355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ГЕ) » Текст книги (страница 60)
Большая Советская Энциклопедия (ГЕ)
  • Текст добавлен: 6 октября 2016, 01:27

Текст книги "Большая Советская Энциклопедия (ГЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 60 (всего у книги 95 страниц)

  В разрушении горных пород участвуют многие химические процессы, как, например, гидролиз алюмосиликатов, который приводит к образованию латерита, свободных водных окисей Al2O3 и бокситов, которые обогащены Ti, Nb, Sn, Be и др. Окисление до более высоких валентностей часто выполняется микроорганизмами, например Fe2+®Fe3+, Mn2+®Mn4+ и т. д. Железные осадочные руды обогащаются фосфатами, арсенатами, ванадатами, а марганцевые – Ba, Ra, Со и др. Известняки, а также доломиты, фосфаты и некоторые др. соли образуются при участии организмов и накапливают Sr, Mn, Pb, F, редкоземельные элементы и т. д.

  Соленосные отложения возникают в результате испарения воды в изолированных бассейнах. Последовательность отложения солей NaCl, MgSO4 и др. идёт по законам галогенеза. В этом процессе происходит отделение твёрдых солей от насыщенного раствора – рапы, которая содержит наиболее растворимые соли Na, К, Sr, Li, В, Br. Подобные растворы встречаются и в подземных высокоминерализованных водах.

  Органическое вещество суши при захоронении приводит к образованию углей, а органическое вещество донных отложений современных и древних морей (главным образом планктона) – к образованию нефтей и горючих газов. Изотопный анализ отдельных фракций нефтей на 12С/13С указывает температуру их образования – не свыше 200—250°С. Появление углей и нефтей в земной коре изменило миграцию и распределение ряда осадочных элементов. Так, например, U, V, Ge обычно концентрируются в осадочных железных рудах. С появлением углей их соединения стали накапливаться и в углях и в битумах, образуя нередко месторождения этих элементов. Наиболее стойкие минералы – монацит, торит, золото, магнетит, кварц, циркон, рутил, касситерит и др., при разрушении горных пород накапливаются в прибрежной части морей и океанов и образуют в зонах морского шельфа россыпные месторождения.

  Мощность осадочных пород на материках в некоторых местах достигает 20 км, а в среднем превосходит 1 км. Общее количество осадочных пород на земном шаре указано в табл. 5.

  Табл. 5. – Количество пород на земном шаре


Глубоководные области 2,17·1020
Батиальные области 1,0·1021
Щиты древних платформ 1,4·1020
Молодые платформы 3,4·1020

Главную массу пород составляют глины и сланцы (около 55%), карбонатные породы (около  25%), пески и песчаники (около 20%).

  Все магматические и осадочные горные породы подвергаются в той или иной степени метаморфизму. Разнообразные процессы в твёрдом веществе горных пород идут либо без выноса и привноса вещества извне (собственно метаморфизм), либо с выносом и привносом вещества (метасоматизм). Различают щелочной метасоматизм (натриевый или калиевый), магнезиальный, кальциевый, железистый, а также серный (березитизация гранитов), фосфатный, боратный и др. Глины превращаются в сланцы, известняки в мраморы и т. п. На глубине под действием высокой температуры породы могут испытать переплавление (палингенезис, гранитизацию). Все превращения, связанные с метаморфизмом, направлены к химическому равновесию, перекристаллизации с уменьшением объёма. Образуются минералы с большей плотностью и породы более или менее однообразного минерального состава, содержащие кварц, полевой шпат, слюды (системы с минимумом свободной энергии). В силу сложности и разнообразия процессов метаморфизма за основу классификации метаморфических пород берутся их минеральные ассоциации (минеральные фации), как показатели условий образования этих пород.

  Региональная неравномерность распределения отдельных химических элементов заставляет выделять на Земле различные геохимические провинции. Изучение территориального распространения химических элементов в связи с геологией района составляет задачу региональной геохимии, конечной целью которой является составление геохимических карт территории на базе общих геологических данных.

  Геохимические процессы в гидросфере, атмосфере и биосфере. Водная оболочка Земли – гидросфера – возникла в результате излияния базальтов и выноса в этом процессе воды, СО2 и др. газов. Мировой океан со средиземными и приконтинентальными морями занимает около 71% поверхности Земли и имеет общий объём 1,37·1018м3. Строение дна океанов – результат грандиозных магматогенных процессов. Донные осадки составляют около 1,2·1021кг. Легкорастворимые вещества обогащают водный раствор, труднорастворимые накапливаются в осадках дна. Соотношения растворённых солей сохраняются постоянными. Главные ионы океанической воды указаны в табл. 6.

