355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (СИ) » Текст книги (страница 17)
Большая Советская Энциклопедия (СИ)
  • Текст добавлен: 7 октября 2016, 10:49

Текст книги "Большая Советская Энциклопедия (СИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 17 (всего у книги 56 страниц)

Руководящие ископаемые. Брахиоподы (1—5): 1 – Eospirifer radiatus; 2 – Conchidium knighti; 3 – Stricklandia lens; 4 – Dayia navicula; 5 – Pentamerus oblongus. Пелециподы: 6 – Cardiola interrupta. Головоногие моллюски: 7 – Endoceras vaginatum. Кораллы (8—10): 8 – Favosites gothlandicus; 9 – Halysites labirinthicus; 10 – Goniophyllum pyramidale. Остракоды: 11 – Craspedobolbina variolata. Гигантостраки: 12 – Eurypterus. Криноидеи: 13 – Schypbocrinites excavatus. Граптолиты (14—19): 14 – Cyrtograptus murchison; 15 – Akidograptus decussatus; 16 – Monograptus priodon; 17 – Retiolites geinitzianus; 18 – Demirastrites convolutus; 19 – Saetograptus shimaera. Панцирные рыбы: 20 – Birkenia.

Палеогеографическая схема раннего Силура.

Дно шельфового моря: на переднем плане слева – трилобиты, в центре – головоногие и брюхоногие моллюски, справа – банка брахиопод, на заднем плане – заросли криноидей и водорослей, полипняки табулят.

Схема стратиграфии силурийской системы.

Силуэт

Силуэ'т [франц. silhouette, от имени франц. генерального контролёра финансов Э. де Силуэта (Е. de Silhouette; 1709—67), на которого была сделана карикатура в виде теневого профиля]. В широком смысле С. – характерное очертание предметов как в природе, так и в искусстве, подобное его тени. В узком смысле С. – вид графической техники: плоскостное однотонное изображение фигур и предметов. С., нарисованный (тушью или белилами) либо вырезанный из бумаги и наклеенный на фон, образует сплошное, ограниченное контуром, тёмное или светлое пятно на контрастном фоне. Искусство С. известно с древности в Китае (где оно ещё сохранило свои традиции), Японии и других странах Азии. В Европе искусство С. распространилось с 18 в. Излюбленными жанрами стали профильные портреты, бытовые сценки, иллюстрации, натюрморты (Ф. О. Рунге, А. Менцель, П. Коневка в Германии, Ф. П. Толстой, Е. М. Бем, Г. И. Нарбут в России). В сов. время в технике С. работали Е. С. Кругликова, Н. В. Ильин и др.

  Лит.: Кузнецова Э., Искусство силуэта, [Л., 1970].

Силуэтный фильм

Силуэ'тный фильм, мультипликационный фильм, в котором действуют персонажи, выполненные в технике силуэта и вырезанные из одноцветной, как правило, чёрной, бумаги. Движение фигур в С. ф. осуществляется путём перемещения их на плоском белом или подрисованном фоне и покадровой съёмки каждой фазы перемещения. Первые С. ф. снимались с 20-х гг. в Германии; работу в области С. ф. продолжают мультипликаторы ГДР.

Силхет

Си'лхет, город на крайнем С.-В. Бангладеш, на р. Сурма. Административный центр округа Силхет. 37,7 тыс. жителей (1961). Ж.-д. станция и речной порт. Торговый центр. Пищевая промышленность.

Сильванер

Сильва'нер, австрийский сорт винограда. Зимостойкий, ранне-среднего срока созревания. Ягоды светло-зелёные, округлые, с сочной мякотью. Используются для приготовления столовых вин (например, «Сильванер»), коньячных и шампанских виноматериалов. Выращивают на Северном Кавказе, особенно в Ставропольском крае, в смешанных посадках с другими сортами – на Украине и в Молдавии; за рубежом – в Австрии и ФРГ.

