355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (ГЕ) » Текст книги (страница 25)
Большая Советская Энциклопедия (ГЕ)
  • Текст добавлен: 6 октября 2016, 01:27

Текст книги "Большая Советская Энциклопедия (ГЕ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 25 (всего у книги 95 страниц)

Генетика поведения

Гене'тика поведе'ния, область науки о поведении, основывающаяся на законах генетики и изучающая, в какой степени и каким образом различия в поведении определяются наследственными факторами. Основные методы исследования Г. п. на экспериментальных животных – селекция в сочетании с инбридингом (близкородственное скрещивание), при помощи которых изучаются механизмы наследования форм поведения, на человеке – статистический и генеалогический анализ в сочетании с близнецовым и цитогенетическим методами.

  Зависимость поведения от наследственных факторов – генное управление и контроль поведения – исследуется на различных уровнях организации живого: в биоценозах, популяциях, сообществах, на уровне организма, а также на физиологическом (орган, ткань, клетка) и молекулярном уровнях, Исследования Г. п. имеют существенное значение для учения об индивидуальных различиях высшей нервной деятельности и выявления относительной роли врожденных и индивидуально приобретённых особенностей поведения, для объяснения роли генетически обусловленных особенностей поведения животных в популяции (для общественных животных – в стаде, стае и т.п.), а также для создания экспериментальных моделей нервных болезней.

  Лит.: Крушинский Л. В., Генетика и феногенетика поведения животных, в кн.: Актуальные вопросы современной генотики, М., 1966; Гэйто Дж., Молекулярная психобиология, пер. с англ., М., 1969; Falconer D. S., Introduction to quantitative genetics, N. Y., 1960; Fuller J. L., Thornpson W. R., Behavior genetics, N. Y. – L., 1960.

  Л. Г. Романова.

Генетика растений

Гене'тика расте'ний, раздел генетики, изучающий наследственность и изменчивость высших растений (генетические исследования грибов и водорослей обычно относят к генетике микроорганизмов), Для генетического изучения растений, кроме методов, которыми пользуются в др. областях генетики (в частности гибридологического анализа), применяют следующие методы. С помощью моносомного анализа определяют роль каждой хромосомы в наследовании и развитии различных признаков растений. Этим методом (разработанным на дурмане) пользуются при изучении ряда аллополиплоидов (некоторых пшениц, хлопчатника), а также диплоидов (ячменя). Большое значение в Г. р. приобретает экспериментальный мутагенез который даёт огромное разнообразие новых форм, используемых в селекции, и ценный материал для изучения генетики отдельных видов растений. С помощью мутантов составляют генетические карты хромосом; на них исследуют действие изменённого гена (в гомо– и гетерозиготном состоянии) на развитие отдельных признаков в разных условиях среды, на физиологические и биохимические особенности растений. Изучение мутантов способствует выяснению эволюции того или иного вида. К методам исследования эволюции растений относятся также гибридизация и анализ конъюгации хромосома в мейозе у гибридов (неродственно хромосомы не конъюгируют). Важный метод – искусственный ресинтез существующих видов путём гибридизации и последующего удвоения числа хромосом (см. Полиплоидия). Значительную роль в эволюции растений, в том числе многих культурных (пшеницы, овса, хлопчатника, картофеля, плодовых и др.), играет аллополиплоидия. После открытия действия алкалоида колхицина, препятствующего расхождению удвоившихся хромосом к разным полюсам клетки, для получения новых, иногда очень ценных форм широко используется автополиплоидия. Сочетая методы отдалённой гибридизации и цитогенетики, изучают роль отдельных хромосом (и их участков) в наследовании признаков и разрабатывают приёмы, позволяющие получать вставки участков хромосом диких растений, обусловливающие развитие ценных признаков (например, устойчивости к ржавчине), в хромосомы культурных растений. Роль ядра и цитоплазмы в наследовании и развитии признаков исследуют, применяя отдалённую гибридизацию и анализируя природу мужской цитоплазматической стерильности, используемой при получении гетерозисных форм. В Г. р. широко исследуются апомиксис и явление самонесовместимости, т. е. неспособности растений к самооплодотворению, а также генетические особенности растений само– и перекрёстноопылителей, вегетативно и апомиктически размножающихся форм. В Г. р. всё больше проникают идеи и методы молекулярной биологии (гибридизация ДНК, ДНК – РНК, изучение изозимов и др.). Методы популяционной генетики и биометрии применяют в Г. р. для разграничения генотипических и паратипических элементов в общей фенотипической изменчивости признаков, что усиливает эффективность искусственного отбора. Все эти методы используют для улучшения хозяйственно ценных свойств с.-х. растений: урожайности, устойчивости к неблагоприятным условиям среды, ряда биохимических и технологических особенностей растения (или его зерна), особенностей развития (озимость, яровость, раннеспелость и т.д.). Из высших растений генетически наиболее изучены кукуруза, арабидопсис (растение семейства крестоцветных, «растительная дрозофила» – модельный объект генетических исследований), горох, томаты, ячмень. У этих растений методами гибридизации установлена локализация генов и составлены карты хромосом. Интенсивно изучается цитогенетика мягкой пшеницы – сложного 42-хромосомного аллополиплоида, возникшего в процессе эволюции при естественной гибридизации трёх разных злаков с последующим удвоением числа хромосом у гибридов. Вклад Г. р. в селекцию огромен. Это, например, использование гетерозиса в селекции кукурузы на основе мужской стерильности; введение высокоурожайным гибридам и сортам кормового ячменя генов, обеспечивающих высокое содержание лизина в зерне; создание низкорослых неполегающих высокоурожайных сортов пшеницы с использованием генов карликовости («зелёная революция» в Индии и др. странах); выведение урожайных и сахаристых триплоидных гибридов сахарной свёклы.