  Табл. 6. – Главные ионы океанической воды (на 1 кг океанической воды при солёности S=35,00°/oo и хлорности С1=19,375 °/оо)


Компоненты Концентрация
г/кгг-экв/кг
Катионы
Na+10,7638 0,46806
Mg2+1,2970 0,10666
Ca2+0,4080 0,02035
K+0,3875 0,00991
Sr2+0,0136* 0,00031
Сумма 0,60529
Анионы
Cl-19,3534 0,54582
SO422,7007 0,05623
HCO3-0,1427 0,00234
CO32-(0,0702) (0,00234)
Br-0,0659 0,00083
F-0,0013 0,00007
H3BO20,0265
Сумма 0,60529

* В настоящее время содержание Sr в океанической воде принимается равным 8·10—4%.

  В толще воды устанавливаются сложные равновесия между органическим веществом, солями, газами и др. веществами океанического раствора и химическим составом донных отложений. Все воды материков (представляющие собой производные океанической воды) составляют 3% массы воды океана. В воде рек и пресных озёр главными ионами являются (в порядке убывания содержания) Ca2+, Na+, Mg2+, СО32—, SO42—, Cl.

  С поверхности океанов ежегодно испаряется около 500 тыс. км3 воды, которая частично сбрасывается на материки, просачивается через слои осадочных пород и образует подземные воды. Захороненные воды бывших морских илов образуют межпластовые воды. Под влиянием обмена между межпластовыми водами и породами и в зависимости от температуры пластов формируется состав подземных вод. Известны подземные воды нефтеносных областей, богатые I и Br, иногда В; хлоркальциевые воды (например, в девонских слоях Восточно-Европейской платформы); бессульфатные, богатые Ra; сероводородные, обычно возникающие в результате восстановления SO42— бактериями; богатые Li (в Иркутском амфитеатре) и др. Разнообразны и воды минеральных источников. В областях древнего вулканизма минеральные источники – холодные, без CO2. В областях недавнего вулканизма появляются горячие источники с разнообразным солевым составом. Разработана их классификация.

  Древняя газовая оболочка Земли была маломощной и состояла из CO2, H2O, возможно CH4 и др. газов. Современная атмосфера возникла вторично, с появлением на Земле свободного кислорода в результате фотосинтетической деятельности растений. После этого продукты вулканической эксгаляций S, H2S, NH3, H2, CH4 и др. были окислены, выбыли из атмосферы и осталась современная азотно-кислородная оболочка Земли (см. Атмосфера).

  Из пород Земли в атмосферу при действии вулканов выделяются лёгкие газы He4, He3, Н, D («гелиевое дыхание»), которые не удерживаются гравитационным полем Земли и диссипируют (рассеиваются) в космическое пространство. Источником CO2 (а также следов HF, HCl и др.) являются тоже вулканы. На содержание в атмосфере CO2 оказывает влияние океан, поглощающий CO2 в холодных широтах и освобождающий CO2 на экваторе. Поэтому на экваторе парциальное давление CO2 в атмосфере несколько выше. Изотоп аргона 40Ar накапливается в атмосфере в результате ядерного превращения 40K ® 40Ar (К-захват). Др. инертные газы – Ne, Kr, Xe – первичного происхождения. Атмосфера играет огромную роль в качестве транспортёра многих легколетучих соединений, галогенидов, органических веществ и т. п. Газы атмосферы участвуют в геохимическом выветривании горных пород, например O2, CO2. Азот фиксируется синезелёными водорослями и некоторыми др. растениями. После их гибели в результате метаморфизма их остатков образуется калийная селитра.

  Подземные атмосферы, заполняющие пористые породы, имеют разнообразный состав и образуются различными путями. Атмосферные газы могут быть захвачены осадочными породами. В этом случае для них характерно содержание 40Ar по отношению к N2 около 1%. Азотные струи без 40Ar – результат метаморфизма органического вещества (биогенные газы). Известны подземные атмосферы из CO2, а также струи CO в районах вулканической деятельности, нефтяные газы CH4, C2H6, C3H8 и др. углеводороды в нефтеносных областях, сероводород, радиогенные газы – Не, Rn и др.

