355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (СИ) » Текст книги (страница 18)
Большая Советская Энциклопедия (СИ)
  • Текст добавлен: 7 октября 2016, 10:49

Текст книги "Большая Советская Энциклопедия (СИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 18 (всего у книги 56 страниц)

  Неупругие процессы при высоких энергиях. Представление об адроне как об «облаке» сильно взаимодействующих частиц с определенным радиусом позволяет качественно понять картину С. в. при столкновении адронов высоких энергий. Такие столкновения удобно рассматривать в системе центра инерции (с. ц. и.) сталкивающихся частиц (в системе координат, в которой центр инерции сталкивающихся частиц покоится, т. е. частицы движутся навстречу друг другу с равными по величине и противоположными по направлению импульсами). Пусть при столкновении двух адронов высокой энергии они пролетают друг относительно друга так, что их «облака» перекрываются. Благодаря большой величине константы С. в. такие столкновения должны сопровождаться вылетом большого числа вторичных частиц. Эффективное сечение множеств. процессов должно быть, следовательно, постоянным и равным pR2 (где R – радиус действия С. в., который в рассматриваемой «наглядной» модели равен сумме радиусов двух сталкивающихся «облаков»). Исходя из такой упрощённой модели, легко представить и кинематику рождения вторичных частиц. Можно считать, что при столкновении происходит возбуждение «облаков», которое после их разлёта приводит к испусканию вторичных частиц, летящих в основном по направлениям разлёта обоих «облаков» (рис. 2). Следует ожидать также, что из «центральной» области столкновения могут испускаться в различных направлениях более медленные вторичные частицы. Долгое время, пока единственным источником частиц с энергией свыше нескольких десятков Гэв были космические лучи, считалось, что приблизительно такая картина множественных процессов и наблюдается на опыте (в частности, измерения в очень широкой области энергий указывали на приблизительное постоянство эффективного сечения множественных процессов; более точные заключения в условиях измерений с космическими лучами сделать было трудно). Эксперименты, выполненные на ускорителях высокой энергии – в Серпухове (СССР), Европейском центре ядерных исследований (ЦЕРНе) и Батавии (США), привели к существенным уточнениям картины множественных процессов. Было установлено, что полные эффективные сечения взаимодействия адронов медленно уменьшаются с ростом энергии и становятся приблизительно постоянными при энергиях в несколько десятков Гэв. При дальнейшем увеличении энергии наблюдается рост полных сечений рассеяния (см. рис. 1, б); впервые он наблюдался при рассеянии К+-мезонов на нуклонах на Серпуховском ускорителе (т. н. «Серпуховский эффект»). Опыт показывает, что возрастание сечений взаимодействия s носит универсальный характер для адронов и, по-видимому) приближается к максимально возможному росту, установленному на основе общих принципов современной квантовой теории: s ~ ln2E (где Е – энергия столкновения). Это свидетельствует о том, что при высоких энергиях проявляются новые дополнительные механизмы взаимодействия, приводящие к росту радиуса С. в.

  Изучение множественных процессов при высокой энергии даёт ключ для понимания динамики С. в. В этом смысле большое значение имеет изучение особого класса процессов – инклюзивных (когда из совокупности множеств, событий выделяются процессы с рождением каких-либо определенных вторичных частиц и измеряются угловые и энергетические распределения для этих частиц). Впервые эти процессы теоретически рассмотрены и предложены для изучения сов. физиками. Для инклюзивных процессов открыт своеобразный закон подобия – масштабная инвариантность, согласно которой распределение вторичных частиц по импульсам (если измерять импульс в долях максимально возможного импульса при данной энергии столкновения) оказывается одинаковым при разных энергиях столкновения. Масштабная инвариантность в адронных столкновениях (так же как в глубоко неупругих столкновениях пептонов с адронами) может дать сведения о характере особенностей взаимодействия на т. н. световом конусе (т. с. когда взаимодействие распространяется с предельно возможной скоростью – скоростью света). Знание этих особенностей может быть решающим звеном для построения теории С. в.

