропорционально геометрической высоте бугорков шероховатости в случае шероховатой.

  Мелкомасштабные компоненты Т. (масштабы которых малы по сравнению с масштабами течения в целом) вносят существенный вклад в ускорения жидких частиц и в определяемую ими способность турбулентного потока нести взвешенные частицы, в относительное рассеяние частиц и дробление капель в потоке, в перемешивание турбулентных жидкостей, в генерацию магнитного поля в электропроводной жидкости, в спектр неоднородностей электронной плотности в ионосфере, в флуктуации параметров электромагнитных волн, в болтанку летательных аппаратов и т.д.

  Описание мелкомасштабных компонент Т. базируется на гипотезах Колмогорова, основанных на представлении о каскадном процессе передачи энергии от крупномасштабных ко всё более и более мелкомасштабным компонентам Т. Вследствие хаотичности и многокаскадности этого процесса при очень больших Re режим мелкомасштабных компонент оказывается пространственно-однородным, изотропным и квазистационарным и определяется наличием среднего притока энергии  от крупномасштабных компонент и равной ему средней диссипации энергии в области минимальных масштабов. По первой гипотезе Колмогорова, статистические характеристики мелкомасштабных компонент определяются только двумя параметрами:  и n; в частности, минимальный масштаб турбулентных неоднородностей  (в атмосфере l ~ 10-1см). По второй гипотезе, при очень больших Re в мелкомасштабной области существует такой (так называемый инерционный) интервал масштабов, больших по сравнению с l, в котором параметр n оказывается несущественным, так что в этом интервале характеристики Т. определяются только одним параметром .

  Теория подобия мелкомасштабных компонент Т. была использована для описания локальной структуры полей температуры, давления, ускорения, пассивных примесей. Выводы теории нашли подтверждение при измерениях характеристик различных турбулентных течений. В 1962 А. Н. Колмогоров и А. М. Обухов предложили уточнение теории путём учёта флуктуаций поля диссипации энергии, статистические свойства которых не универсальны: они могут быть разными в различных типах течений (и, в частности, могут зависеть от Re).

  Лит.: Монин А. С., Яглом А. М., Статистическая гидромеханика, ч. 1, М., 1965, ч. 2, М., 1967; Хинце И. О., Турбулентность, пер. с англ., М., 1963; Таунсенд А. А., Структура турбулентного потока с поперечным сдвигом, пер. с англ., М., 1959; Бэтчелор Дж. К., Теория однородной турбулентности, пер. с англ., М., 1955; Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1954 (Теоретическая физика); Линь Цзя-цзяо, Теория гидродинамической устойчивости, пер. с англ., М., 1958; Лойцянский Л. Г., Механика жидкости и газа, 3 изд., М., 1970; Шлихтинг Г., Возникновение турбулентности, пер. с нем., М., 1962; Гидродинамическая неустойчивость. Сб. статей, пер. с англ., М., 1964; Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967.

  А. С. Монин.

Турбулентность в атмосфере и гидросфере

Турбуле'нтность в атмосфе'ре и гидросфе'ре. Движение воздуха в атмосфере и воды в гидросфере в большинстве случаев имеет турбулентный характер (см. Турбулентность). Т. в а. и г. играет большую роль, так как именно благодаря турбулентности происходят обмен количеством движения и теплотой между атмосферой и океаном (включая, в частности, зарождение ветровых течений и волн в океане), испарение с поверхности океана и суши, вертикальный перенос тепла, влаги, солей, растворённых газов и различных загрязнений, диссипация кинетической энергии, рассеяние и флуктуации амплитуды и фазы звуковых, световых и радиоволн (включая мерцание звёзд, флуктуации радиосигналов космических аппаратов, сверхдальнее телевидение и т.п.).

  Специфическими особенностями Т. в а. и г. являются очень широкий спектр масштабов турбулентных неоднородностей (от мм до тыс. км) и существенное влияние вертикального распределения плотности среды на развитие мелкомасштабной турбулентности.

  Спектр масштабов турбулентности в атмосфере распадается на синоптическую область (макротурбулентность) с масштабами намного больше эффективной толщины атмосферы Н ~ 10 км и квазидвумерными (квазигоризонтальными) турбулентными неоднородностями и микрометеорологическую область с масштабами намного меньше Н и существенно трёхмерными неоднородностями. В промежуточной мезометеорологической области сколько-нибудь интенсивная турбулентность редка. Макротурбулентность черпает энергию из крупномасштабных неоднородностей притока тепла к атмосфере от подстилающей поверхности, а затрачивает энергию главным образом на генерацию микротурбулентности при гидродинамической неустойчивости вертикальных градиентов скорости ветра.