  Биосфера – область на границе твёрдой, жидкой и газовой оболочек Земли, занятая живым веществом — совокупностью организмов. Биосфера возникла около 3,5.109 лет тому назад. Благодаря маломощной первичной атмосфере космическое излучение проникало на Землю. Под влиянием этого облучения из вулканических дымов и газов H2O, СО, CO2, HF, HC1, CH4, S, H2S, S2, NH3, H3BO3 и др. происходил абиогенный синтез многих сложных соединений углерода с симметричными молекулами, оптически неактивными. На этом фоне возник биогенный синтез асимметричных оптически активных молекул живого вещества. После возникновения в результате фотосинтеза азотно-кислородной атмосферы над ней образовался озоновый экран. Вследствие этого космические лучи практически перестали проникать к поверхности Земли и абиогенный синтез органических соединений прекратился. Организмы не только изменили состав атмосферы, но прямо или косвенно участвуют в многочисленных геохимических процессах (см. Биогеохимия).

  История отдельных элементов в земной коре. Г. отдельных элементов, поведение их в разных природных процессах составляют специальную часть общей Г. и часто представляют значительный экономический интерес. Закономерные парагенезисы (ассоциации элементов) встречаются в разных природных процессах, но затем может происходить и разделение элементов. Например, все галогениды в виде HF, HCl, HBr, HI поступают на поверхность Земли с вулканическими эманациями. В дальнейшем соединения I под влиянием окислительно-восстановительных реакций (и солнечной радиации) легче других галогенидов окисляются, т. е. переходят в I2, который транспортируется через атмосферу и на поверхности Земли совершает свой круговорот (рис. 3). HF вулканических газов немедленно фиксируется материковыми породами, особенно молекулой P2O5, образуя прочную молекулу, лежащую в основе фторапатита. Соли HCl и HBr переходят в водные растворы и мигрируют вместе. Разделительным процессом для них является главным образом процесс садки солей при испарении растворов в изолированных бассейнах. NaCl поступает в осадок, а соли Br остаются в рапе озёр. Отношение Cl/Br в океане близко к 300, то же примерно в озёрах, реках и т. д. Но в отложениях галита отношение C1/Br около 10000 и больше, а в рапе (или в Мёртвом море) около 50. Т. о., по этому отношению Cl/Br можно устанавливать происхождение минеральных растворов.

  Другой пример: S, Se, Те выбрасываются вулканами. В гидротермальных рудных отложениях и сульфидах тяжёлых металлов они находятся вместе, но на поверхности Земли разделяются: S легко окисляется в SO42— и сбрасывается в море; при испарении морской воды образуются осадки сернокислого кальция – гипсы, ангидриты. Se трудно окисляется и в виде нерастворимых водных солей (Fe и др.) селенистой кислоты образует скопления. Те рассеивается при окислении. Миграция Са, Sr, Ba, Ra имеет много общих этапов. Однако Ba, встречаясь с SO42—, даёт нерастворимые соединения BaSO4. Одновременно тут же накапливается и RaSO4. Бикарбонаты Ca и Sr сбрасываются в виде водных растворов в океаны. При этом, в силу большой растворимости солей Sr2+, он не уходит в карбонатные осадки, а накапливается в растворах. Ещё более сложные разделительные процессы идут при образовании сульфидных гидротермальных отложений и во многих др. случаях. Миграция отдельных элементов из одной термодинамической системы в другую является частью общего круговорота или цикла миграции вещества на Земле.

  Связь геохимии с другими науками. Исторический очерк. Г. стоит на стыке геологических, физических и химических наук и через биогеохимию связывается с биологических науками. Наиболее тесно Г. связана с геологическими науками – минералогией и петрографией, особенно в вопросах генезиса минералов, горных пород и геологических процессов. Регионально-геохимические исследования проводятся в тесном сочетании с геотектоническими построениями. В Г. применяются современные физические и химические методы исследования вещества и процессов в широком диапазоне температур и давлений – спектральные, масс-спектральные, резонансные, ядерные и др.; используются математические методы. Изучение поведения вещества при высоких температурах и давлениях связывает Г. с геофизикой. Оценка абсолютного времени, которая лежит в основе исторической геологии, и ряд др. проблем истории Земли решаются только точными методами геохимических и радиохимических исследований (см. Геохронология). В палеонтологии при решении вопросов образования твёрдых скелетных частей организмов и их эволюции важно знать геохимические условия, в которых жили организмы. Изучение ископаемого органического вещества раскрывает процессы образования каустобиолитов. Геохимические идеи играют очень большую роль в развитии почвоведения; они направлены на решение ряда важных вопросов агрохимии и агрономии. Геохимическое изучение почвенного покрова очень важно для геохимических поисков полезных ископаемых. В географии также развивается геохимическое направление – геохимия ландшафта. Изучение геохимических процессов, связанных с флорой и фауной, имеет большое значение для сельского хозяйства и медицины (см. Биогеохимия).