  Упругое рассеяние адронов при высокой энергии. Упругими называются процессы, при которых сталкивающиеся частицы в результате взаимодействия меняют лишь направление своего движения (т. е. не меняется сорт частиц и не происходит дополнительного рождения вторичных частиц). При столкновении адронов высокой энергии, когда они сближаются на расстояние, меньшее радиуса С. в., доминирует рождение вторичных частиц. Тем не менее упругое рассеяние в случае столкновений адронов должно неизбежно возникать из-за волновых свойств частиц. Пояснить это можно на примере волнового процесса – дифракции света. Если параллельный пучок света падает на абсолютно поглощающий («чёрный») шарик радиуса R, то непосредственно за шариком образуется область тени, отвечающая полному поглощению света шариком. Однако на далёких расстояниях благодаря волновой природе света будет происходить дифракция – распространение световых колебаний в область геометрической тени. По порядку величины угол, на который происходит дифракция, равен отношению длины волны света l к радиусу шарика R (т. е. l/R). Из-за интерференции волн дифракционная картина представляет собой совокупность убывающих с ростом углов максимумов и минимумов интенсивности. Для «черного» шарика с «резкими» краями интенсивность в минимумах падает до нуля, а для шарика с «размытыми» краями (т. е. с уменьшающейся к краям поглощающей способностью) различие между максимумами и минимумами интенсивности сглаживается. При уменьшении длины волны l углы, на которые происходит дифракция, уменьшаются, однако общий поток дифрагирующего света остаётся постоянным, т. к. амплитуда дифракции под очень малыми углами обратно пропорциональна длине волны, т. е. растет с уменьшением l. Эффективное сечение дифракции для «чёрного» шарика с резкими краями оказывается равным эффективному сечению поглощения pR2.

  Упругое рассеяние при столкновении адронов высокой энергии должно качественно напоминать явление дифракции. Действительно, если сближение адронов на расстояние, меньшее радиуса действия С. в., приводит к множественному рождению частиц (т. е. выводит частицы из упругого канала реакции, что соответствует как бы проявлений более общей симметрии С. в. – поглощению), то упругое рассеяние должно возникать в основном за счёт волновых свойств частиц аналогично дифракции на «чёрном» шарике с радиусом, равным радиусу С. в. Поскольку длина волны де Бройля для частиц с импульсом p равна  = /|p|, то упругое рассеяние адронов при высоких энергиях должно происходить в основном на малые углы – в конусе с угловым раствором J ~ /R = /|p|R. При этом амплитуда упругого рассеяния для очень малых (в пределе – нулевых) углов рассеяния должна расти пропорционально импульсу частиц. Этот вывод следует из оптической теоремы, если считать, что полное эффективное сечение рассеяния при высоких энергиях остается постоянным.

Эксперимент, изучение процессов упругого рассеяния адронов в общих чертах подтверждает дифракционный характер рассеяния. В некоторых случаях удаётся даже наблюдать появление вторичных дифракционных максимумов (рис. 3).

  Однако с ростом энергии обнаруживаются более сложные закономерности, указывающие на существование механизмов взаимодействия с различными радиусами, зависящими от энергии взаимодействия.

  Специфические внутренние симметриисильных взаимодействий

  Изотопическая инвариантность. Первой обнаруженной на опыте внутренней симметрией С. в. явилась зарядовая независимость ядерных сил, заключающаяся в том, что ядерное взаимодействие протонов с протонами, нейтронов с нейтронами и нейтронов с протонами в одинаковых состояниях одинаково, т. е. не зависит от электрического заряда нуклонов. Зарядовая независимость ядерных сил является одним из проявлений более общей симметрии С. в. – изотопической инвариантности. Согласно изотопической инвариантности, С. в. между нуклонами не меняется, если вместо волновых функций протона (p) и нейтрона (n) взять суперпозицию их состояний (p’) и (n’):

  p' = ap + bn,

  n' = gp + dn, (1)