Сильвестр де Саси Антуан Исаак

Сильве'стр де Саси' (Silvestre de Sacy) Антуан Исаак (21.9.1758, Париж, – 21.2.1838, там же), французский востоковед, член Академии надписей (1792), профессор Школы восточных языков (с 1795), Коллеж де Франс (с 1806). Барон (с 1814). С 1823 директор Коллеж де Франс, с 1824 – Школы восточных языков.

  В период Реставрации стал сторонником Бурбонов. С 1832 пэр Франции. Основатель (1821) и первый президент Азиатского общества («Société Asiatique»), издатель «Журналь азиатик» («Journal Asiatique», с 1822), «Журналь де саван» («Journal des Savans», с 1816). С 1833 постоянный учёный секретарь Академии надписей. Среди сочинений С. де С. важное место занимают работы по истории арабов, истории Сасанидов, арабская грамматика, хрестоматия арабской литературы. С. де С. – автор блестящего критического перевода с комментариями сочинений арабских и иранских учёных (ад-Дамири, Мирхонда, аль-Макризи, Абд аль-Латифа), исследования об источниках литературного памятника «Калила и Димна» и др. Предпринимал попытки дешифровать египетские иероглифы.

  Соч.: Mémoire sur l'histoire des Arabes avant Mahomet, P., 1785; Mémoires sur diverses antiquités de la Perse, et sur les médailles des rois de la dynastie des Sassanides, P., 1793; Grammaire arabe, pt. 1 – 2, P., 1810; Chrestomathie arabe, 2 éd., v. 1—3, P., 1826—1827; Exposé de la religion des drusss, v. 1—2, P., 1838.

  Лит.: Крачковский И. Ю., Избр. соч., т. 1, М. – Л., 1955, т. 4, М. – Л., 1957 (см. указатели); Deherain Н., Silvestre de Sacy, P., 1938; Fück J., Die arabischen Studien in Europa..., Lpz., 1955.

Сильвестр Джеймс Джозеф

Сильве'стр (Sylvester) Джеймс Джозеф (3.9.1814, Лондон, – 15.3.1897, там же), английский математик. В 1837 окончил Кембриджский университет. В 1855—70 профессор Королевской академии в Вулидже; в 1876—83 профессор университета Дж. Хопкинса в Балтиморе (США), с 1883 – Оксфордского университета. Основные работы посвящены алгебре, теории чисел, теории вероятностей, механике и математической физике; наиболее важные – исследования по теории инвариантов и её геометрические приложениям. Основал (1878) первый американский математический журнал «The American Journal of Mathematics». Иностранный член-корреспондент Петербургской АН (1872).

  Соч.: The collected mathematical papers, v. 1—4, Camb., 1904—12.

Сильвестр (древнерус. писатель)

Сильве'стр (умер 1123), древнерусский писатель и церковный деятель, составитель 2-й редакции «Повести временных лет». Игумен Михайловского Выдубецкого монастыря в Киеве, основанного князем Всеволодом Ярославичем и ставшего семейным монастырём его рода. В 1118 С. был поставлен епископом в Переяславль Южный. Как человек, близкий сыну Всеволода Владимиру Мономаху, С. играл видную роль в политических и церковных делах Киевской Руси.

Сильвестр Камиль

Сильве'стр (Sylvestre) Камиль (12.2. 1916, Фор-де-Франс, Мартиника, – 24.12. 1962), деятель рабочего движения на о. Мартиника. По профессии журналист. В 1947 был избран в секретариат мартиникской федерации Французской компартии, в 1952—57 политический секретарь федерации. После организационного оформления в 1957 Мартиникской коммунистической партии С. был избран генеральным секретарём её ЦК; оставался на этом посту до конца жизни.