  Идеи Г. проникают в астрофизику, атомную физику, химию и физическую химию, химическую технологию и металлургию (особенно редких металлов). Г. успешно разрабатывает и внедряет в практику геохимические поиски месторождений полезных ископаемых и содействует решению проблемы комплексного использования минерального сырья. Она активно участвует в той огромной работе, которая проводится в Советском Союзе в области химизации народного хозяйства и особенно химизации сельского хозяйства.

  Г. возникла на основе учения об атомах. Корни её уходят в прошлое геологоминералогического знания. Геохимические идеи появились уже в конце 18 в. Немецкий геолог К. Г. Бишоф, французский геолог Л. Эли де Бомон и др. накапливали геохимические факты, касавшиеся состава, миграции вещества в водных растворах, а также в магматических вулканических процессах. Шведский химик и минералог И. Я. Берцелиус в 1-й половине 19 в. изучал химический состав большого числа минералов и первым предложил химическую классификацию минералов. Химический анализ минералов и горных пород, исследования химическую состава природных газов и вод, химическое изучение полезных ископаемых привели в середине 19 в. к возможности заложить основы Г. В 1838 швейцарский химик К. Ф. Шёнбейн впервые ввёл термин «Г.". Многочисленные сведения по Г. были получены к концу 19 и началу 20 вв. Первую обширную сводку данных по Г. дал (1882) американский геохимик Ф. У. Кларк. Формулирование основных задач в Г. принадлежит советским академикам В. И. Вернадскому, А. Е. Ферсману и норвежскому геохимику В. М. Гольдшмидту. Значит, вклад в Г. был сделан работами Н. С. Курнакова и его школы, заложившими основы Г. галогенеза, а также физико-химического анализа природных солевых систем. Идеи Вернадского и Ферсмана нашли особенно благоприятную почву для развития после Великой Октябрьской социалистической революции. В СССР ученики В. И. Вернадского и А. Е. Ферсмана – А. П. Виноградов, Д. И. Щербаков, П. Н. Чирвинский, Н. В. Белов, А. Г. Бетехтин, Н. М. Страхов, В. С. Соболев, К. А. Ненадкевич, В. Г. Хлопин, А. А. Сауков, К. А. Власов, В. В. Щербина, В. И. Герасимовский, Н. И. Хитаров и мн. др. разрабатывали и разрабатывают как общие, так и отдельные вопросы Г. Во 2-й половине 20 в. усилились исследования по радиоактивности горных пород и минералов, развивалась изотопная Г., широко развернулись работы по определению абсолютного возраста пород. Геохимические исследования в СССР ведутся не только в научно-исследовательских институтах, но и в очень многих производственных организациях. Г. преподаётся в университетах и др. учебных заведениях. Был создан ряд геохимических институтов и отделов, в том числе биогеохимическая лаборатория, реорганизованная позже в институт геохимии и аналитической химии им. В. И. Вернадского (см. Геохимии и аналитической химии институт). В 1956 начал издаваться журнал «Геохимия».