  где a, b, g, d – некоторые комплексные числа (здесь волновые функции частиц обозначены символами соответствующих частиц). Такое преобразование носит, очевидно более общий характер, чем простая замена протонов на нейтроны (или наоборот). Так как полная вероятность для нуклона находиться в состоянии протона или нейтрона при этом преобразовании не должна меняться, т. е. |р’|2 + |n’| = |p|2 + |n|2, матрица преобразования  должна быть унитарной. Далее, поскольку закон сохранения барионного заряда связан с инвариантностью взаимодействия относительно умножения волновых функций нейтрона и протона на одинаковый фазовый множитель eic где c – произвольное число (см. Симметрия в физике), можно исключить этот множитель из преобразования (1) и положить детерминант матрицы  равным 1. Можно показать, что группа преобразований, осуществляемых с помощью унитарных матриц второго порядка с детерминантом 1, – т. н. группа SU (2) – математически эквивалентна группе вращений в абстрактном трёхмерном пространстве, которое называют «изотоническим пространством» [символ U (2) отражает унитарность матриц 2-го порядка, а символ S означает специальный случай преобразования, когда детерминант матриц равен 1]. Группа SU (2) характеризуется тремя независимыми параметрами, например углами поворота относительно трёх осей изотопического пространства. Для того, чтобы силы взаимодействия между нуклонами не менялись при преобразовании (1), необходимо, чтобы в переносе ядерных сил наряду с заряженными пионами (p±) участвовали также нейтральные пионы (p) с той же массой, а взаимодействия нуклонов с пионами были бы инвариантными относительно вращения в изотопическом пространстве. На основе этого заключения было теоретически предсказано существование p -мезона (который был открыт после заряженных), а также указано соотношение между вероятностями различных процессов с участием пионов и нуклонов. Экспериментальное изучение таких процессов с большой точностью подтвердило инвариантность С. в. для пионов и нуклонов.

  После открытия странных частиц (К-мезонов и гиперонов) и установления специфического для адронов квантового числа странности было экспериментально доказано, что изотопическая инвариантность С. в. имеет место и для этих частиц. Подобно пионам и нуклонам, странные частицы, а также открытые позднее резонансы объединяются в группы частиц с одинаковыми квантовыми числами и приблизительно равными массами – изотопические мультиплеты (небольшое различие масс частиц, входящих в один изотопический мультиплет, можно отнести за счёт электромагнитного взаимодействия). Электрические заряды Q частиц, входящих в один изотопический мультиплет, определяются формулой, установленной М. Гелл-Маном и К. Нишиджимой: Q = 1/2 (В + S) + I3, где В – барионный заряд, S – странность (одинаковые для всех частиц в мультиплете), а I3 может принимать с интервалом в 1 все значения от некоторого максимального значения I (целого или полуцелого) до минимального – I, т. е. I3 = I, I – 1,..., – I, всего 2I + 1 значений. Величина I, называется изотопическим спином, является важной характеристикой адронов. Она определяет число частиц в изотопическом мультиплете, или число зарядовых состояний частицы, если рассматривать частицы, входящие в один изотопический мультиплет, как разные зарядовые состояния одной и той же частицы. Величина В + S = Y называется гиперзарядом. Она определяет средний электрический заряд изотонического мультиплета (т. е. алгебраическую сумму электрических зарядов частиц, деленную на число частиц в мультиплете): = Y/2.