Сильвестр (русский политич. деятель)

Сильве'стр (умер около 1566), русский политический деятель и писатель 16 в. Родом из зажиточных новгородцев, был священником в Новгороде, с 1540-х гг. – в Благовещенском соборе Московского Кремля. В дни Московского восстания 1547 С. произнёс обличительную речь против молодого царя. Этот эпизод способствовал росту его влияния на Ивана IV и придворные круги. С. был приближен Иваном IV и стал одним из руководителей правительства Избранной рады. С. был также близок двоюродному брату Ивана IV Владимиру Андреевичу Старицкому, а с 1553 постепенно сблизился с боярскими группировками, оппозиционными царю и его родственникам Захарьиным. В 1560 был удалён от двора, постригся в монахи и жил в северных монастырях. По своим воззрениям он был близок к нестяжателям. С. оставил публицистические сочинения (послания), в которых трактует вопросы о правах и обязанностях государя, правительств, и церковных деятелей. Обработал и дополнил «Домострой». С. был собирателем рукописных книг, поощрял работы по изготовлению икон, руководил росписью царских палат в Кремле.

  Лит.: Зимин А. А., И. С. Пересветов и его современники, М., 1958; Шмидт С. О., К изучению «Истории» князя Курбского (о поучении попа Сильвестра), в сборнике: Славяне и Русь, М., 1968.

  С. О. Шмидт.

Сильвестри Филиппе

Сильве'стри (Silvestri) Филиппе (22.6.1873, Беванья, близ г. Перуджа, – 1.6.1949, там же), итальянский зоолог, член Национальной академии деи Линчей (1919; член-корреспондент 1905). В 1896—98 и 1900—02 в университете в Риме, в 1902 – доцент, с 1904 до конца жизни – профессор Высшей с.-х. школы (с 1936 – факультета агрономии Неаполитанского университета) в Портичи. Основал там же институт с.-х. энтомологии, которому присвоено его имя. Известен исследованиями низших насекомых и многоножек, а также вредителей и их паразитов. Открыл 2 отряда насекомых (бессяжковые и зораптеры). Обнаружил гиперметаморфоз у жужелиц. Был пионером биологического метода борьбы с вредителями растений. Автор работ, посвященных энтомофагам, и монографии о вредных насекомых, первым предложил принцип и термин «интегрированная борьба с вредителями» (1931). Почётный член многих академий и научных обществ.

  Лит.: Гиляров М. С., К 100-летию со дня рождения Ф. Сильвестри, «Энтомологическое обозрение», 1973, т. 52, в. 2; «Bolletino del Laboratorio di Entomologia Agraria Portici», 1949, v. 9, p. XI—XLIX.

  М. С. Гиляров.

Сильвин (минерал)

Сильви'н (от Sylvius, латинизированного имени голландского врача и химика Ф. Боэ; 1614—72), минерал из класса галогенидов, химический состав KCl; содержит 52,48% К, а также примеси Br, реже I. Включенные пузырьки газа (N2, CO2, CH4, Не и др.) придают прозрачным и бесцветным кристаллам С. молочно-белый цвет. В виде примесей содержит также галит (NaCI) и окись железа Fe2O3, сообщающую С. красную окраску. Кристаллизуется в кубической системе. Хорошо огранённые кристаллы встречаются редко; обычно С. образует плотные зернистые агрегаты вместе с галитом, карналлитом и др. (подобные агрегаты называют сильвинитом). Твердость по минералогической шкале 2; плотность 1990 кг/м3, блеск стеклянный, тусклый. Легко растворим в воде; на вкус – жгучий, горьковато-солёный. Прозрачные кристаллы хорошо пропускают коротковолновую и инфракрасную области спектра.

  В природе отлагается в осадочных соленосных толщах вместе с галитом, карналлитом, образуя иногда крупные толщи промышленных месторождений калийных солей. Встречается также в возгонах вулканов. Прозрачные кристаллы С. (искусственные) применяются в оптических системах спектрографов и других приборах.