  Лит.: Вернадский В. И., Очерки геохимии, 4 изд., М. – Л., 1934; Ферсман А. Е., Геохимия, т. 1—4, Л., 1933—1939; его же, Пегматиты, 3 изд., т. 1, М. – Л., 1940; Виноградов А. П., Геохимия редких и рассеянных химических элементов в почвах, 2 изд., М., 1957; его же, Введение в геохимию океана, М., 1967; его же, Предварительные данные о лунном грунте, доставленном автоматической станцией «Луна-16», «Геохимия», 1971, № 3; Vinogradov A. P., The elementary chemical composition of marine organisms, New Haven, 1953; Сауков А. А., Геохимия, [3 изд.], М., 1966; Clarke F. W., The data of geochemistry, 5 ed., Wash., 1924; Goldschmidt V. M., Geochemistry, Oxf., 1954; Rankama K., Progress in isotope geology, N. Y. – L., 1963; Krauskopf K. B., Introduction to geochemistry, N. Y. – L., 1967; Handbook of geochemistry, ed. K. Н. Wedepohl, v. 1—2, В. – [а. о.], 1969; Mason Br., Principles of geochemistry, 3 ed., N. Y. – L. – Sydney, 1970; Slater J C., Atomic radii in cryetals, «Journal of chemical Physics», 1964, v. 41, № 10, p. 3199—3204; Ahrens L. Н., The use of ionization potentials. pt. I – Ionic radii of the elements, «Geochimica et cosmochimica Acta», 1952, v. 2, № 3.

  А. П. Виноградов.

Рис. 1. Распространённость химических элементов на Солнце  и в каменных метеоритах (хондритах); по оси абсцисс – порядковые номера элементов, по оси ординат – число атомов данного элемента на 106 атомов Mg.

Рис. 3. Круговорот иода

Рис. 2. Увеличение объёма породы в зоне выветривания.

Табл. 2. Величины атомных и ионных радиусов (в ) группы периодической системы Д. И. Менделеева.

«Геохимия»

«Геохи'мия», ежемесячный научный журнал АН СССР. Издаётся с 1956 в Москве. Публикует результаты экспериментальных и теоретических исследований по вопросам геохимии (минералогии, кристаллохимии, кристаллографии, космохимии и др.), а также статьи о геохимических методах исследования и о геохимических методах поисков и разведки месторождений полезных ископаемых. В 1956—60 выходил 8 раз в год, с 1961 – ежемесячно. Тираж (1970) 1750 экз.

  Л. В. Семенов.

Геохимия ландшафта

Геохи'мия ландша'фта, научное направление, возникшее на границе географии и геохимии в 40-х годах 20 в. Изучает миграцию химических элементов в ландшафте, используя с этой целью идеи и методы геохимии, особенно биогеохимии. Первые подходы к изучению Г. л. были сделаны в трудах советских учёных В. И. Вернадского о биосфере (в 1926) и А. Е. Ферсмана по геохимии пустынь и полярных областей (в 1931). Основателем Г. л. как самостоятельного научного направления был советский учёный Б. Б. Полынов, который в 1946 сформулировал задачи, основные понятия и разработал методику исследований Г. л.

  Г. л. классифицирует миграцию элементов по формам движения материи. Ведущее значение в большинстве ландшафтов имеет биогенная миграция, выражающаяся в биологическом круговороте атомов, образовании и разложении органических веществ. В результате круговорота солнечная энергия превращается в действенную химическую энергию. Физико-химическая миграция в основном развивается в водах ландшафта. Она определяет многие его геохимические особенности. По характерным ионам природных вод различают кислые (Н+), кальциевые (Ca2+) и прочие ландшафты. Участки земной поверхности, отмеченные определёнными особенностями миграции, именуются геохимическими ландшафтами, все их части – водоразделы, склоны, долины и т. д. – связаны между собой миграцией атомов. Особенности миграции положены в основу геохимической классификации ландшафтов СССР и составления ландшафтно-геохимических карт для территории СССР и отдельных регионов.

  Важным принципом Г. л. является историзм. Изучение геохимических особенностей ландшафтов прошлых геологических эпох составляет содержание исторической Г. л. Она применяется при поисках полезных ископаемых, в здравоохранении. Научные и прикладные исследования по Г. л. развиваются в АН СССР, академиях наук союзных республик, университетах, отраслевых исследовательских институтах, геологических управлениях.

  Лит.: Полынов Б. Б., Геохимические ландшафты, в кн.: Избр. труды, М., 1956; его же, Учение о ландшафтах, там же; Глазовская М. А., Геохимические основы типологии и методики исследования природных ландшафтов, М., 1964; Добровольский В. В., Атомы в ландшафте, М., 1964; Перельман А. И., Геохимия ландшафта, [2 изд.], М., 1966; его же, Современное состояние геохимии ландшафта и задачи дальнейших исследований, в сборнике: Геохимия ландшафта, М., 1967.

  А. И. Перельман.


    Ваша оценка произведения:

Популярные книги за неделю