  Унитарная симметрия SU (3). Открытие большого числа резонансов и установление их квантовых чисел показало, что адроны, входящие в разные изотопические мультиплеты, могут быть объединены в более широкие группы частиц с одинаковыми спинами, чётностью и барионным зарядом, но с разными гиперзарядами – т. н. супермультиплеты. Например, 8 барионов со спином 1/2 и положит. чётностью: нуклоны N (протон и нейтрон) с изотопическим спином I = 1/2 и гиперзарядом Y = 1, S-гипероны (S+,S,S-) c I = 1, Y = 0, L-гиперон с I = 0, Y = 0, X-гипероны (X, X-) с I = 1/2, Y = – 1 могут быть объединены в единый супермультиплет – октет барионов. В супермультиплет (декаплет) объединяются также барионы со спином 3/2 и положительной чётностью; этот мультиплет включает резонансы D (D++, D+, D, D-) с I = 3/2, Y = 1, резонансы S* (S+*, S*, S-*) c l = 1, Y = 0, резонансы X* (X*, X-*) с I = 1/2, Y = – 1 и W- = гиперон с I = 0, Y = – 2. Аналогичным образом в супермультиплеты объединяются и мезоны. Например, p-мезоны (p+, p, p-) с I = 1, Y = 0, K-мезоны (K+, K, K-, K) с I = 1/2, Y = ± 1 и h-мезон c I = 0, Y = 0 объединяются в октет мезонов со спином 0 и отрицательной чётностью. Поскольку, однако, массы частиц, входящих в один и тот же супермультиплет, заметно отличаются друг от друга, ясно, что симметрия С. в., вследствие которой существуют группы «похожих» частиц, является не точной, а приближенной симметрией. Можно считать, что С. в. складывается из обладающего высокой степенью симметрии т. н. «сверхсильного» взаимодействия и нарушающего симметрию «умеренно сильного» взаимодействия. Сверхсильное взаимодействие не зависит ни от электрического заряда, ни от гиперзаряда частиц. При наличии одного только сверхсильного взаимодействия массы всех частиц внутри одного супермультиплета должны были бы быть одинаковыми. Наблюдаемое в действительности различие масс частиц с разными гиперзарядами происходит из-за существования умеренно сильного взаимодействия, которое зависит определенным образом от гиперзаряда и изотопического спина. Состав обнаруженных на опыте супермультиплетов, т. е. число частиц и их квантовые числа, можно объяснить, если считать, что сверхсильное взаимодействие инвариантно относительно преобразований группы SU (3), включающих в себя в качестве подгруппы изотопическое преобразование SU (2). Для объяснения наблюдаемой на опыте SU (3)-симметрии С. в. выдвинута гипотеза, согласно которой адроны состоят из трёх типов фундаментальные частиц – кварков p, n, l, а С. в. не меняется при замене волновой функции каждой из этих частиц на суперпозицию всех остальных [аналогично тому, как это имеет место для преобразования (1)]. Поскольку указанное преобразование осуществляется с помощью унитарных матриц 3-го порядка с детерминантом 1, инвариантность С. в. относительно него и означает существование SU (3)-симметрии. Предполагая далее, что масса странного l-кварка больше массы p-, n-kварков, можно удовлетворит. образом объяснить и наблюдаемое нарушение SU (3)-симметрии (выражающееся в различии масс частиц с разными гиперзарядами и изотопическими спинами в одном и том же супермультиплете).

  Гипотеза о существовании кварков, выдвинутая для объяснения наблюдаемого состава супермультиплетов адронов, позволяет объяснить также ряд динамических закономерностей С. в.

  Существуют различные обобщения первоначальной гипотезы кварков. Высказываются также соображения, согласно которым кварки могут существовать только в связанных состояниях и не должны наблюдаться как свободные частицы.

  Основные направления развития теории сильных взаимодействий

  Поскольку для описания процессов С. в. теория возмущений (столь эффективная в квантовой электродинамике) неприменима, основные направления современной теории С. в. связаны с использованием общих принципов квантовой теории поля, симметрии С. в. и различных модельных представлений, в той или иной степени учитывающих многочастичный характер взаимодействия.

  В наиболее общем виде процессы, происходящие при взаимодействии частиц, могут быть описаны с помощью матрицы рассеяния (S-maтрицы), связывающей состояние системы до реакции с состоянием системы после реакции (В. Гейзенберг, 1943). Элементы матрицы рассеяния представляют амплитуды перехода из различных начальных в различные конечные состояния системы. Т. о., задание матрицы рассеяния полностью определяет вероятности различных каналов реакций при взаимодействии частиц.

  Общие принципы квантовой теории поля позволяют получить соотношения, связывающие характеристики различных процессов С. в., и установить определенные ограничения на характер процессов С. в. при высоких энергиях. Эти соотношения являются основой для построения различных приближенных моделей, описывающих экспериментально наблюдаемые закономерности процессов С. в.

  Один из основных принципов квантовой теории поля – унитарность матрицы рассеяния, заключающаяся в том, что сумма вероятностей всех возможных переходов, которые могут происходить в какой-либо системе, должна быть равна единице (при этом, естественно, предполагается, что совокупность возможных состояний системы является полной). Из условия унитарности вытекает, в частности, т. н. оптическая теорема, согласно которой полное эффективное сечение рассеяния частиц связано с мнимой частью амплитуды упругого рассеяния частиц на нулевой угол. Условие унитарности ограничивает также величину сечения для отдельных парциальных волн, т. е. волн с определенным орбитальным (угловым) моментом количества движения (см. Рассеяние микрочастиц).