Сильвин Михаил Александрович

Си'львин Михаил Александрович [20.11(2.12).1874, Нижний Новгород, ныне Горький, – 28.5.1955, Ленинград], участник революционного движения в России. Родился в семье чиновника. В социал-демократическом движении с 1891. С 1893 студент юридического факультета Петербургского университета, член социал-демократического кружка. В сентябре 1893 познакомился с В. И. Лениным; участвовал в организации Петербургского «Союза борьбы за освобождение рабочего класса», член Центральной группы «Союза». В 1896 арестован, в 1898 сослан в Восточную Сибирь; в августе 1899 подписал ленинский «Протест российских социал-демократов» против «Кредо» «экономистов». С 1901 агент «искры». В 1902 арестован, в 1904 сослан в Иркутскую губернию. В августе 1904 бежал за границу, работал в ЦК РСДРП, занимал примиренческую позицию по отношению к меньшевикам. С 1905 в России, сотрудничал в большевистских газетах. В 1908 от политической деятельности отошёл. После Октябрьской революции 1917 работал в различных сов. учреждениях, с 1931 на преподавательской работе. С 1932 персональный пенсионер. Автор статей по истории Петербургского «Союза борьбы» и книги «Ленин в период зарождения партии» (1958).

  Лит.: Ленин В. И., Полн. собр. соч., 5 изд. (см. Справочный том, ч. 2, с, 473); Куцентов Д. Г., Деятели Петербургского «Союза борьбы за освобождение рабочего класса», М., 1962.

Сильвинит

Сильвини'т, осадочная горная порода, состоящая из чередования тонких прослоев галита и сильвина.

Силькеборг

Си'лькеборг (Silkeborg), город в Дании, в долине р. Гудено, в центральной части полуострова Ютландия, в амте Орхус. 44,1 тыс. жителей (1972). Машиностроение, текстильная и пищевая промышленность. Туризм.

Сильное регулирование

Си'льное регули'рование,автоматическое регулирование возбуждения или частоты вращения синхронных генераторов (компенсаторов) по отклонению напряжения или частоты, а кроме того, и по первым и вторым производным от тока ротора или статора, напряжения и других параметров режима работы электроэнергетической системы. С. р. позволяет «предвидеть» ещё не наступившие изменения режима и предотвращать их.

  С. р. осуществляется автоматическими регуляторами (АР) сильного действия, которые быстро и интенсивно воздействуют на ток возбуждения или впуск энергоносителя (пара, воды и т. д.) турбо– или гидрогенератора при изменениях режима (увеличении или уменьшении передаваемой мощности, коротких замыканиях и пр.) с целью поддержать требуемое напряжение в заданной точке прилегающего участка сети и предотвратить нарушение параллельной работы электростанций в энергосистеме (нарушение статической, динамической и результирующей устойчивости). промышленность выпускает АР возбуждения сильного действия в унифицированном исполнении. Такими АР оборудованы многие генераторы гидростанций, в том числе Братской и Красноярской ГЭС, мощные генераторы тепловых и атомных станций. Турбогенераторы Славянской и Костромской ГРЭС оборудованы также АР частоты вращения сильного действия. В сочетании с безинерционными тиристорными возбудителями синхронных машин АР сильного действия существенно улучшают качество электроэнергии и повышают надёжность функционирования Единой электроэнергетической системы СССР.

  Н. И. Овчаренко.

Сильные взаимодействия

Си'льные взаимоде'йствия, одно из основных фундаментальных (элементарных) взаимодействий природы (наряду с электромагнитным, гравитационным и слабым взаимодействиями). Частицы, участвующие в С. в., называются адронами, в отличие от фотона и лептонов (электрона и позитрона, мюонов и нейтрино), не обладающих С. в. К адронам относятся все барионы (в частности, нуклоны – нейтрон n и протон p, гипероны) и мезоны (p-мезоны, K-мезоны), в том числе большое количество т. н. ядерно-нестабильных частиц – резонансов. Одно из проявлений С. в. – ядерные силы, связывающие нуклоны в атомных ядрах. С. в. имеют малый радиус действия (~10-13см) и на этих расстояниях значительно превосходят все другие типы взаимодействий. Характерное время, за которое происходят элементарные процессы, вызываемые С. в., составляет 10-23—10-24сек. С. в. обладают высокой степенью симметрии; они симметричны относительно пространственной инверсии, зарядового сопряжения, обращения времени. Специфическим для С. в. является наличие внутренних симметрий адронов: изотопической инвариантности, симметрии по отношению к фазовому преобразованию, приводящей к существованию особого сохраняющегося квантового числа – странности, а также SU (3)-симметрии (см. ниже).