  Неустойчивая стратификация служит для микротурбулентности источником, а устойчивая – стоком энергии; в первом случае микротурбулентность оказывается интенсивной, во втором – слабой. Свойства микротурбулентности наиболее просты в приземном слое атмосферы толщиной в несколько десятков м, в котором вертикальные турбулентные потоки импульса t и тепла q постоянны. При условиях квазистационарности и горизонтальной однородности характеристики крупномасштабных компонент такой турбулентности определяются, кроме высоты z и скорости трения , также параметром плавучести b = g/T и величиной q / cpr (g — ускорение силы тяжести, cp и r – удельная теплоёмкость и плотность воздуха, T средняя температура). Измеренные масштабами длины , времени L / u* и температуры q / cp ru*, эти характеристики оказываются универсальными функциями безмерной высоты z / L или определяемого ею числа Ричардсона , (где u и Т– скорость ветра и температура).

  Свойства океанической микротурбулентности определяются типичным для очень устойчиво стратифицированной жидкости наличием в океане вертикальной микроструктуры – долгоживущих квазиоднородных слоев с толщинами ~ 1 м и менее, разделяемых поверхностями разрыва температуры и солёности. Турбулентность, сосредоточенная в этих слоях, слаба (не способна разрушать разделяющие слои поверхности разрыва), имеет малые числа Рейнольдса (определяемые толщинами слоев), а потому далека от универсального статистического равновесия и определяется особенностями каждого конкретного слоя (а не его глубиной).

  Лит.: Монин А. С., Яглом А. М., Статистическая гидромеханика, ч. 1, М., 1965, ч. 2, М., 1967; Монин А. С., Каменкович В. М., Корт В. Г., Изменчивость Мирового океана, Л., 1974; Ламли Дж.-Л., Пановский Г.-А., Структура атмосферной турбулентности, пер. с англ., М., 1966.

  А. С. Монин.

Турбулентность плазмы

Турбуле'нтность пла'змы, явление, родственное обычной турбулентности, но осложнённое специфическим характером взаимодействия частиц плазмы (электронов и ионов), осуществляемого дальнодействующими кулоновскими силами. Поскольку для плазмы характерно большое разнообразие типов движений и колебаний, в ней могут возникать и даже присутствовать одновременно многие типы турбулентных состояний. Так, например, грануляция фотосферы Солнца, солнечные пятна и протуберанцы (см. Солнце) представляют собой результат сложного движения плазмы в атмосфере Солнца, и в этом движении плазма проявляет себя просто как сплошная проводящая среда. Турбулентность такого типа, близкая к турбулентности жидкости, называется магнитогидродинамической турбулентностью. Она наблюдается в космической плазме и в лабораторных условиях, например при удержании высокотемпературной плазмы магнитным полем, если при этом не обеспечены условия устойчивости плазмы.

  С другой стороны, потоки заряженных частиц могут усиливать в плазме колебания и волны. Возникающая в этом случае Т. п. называется кинетической, и в зависимости от того, какой именно тип колебаний является преобладающим, говорят о «ленгмюровском», «ионно-звуковом» и т.п. типах Т. п. (см. Плазма, раздел Колебания и неустойчивости плазмы). Т. п., связанная с раскачкой широкого спектра волн в плазме, часто бывает слабой, то есть она сходна больше с совокупностью волн на воде, чем с системой вихрей в турбулентном потоке жидкости. При слабой Т. п. волны имеют не очень большую амплитуду, и поэтому процесс передачи энергии от одних волн к другим протекает сравнительно медленно.

  Плазменная турбулентность проявляется во многих процессах, протекающих в плазме: при удержании магнитным полем неоднородной плазмы, при взаимодействии пучков частиц с плазмой, при прохождении через плазму мощного электромагнитного излучения (в последнем случае благодаря развитию так называемых параметрических взаимодействий). Т. п. представляет собой сложное движение заряженных частиц и электромагнитного поля и, таким образом, служит проявлением коллективной природы взаимодействия заряженных частиц плазмы между собой.

  Лит.: Кадомцев Б. Б., Турбулентность плазмы, в сборнике: Вопросы теории плазмы, в. 4, М., 1964; Цытович В. Н., Теория турбулентной плазмы, М., 1971; Галеев А. А., Сагдеев Р. З., Нелинейная теория плазмы, в сборнике: Вопросы теории плазмы, в. 7, М., 1973; Электродинамика плазмы, М., 1974.

  Б. Б. Кадомцев.


    Ваша оценка произведения:

Популярные книги за неделю

    wait_for_cache