  Далее, выполнение законов специальной теории относительности (релятивистская инвариантность, или лоренц-инвариантность) даёт возможность сформулировать принцип микропричинности для элементарных процессов С. в. (см. Микропричинности условие). Согласно специальной теории относительности, два события, разделённые пространственно-подобным интервалом, не могут быть причинно-связанными (т. к. расстояние между событиями в этом случае больше, чем путь, который может быть пройден любым сигналом за интервал времени между событиями). Если же события разделены времениподобным интервалом, то только события, предшествующие по времени данному событию, могут явиться его причиной. Такая общая форма принципа микропричинности накладывает определённые ограничения на аналитическую структуру функций, описывающих причинно-связанные события. Это было замечено ещё в классической электродинамике сплошных сред при описании зависимости диэлектрической проницаемости e вещества (а следовательно, и показателя преломления волн) от частоты w электромагнитного поля, e (w) (т. н. дисперсия). Для переменных полей значение электрической индукции D (t) в некоторый момент времени t определяется значениями напряжённости электрического поля Е в предшествующие моменты времени t' (согласно принципу причинности, ). Поэтому общая линейная связь этих величин может быть записана:

  . (2)

  В этом выражении f (tt’) – функция, которая определяется внутренним строением диэлектрика. Её конкретное выражение для дальнейших выводов несущественно; важно лишь, что в силу трансляционной инвариантности по времени, т. е. независимости от выбора начала отсчёта времени, функция f (tt') зависит только от разности времён (tt'). При этом в соответствии с принципом причинности интегрирование по t' ведётся до момента t.

  Для компонент Фурье (см. Фурье интеграл) D (w) и Е (w) величин D (t) и E (t) будет иметь место соотношение:

  D (w) = e (w) Е (w), (3),

  где диэлектрическая проницаемость e (w) представляет собой комплексную функцию и равна:

  ; (4)

  пределы интегрирования t ³ 0 вытекают из условия причинности. Соотношение (4), определённое для действительных значений w, может быть продолжено в область комплексных значений переменного аргумента со. Если положить w = w’ + iw’’, где w’ и w’’ – действительные числа, определяющие соответственно действительную и мнимую части w, то в интеграле выражения (4) возникает множитель е-w''t, обеспечивающий сходимость интеграла при (w’’ > 0, . Т. о., из условия причинности следует, что функция e(w) является аналитической функцией в верхней полуплоскости комплексного переменного со (w’’ > 0). Переход в «нефизическую» область комплексных значений со имеет глубокий смысл, т. к. для аналитических функций справедлива Коши теорема, позволяющая выразить значение функции для какого-либо значения переменного через интеграл Коши от этой функции. Выбирая действительное значение переменного, можно получить соотношения для реально измеряемых физических величин. Так были получены дисперсионные соотношения, позволяющие выразить, например, действительная часть (Re) диэлектрической проницаемости через интеграл от её мнимой части (Im):

  , (5)

  где символ Р означает т. н. главное значение интеграла, т. е. исключающее особую точку w' = w. Существенно, что реальная и мнимая части e(w) могут быть непосредственно измерены на опыте [Im e(w) связана с поглощением электромагнитных волн].

  Установление аналитических свойств амплитуды рассеяния частиц представляет значительно более сложную задачу. Основополагающие работы в этом направлении были сделаны Н. Н. Боголюбовым на основе сформулированного им для метода S-мaтрицы принципа микропричинности. Рассмотрим реакцию упругого рассеяния, в результате которой две частицы «а» и «b» с начальными четырёхмерными импульсами pa и pb переходят в состояние с четырёхмерными импульсами соответственно р’а и p'b [четырёхмерный импульс частицы включает энергию частицы Е и её пространств, импульс р, а квадрат четырёхмерного импульса (p 2) в единицах измерения, в которых скорость света с = 1, определяется как p 2 = Е 2p 2 и равен квадрату массы частицы: p 2 = M 2]. Закон сохранения энергии и импульса в реакции рассеяния может быть записан в виде равенства pa + pb = p'a + р’b. Наиболее просто упругое рассеяние частиц выглядит в с. ц. и. сталкивающихся частиц. В этой системе pa + pb = p'a + p’b = 0, т. е. импульсы частиц после столкновения направлены в противоположные стороны и равны по абсолютной величине начальным импульсам:

  |pa| = |pb| = |p’a| = |р’b| (см. рис. 2).

  Амплитуда рассеяния является функцией двух переменных: энергии системы Е и угла J, на который в результате рассеяния отклоняется одна из частиц. Эти переменные могут быть выражены через 2 независимые релятивистски инвариантные величины

  s  = (pa + pb)2 = (p’a + p’b)2,

  t  = (p’apa)2 = (p’bpb)2.