  Впервые С. в. как силы новой, неизвестной ранее природы были по существу обнаружены в опытах Э. Резерфорда (1911) одновременно с открытием атомного ядра; именно этими силами объясняется обнаруженное рассеяние на большие углы a-частиц при их прохождении через вещество. Однако понятие С. в. было сформулировано позже, в основном в 30-х гг., в связи с проблемой ядерных сил.

  Общие свойства сильных взаимодействий

  Короткодействующий характер С. в. Важнейшая особенность С. в. – их короткодействующий характер; как уже отмечалось, они заметно проявляются лишь на расстояниях порядка 10-13см между взаимодействующими адронами, т. е. их радиус действия примерно в 100 000 раз меньше размеров атомов. На таких расстояниях С. в. в 100—1000 раз превышают электромагнитные силы, действующие между заряженными частицами. С увеличением расстояния С. в. быстро (приблизительно экспоненциально) убывают, так что на расстоянии несколько радиусов действия они становятся сравнимыми с электромагнитными взаимодействиями, а на ещё больших расстояниях практически исчезают. С короткодействующим характером С. в. связан тот факт, что С. в., несмотря на их огромную роль в природе, были экспериментально обнаружены только в 20 в., в то время как более слабые дальнодействующие электромагнитные и гравитационные силы были обнаружены и изучены гораздо раньше (вследствие дальнодействующего характера электромагнитных и гравитационных сил происходит сложение сил, действующих со стороны большого числа частиц, и таким образом возникает взаимодействие между макроскопическими телами).

  Для объяснения малого радиуса действия ядерных сил японский физик Х. Юкава в 1935 высказал гипотезу, согласно которой С. в. между нуклонами (N) происходит благодаря тому, что они обмениваются друг с другом некоторой частицей, обладающей массой, аналогично тому, как электромагнитное взаимодействие между заряженными частицами, согласно квантовой электродинамике (см. Квантовая теория поля), осуществляется посредством обмена «частицами света» – фотонами. При этом предполагалось, что существует специфическое взаимодействие, приводящее к испусканию и поглощению промежуточной частицы – переносчика ядерных сил. Другими словами, вводился новый тип взаимодействий, который позже назвали С. в. (Следует отметить, что впервые гипотеза об обменном характере ядерных сил для объяснения их малого радиуса действия выдвигалась независимо И. Е. Таммом и Д. Д. Иваненко.)

  Исходя из известного экспериментального радиуса действия ядерных сил, Юкава оценил массу частицы – переносчика С. в. Такая оценка основана на простых квантовомеханических соображениях. Согласно квантовой механике, время наблюдения системы Dt и неопределённость в её энергии DE связаны неопределённостей соотношением: DEDt  ~ , где  – Планка постоянная. Поэтому, если свободный нуклон испускает частицу с массой m (т. е. энергия системы меняется согласно формуле относительности теории на величину DE = mc2, где с – скорость света), то это может происходить лишь на время Dt ~ /mc2. За это время частица, движущаяся со скоростью, приближающейся к предельно возможной скорости света с, может пройти расстояние порядка /mc. Следовательно, чтобы взаимодействие между двумя частицами осуществлялось путём обмена частицей массы т, расстояние между этими частицами должно быть порядка (или меньше) /mc, т. е. радиус действия сил, переносимых частицей с массой m, должен составлять величину /mc. При радиусе действия ~10-13см масса переносчика ядерных сил должна быть около 300 me (где me – масса электрона), или приблизительно в 6 раз меньше массы нуклона. Такая частица была обнаружена в 1947 и названа пи-мезоном (пионом, p). В дальнейшем выяснилось, что картина взаимодействия значительно сложнее. Оказалось, что, помимо заряженных p± и нейтрального p-мезонов с массами соответственно 273 те и 264 me, взаимодействие передаётся большим числом др. мезонов с большими массами: r, w, j, К,... и т. д. Кроме того, определенный вклад в С. в. (например, между мезонами и нуклонами) даёт обмен самими нуклонами и антинуклонами и их возбуждёнными состояниями барионными резонансами. Из соотношения неопределённостей следует, что обмен частицами, имеющими массы больше массы пиона, происходит на расстояниях, меньших 10-13см, т. е. определяет характер С. в. на малых расстояниях, Экспериментальное изучение различных реакций с адронами (таких, например, как реакции с передачей заряда – «перезарядкой»: p- + р ® p + n, К- + р ® K + n и др.) позволяет в принципе выяснить, какой вклад в С. в. даёт обмен теми или иными частицами.

  Относительная величина С. в. Для характеристики величины С. в. сравним их с электромагнитными взаимодействиями, для описания которых существует подробно разработанный математический аппарат, Такое сравнение позволяет понять трудности, с которыми сталкивается разработка теории С. в. Взаимодействие заряженной частицы с электромагнитным полем – полем фотонов – определяется электрическим зарядом е частицы (который и является константой электромагнитного взаимодействия), а вероятность испускания одного фотона при взаимодействии заряженных частиц, согласно квантовой электродинамике, пропорциональна безразмерной величине a = e2/c » 1/137 (называется постоянной тонкой структуры). Вероятность испускания в каком-либо процессе n фотонов пропорциональна an, т. е. в 137 раз меньше, чем вероятность испускания (n – 1) фотонов (исключение, требующее особого рассмотрения, – испускание большого числа т. н. инфракрасных фотонов с очень малой энергией). Ввиду малости величины a можно рассматривать процессы электромагнитного взаимодействия с помощью т. н. теории возмущений, последовательно учитывая обмен между заряженными частицами всё большим числом фотонов. Математически такая теория представляется в виде бесконечного асимптотического ряда по степеням малого параметра a и даёт прекрасное согласие с экспериментом. Если, переходя к описанию С. в., ввести, например для характеристики взаимодействия нуклонов с полем p-мезонов, постоянную g – т. н. константу С. в., имеющую размерность электрического заряда, то, как показывает сравнение с экспериментом, безразмерная величина g2/

c в С. в. (аналогичная величине а в электромагнитных) оказывается больше единицы: g2/
c
» 15. Это означает, что в процессах С. в. должен быть существен обмен большим числом частиц, а в случаях, когда энергия сталкивающихся адронов достаточно велика, должны превалировать множественные процессы с рождением большого числа вторичных частиц. Поэтому при рассмотрении процессов С. в. нельзя пользоваться теорией возмущений, столь эффективной для электромагнитных взаимодействий, и необходимо учитывать, что во взаимодействии реально участвует большое число частиц. Известно, что в некоторых областях физики (например, в физике твёрдого тела) имеются эффективные приближенные методы рассмотрения динамических задач с учётом многих частиц, взаимодействие между которыми не мало. Успешное теоретическое рассмотрение такого рода задач возможно потому, что в них хорошо известно т. н. нулевое приближение для состояния системы, а не сильно возбуждённые состояния можно представить как совокупность элементарных возбуждений – квазичастиц, взаимодействием между которыми можно в нулевом приближении пренебречь (например, тепловые колебания атомов твёрдого тела могут быть представлены как совокупность колебаний всей кристаллической решётки, которым соответствуют квазичастицы – фононы). Возможно поэтому, что отсутствие последовательной теории С. в. связано с недостаточностью экспериментальной информации о вызываемых ими процессах и дальнейшие экспериментальные и теоретические исследования помогут найти «нулевое приближение» для описания процесса С. в.