  В с. ц. и. величина s равна квадрату полной энергии системы: s = (Ea + Eb)2, а величина t равна (с обратным знаком) квадрату переданного (трёхмерного) импульса, t = – (p’apa)2, и выражается через угол рассеяния J: t = – 2p2(1 – cosJ), где р – импульс частиц в с. ц. и. Наряду с величинами s, t вводится третья релятивистски инвариантная величина и.

  u= (р’bpa)2 = (р’bpb)2, (6’)

  которая в силу закона сохранения энергии-импульса связана с величинами s и t  соотношением: s + t + u = 2ma + 2mb, где ma, mb – массы частиц «а» и «b». В процессах упругого рассеяния частиц область изменения величины s ограничена неравенством s ³ (ma + mb), а область изменения t – неравенствами 0 > t > -4p 2. Эту область изменения переменных называется физической областью. Амплитуда рассеяния при фиксированной передаче импульса t может быть продолжена в комплексную область по энергетической переменной s и оказывается связанной с амплитудой рассеяния античастиц. Эта связь заключается в следующем. Рассмотрим наряду с реакцией упругого рассеяния какого-либо частиц, например p±-мезонов на протонах:

  p+(p) + р (q) ® p+(p') + р (q') (I)

  (в скобках указаны четырёхмерные импульсы частиц), реакцию рассеяния

  p-(-р) + р (q) ® p-(-p’) + р (q), (II)

  получающуюся из (1) переносом символа p-мезона из одной части равенства в другую с одновременной заменой частицы (p+) на античастицу (p-) и знаков их четырёхмерных импульсов: р ® -р, p' ® -p'. При переходе от процесса (I) к процессу (II) переменная t остаётся неизменной, а s и и меняются местами. Физической области обоих процессов соответствуют двум различным неперекрывающимся областям изменения кинематических переменных s, и. Доказательство Боголюбовым аналитичности амплитуды в комплексной плоскости переменной s позволяет утверждать, что амплитуды процессов I и II являются предельными значениями единой аналитической функции Ft (s) в разных областях изменения переменной s с разрезами на вещественной оси (рис. 4). Правый разрез определяется условием s ³ (М + m)' (где М и m, – массы протона и пиона), а левый разрез – условием u = 2M 2 + 2m2st ³ (M + m2). На «верхнем берегу» правого разреза Ft (s) совпадает с амплитудой T (s, t) процесса (I):

  ,

  а на «нижнем берегу» левого разреза – с амплитудой процесса (II):

  .

  Отсюда вытекает соотношение т. н. перекрёстной симметрии (или кроссинг-симметрии):

  .

  Это соотношение связывает значение амплитуды одного процесса в его физической области со значением амплитуды др. процесса вне физической области последнего. Поэтому соотношение перекрёстной симметрии не имело бы смысла, если бы не существовало продолжения амплитуды процесса (1) из его физической области на левый разрез.

  Для определения особых точек аналитической функции Ft (s) важнейшее значение имеет продолжение условия унитарности S-maтрицы в «нефизическую» область кинематических переменных (лежащую вне «физических» областей, определяемых законами сохранения энергии и импульса для начальных и конечных состояний). Так, если две частицы «а» и «b» могут переходить в результате С. в. в виртуальную частицу «с»: а + b ® с, то из условия унитарности следует, что амплитуда процесса рассеяния а + b ® а + b будет иметь полюс по переменной s при значении s = mc2, где mc – масса частицы «с». Этот полюс при mc < ma + mb лежит в «нефизической» области процесса упругого рассеяния а + b ® а + b [«физическая» область, как уже отмечалось, начинается с s = (ma + mb)2]. Если же mc > ma + mb, частица «с» нестабильна относительно распада (за счёт С. в.) с ® а + b, т. е. является резонансом, и полюс амплитуды расположен на «нефизическом» листе римановой поверхности, соответствующем аналитическому продолжению амплитуды через разрез в комплексной плоскости s (см. Аналитические функции).

  Тот факт, что особенности амплитуды, связанные с образованием виртуальных частиц, лежат в «нефизической» области, имеет простой смысл. Действительно, рождение виртуальных частиц сопровождается нарушением закона сохранения энергии, происходящим на короткое время в соответствии с соотношением неопределённостей. Поскольку физические области определяются законами сохранения энергии-импульса и условием стабильности начальных и конечных частиц в процессах С. в., образованию виртуальных состояний соответствуют значения кинематических переменных, лежащие вне этих областей. Т. о., именно в «нефизических» областях кинематических переменных содержится информация о процессах обмена виртуальными частицами, посредством которого и осуществляется С. в.