  Несмотря на отсутствие последовательной теории С. в., было установлено теоретически большое число связей между различными процессами С. в. Наличие такого рода связей вытекает, во-первых, из общих принципов квантовой теории поля, а во-вторых, из существования точных и приближенных симметрий, присущих С. в. (см. ниже). Вместе с тем большое значение имеют различные полуфеноменологические модели С. в., позволяющие качественно (а в ряде случаев – довольно точно количественно) описывать процессы С. в. и предсказывать новые явления.

  С. в. и структура адронов. Из квантовомеханический соображений, аналогичных тем, которые приводились для оценки радиуса действия ядерных сил, следует, что адроны должны быть окружены «облаком» непрерывно испускаемых и поглощаемых – т. н. виртуальных (см. Виртуальные частицы) – пионов и других адронов. При этом радиус пионного «облака» по порядку величины должен составлять /mc (где m – масса пиона), а радиусы «облаков», создаваемых более тяжёлыми адронами, обратно пропорциональны их массам. Вследствие большой величины g2/c вероятность виртуального испускания адронов велика, т. е. «облака» должны иметь значительную плотность и существенным образом определять физические процессы с участием адронов. Иными словами, из большой величины константы С. в. вытекает, что адроны должны иметь сложное внутреннее строение и лишь условно могут называются элементарными частицами (если даже отвлечься от возможности того, что они состоят из более фундаментальных частиц – кварков; см. ниже).

  С. в. и электромагнитные характеристики адронов. С. в. существенно влияют на электромагнитные характеристики адронов. Благодаря закону сохранения электрического заряда заряд адрона, включая полный заряд окружающих его «облаков», должен оставаться неизменным независимо от того, какие виртуальные превращения в них происходят. Т. о., С. в. не влияют на электрические заряды адронов (которые являются целыми кратными элементарного электрического заряда e). Однако движение зарядов в «облаках» создаёт электрический ток и, следовательно, должно приводить к изменению магнитных моментов адронов. Этот вывод качественно согласуется с измерением магнитных моментов нуклонов. Магнитный момент протона mр » 2,79 mя, где mя – ядерный магнетон, а магнитный момент нейтрона mn » – 1,89 mя (знак минус указывает на то, что mn направлен в противоположную сторону по отношению к его собственному, внутреннему моменту количества движения – спину). Если бы протон и нейтрон не имели С. в., их магнитные моменты, согласно Дирака уравнению, должны были бы равняться: mp = mя, mn = 0. Поэтому, если считать, что «аномальный» магнитный момент нейтрона создаётся»облаком» отрицательно заряженных мезонов, образующихся, например, при виртуальных превращениях n ® р + p- ® n, то «аномальный» момент протона должен создаваться за счёт аналогичных виртуальных превращений протона в положительно заряженные мезоны, например р ® n + p+ ® р. Т. к. интенсивность таких переходов для нейтрона и протона одинакова (см. ниже), «аномальный» магнитный момент протона по абсолютной величине должен быть равен «аномальному» магнитному моменту нейтрона и иметь противоположный знак, т. е. сумма mр + mn должна быть близка к mя. Этот вывод качественно согласуется с измеренными на опыте значениями магнитных моментов: mр + mn » 0,9 mя. (Согласно модели кварков, отношение mn/mp должно быть равно – 2/3, что также неплохо выполняется для измеренных значений магнитных моментов.)

  Вследствие того, что адроны окружены «облаками» мезонов, их заряд и магнитный момент должны быть распределены с определенной плотностью по области, занятой этими «облаками». В постоянных (или медленно меняющихся) электромагнитных полях размеры адронов практически не сказываются на их электромагнитных взаимодействиях (которые в этом случае полностью определяются зарядами адронов и их магнитными моментами). Однако если размеры неоднородностей поля (например, длина волны де Бройля электронов или фотонов, взаимодействующих с адронами) меньше размеров мезонного «облака», распределение заряда и магнитного момента внутри адрона существенно влияет на характер взаимодействия. Изучая упругое рассеяние электронов с энергией выше нескольких Гэв на протонах и дейтронах, можно экспериментально определить функции, характеризующие пространственное распределение заряда и магнитного момента внутри нуклонов (т. н. форм-факторы). Результаты экспериментального измерения форм-факторов нуклонов указывают на то, что плотности заряда и магнитного момента плавно распределены по области, занятой «облаком», уменьшаясь к его периферии. При этом характер распределения заряда и магнитного момента внутри протона приблизительно одинаков и подобен распределению магнитного момента нейтрона. Вместе с тем отсутствуют эксперимент, указания на существование внутри нуклонов какого-либо выделенного «ядрышка» («керна»), размеры которого превышали бы сотые доли размеров нуклона. Из-за рыхлого строения «облака» вероятность передать ему как целому большой импульс при упругом рассеянии электронов на нуклонах весьма мала и быстро падает с ростом переданного импульса.

  Если адронам передаётся большой импульс, то значительно более вероятными являются неупругие процессы, при которых из «облака», окружающего адрон, выбивается довольно значительное число вторичных частиц, а электроны теряют заметную часть своей энергии (такие процессы получили название глубоко неупругих). В отличие от процессов упругого рассеяния, вероятность передачи больших импульсов от электронов к адронам при этом довольно значительна (предположение о таком поведении глубоко неупругих процессов было высказано впервые М. А. Марковым). Оказалось, что измеренные на опыте т. н. структурные функции, характеризующие поведение адронов в глубоко неупругих процессах, зависят только от отношения квадрата импульса, переданного «облаку» адронов, к энергии, потерянной электроном. Т. о., имеет место закон подобия: структурные функции не меняются, если с увеличением переданного импульса растет переданная энергия. Теоретическое указание на такую зависимость следовало из т. н. алгебры токов (см. ниже). В определённых предположениях оно получается и из общих принципов квантовой теории поля. Простая интерпретация экспериментальных данных по глубоко неупругому рассеянию следует также из модели «партонов» (Р. Фейнман). В этой модели предполагается, что адроны в глубоко неупругих процессах ведут себя как совокупность точечных частиц – «партонов», некоторым образом распределённых по импульсам. В качестве партонов можно рассматривать кварки, считая, что адроны, помимо трёх кварков (как это предполагалось в первой гипотезе кварков), содержат также «облако» кварков-антикварков.

  Динамика сильных взаимодействий

  Благодаря короткодействующему характеру С. в. его прямое экспериментальное изучение возможно лишь в процессах рассеяния микрочастиц. При этом для того, чтобы произошло рассеяние, прицельный параметр столкновения должен не превышать радиуса действия сил. Отсюда следует, что максимальный относительный момент количества движения частиц, при котором ещё происходит рассеяние, определяется величиной |p|R (где р – относительный импульс частиц, a R – радиус действия сил), т. е. в процессе рассеяния участвуют волны с орбит, моментами l = |p|R/ = kR (величина k = |p|/ называется волновым числом: она связана с длиной волны де Бройля  =/ |p| соотношением k = 1/).

  При низких энергиях, когда kR << 1, рассеяние происходит в состоянии с орбитальным моментом l = 0 (в S-волне) и является сферически симметричным (т. е. происходит с равной вероятностью на любой угол). Область энергий Е, в которой выполняется это условие, ограничена значениями E £ (10—15) Мэв. В указанной области процесс рассеяния полностью описывается с помощью двух параметров – длины рассеяния и эффективного радиуса взаимодействия. При более высоких энергиях (kR ~ 1) для описания процесса рассеяния могут быть эффективно использованы т. н. фазы рассеяния, эксперимент, определение которых даёт важные сведения о С. в. Когда энергия столкновения превышает порог рождения вторичных частиц, в процессах С. в. начинают преобладать неупругие реакции. В области энергий, при которых в рассеянии участвует небольшое число парциальных волн, наблюдаются ярко выраженные пики в эффективном поперечном сечении рассеяния о при энергиях, соответствующих образованию резонансов; при энергиях, превышающих несколько Гэв, число парциальных волн велико и вклад резонансов в полное сечение становится незначительным (рис. 1, а).


    Ваша оценка произведения:

Популярные книги за неделю