  Помимо полюсов, амплитуда рассеяния может иметь и другие особые точки. Так, при энергии, соответствующей порогу к.-л. неупругого процесса, например а + b ® с + d [т. е. при s = (mc + md)2}, амплитуда реакции а + b ® а + b имеет точку ветвления. При (mc + md) > (ma + mb) эти особенности лежат в физической области процесса а + b ® а + b и приводят к нерегулярностям в поведении эффективного сечения рассеяния частиц а + b вблизи порога рождения частиц с и d, вызванным появлением нового канала реакции.

  Если предположить, что амплитуда рассеяния как функция переменных s, t, u имеет только те особые точки, которые возникают из обобщённого условия унитарности S-мaтрицы, то можно прийти к заключению, что единая аналитическая функция f (s, u, t) в разных областях изменения переменных описывает три различных процесса:

  а + b ® с + d, (I)

   + b ®  + d, (II)

   + b ®  + с (III)

  (значком «тильда» над символом частицы помечены античастицы), а также обратные им реакции. Хотя это предположение и не обосновано строго на основе принципов квантовой теории поля (как это сделано, например, для связи каналов рассеяния p+ + р ® p+ + p и p- + p ® p- + p при фиксированных переданных импульсах) и справедливость его подтверждается только на основе рассмотрения низших порядков теории возмущения, оно тем не менее часто принимается в виде постулата современной теории.

  Предположение о том, что единая аналитическая функция в разных областях изменения своих переменных соответствует амплитудам физических процессов (I), (II), (III), позволяет написать для неё дисперсионные соотношения по двум комплексным переменным (s, t), (s, u), (t, u) – т. н. двойное спектральное представление Манделстама, с помощью которого может быть осуществлено аналитическое продолжение амплитуды в области изменения переменных s, t, и, отвечающих «нефизическим» областям реакций (I), (II), (III). Тем самым это представление становится основой динамического описания С. в., не использующего теорию возмущений. Действительно, как уже отмечалось, обмену виртуальными частицами (посредством которого и осуществляется С. в.) отвечают особенности амплитуды, лежащие в «нефизических» областях. Т. о., «нефизическую» область одного канала реакции может существенно определять поведение амплитуды в «физической» области др. канала.

  Строгие результаты квантовой теории поля для сильных взаимодействий

  На основе квантовой теории поля были строго получены некоторые результаты, вытекающие из аналитических свойств амплитуды рассеяния. Аналитичность амплитуды по энергии позволяет записать дисперсионные соотношения, с помощью которых действительная часть амплитуды рассеяния под нулевым углом выражается через интеграл от мнимой части амплитуды. Поскольку, согласно оптической теореме, мнимая часть амплитуды упругого рассеяния вперёд в «физической» области (на правом разрезе комплексной плоскости s) связана с полным сечением рассеяния частицы, а на левом разрезе (благодаря перекрёстной симметрии) выражается через полное сечение рассеяния античастицы, действительная часть амплитуды может быть представлена в виде дисперсионного интеграла, в который входит разность сечений для частиц и античастиц на одной и той же мишени. Помимо этого, в дисперсионное соотношение входит вклад от полюсов, лежащих в «нефизической» области (например, в случае p N-рассеяния – от полюса, отвечающего виртуальному превращению p + N ® N ® p + N). Одно из важных следствий дисперсионных соотношений – возможность определить из экспериментальных данных константу взаимодействия нуклонов с пионами и проверить её универсальность в различных реакциях. Другое следствие относится к асимптотическому поведению полных сечений рассеяния частиц и античастиц при высоких энергиях. Исходя из предположения о том, что упругое рассеяние адронов высокой энергии носит характер дифракционные рассеяния с постоянным радиусом (см. выше), а полные сечения стремятся с ростом энергии к постоянным пределам, И. Я. Померанчук на основе дисперсионных соотношений доказал теорему о равенстве этих пределов для полных сечений рассеяния частиц и античастиц на одной и той же мишени [например, s (p+ + р) ® (p- + р)].


    Ваша оценка произведения:

Популярные книги за неделю