  Лит.: Вавилов Н. И., Избр. произв., т. 1, Л., 1967; Мичурин И. В., Соч., т. 1—4, М., 1948; Брюбейкер Дж. Л., Сельскохозяйственная генетика, пер. с англ., М., 1966; Эллиот Ф., Селекция растений и цитогенетика, пер. с англ., М., 1961; Мюнтцинг А., Генетика, пер. с англ., М., 1967; Уильямс У., Генетические основы и селекция растений, пер. с англ., М., 1968: Цитогенетика пшеницы и ее гибридов, М., 1971; Генетические основы селекции растений, М., 1971.

  В. В. Хвостова.

Генетика человека

Гене'тика челове'ка, отрасль генетики, тесно связанная с антропологией и медициной. Г. ч. условно подразделяют на антропогенетику, изучающую наследственность и изменчивость нормальных признаков человеческого организма, и генетику медицинскую, которая изучает его наследственную патологию (болезни, дефекты, уродства и др.). Г. ч. связана также с эволюционной теорией, т.к. исследует конкретные механизмы эволюции человека и его место в природе, с психологией, философией, социологией. Из направлений Г. ч. наиболее интенсивно развиваются цитогенетика, биохимическая генетика, иммуногенетика, генетика высшей нервной деятельности, физиологическая генетика.

  В Г. ч. вместо классической гибридологического анализа применяют генеалогический метод, который состоит в анализе распределения в семьях (точнее, в родословных) лиц, обладающих данным признаком (или аномалией) и не обладающих им, что раскрывает тип наследования, частоту и интенсивность проявления признака и т.д. При анализе семейных данных получают также цифры эмпирического риска, т. е. вероятность обладания признаком в зависимости от степени родства с его носителем. Генеалогическим методом уже показано, что более 1800 морфологических, биохимических и др. признаков человека наследуется по законам Менделя (см. Генетика). Например, тёмная окраска кожи и волос доминирует над светлой; пониженная активность или отсутствие некоторых ферментов определяется рецессивными генами, а рост, вес, уровень интеллекта и ряд др. признаков – «полимерными» генами, т. е. системами из многих генов. Многих признаки и болезни человека, наследующиеся сцепленно с полом, обусловлены генами, локализованными в Х- или Y-xpomocome. Таких генов известно около 120. К ним относятся гены гемофилии А и В, недостаточности фермента глюкозо-6-фосфатдегидрогеназы, цветовой слепоты и др. Др. метод Г. ч. – близнецовый метод (см. Близнецы). Однояйцевые близнецы (ОБ) развиваются из одной яйцеклетки, оплодотворённой одним спермием; поэтому набор генов (генотип) у ОБ идентичен. Разнояйцевые близнецы (РБ) развиваются из двух и более яйцеклеток, оплодотворённых разными спермиями; поэтому их генотипы различаются так же, как у братьев и сестёр (сибсов). Сравнение внутрипарных различий между ОБ и РБ позволяет судить об относительном значении наследственности и среды в определении свойств человеческого организма. В близнецовых исследованиях особенно важен показатель конкордантности, выражающий (в %) вероятность обладания данным признаком одним из членов пары ОБ или РБ, если его имеет другой член пары. Если признак детерминирован преимущественно наследственными факторами, то процент конкордантности намного выше у ОБ, чем у РБ. Например, конкордантность по группам крови, которые детерминированы только генетически, у ОБ равна 100%. При шизофрении конкордантность у ОБ достигает 67%, в то время как у РБ – 12,1%; при врождённом слабоумии (олигофрении) – 94,5% и 42,6% соответственно. Подобные сравнения проведены в отношении ряда заболеваний. Т. о., исследования близнецов показывают, что вклад наследственности и среды в развитие самых разнообразных признаков различен и признаки развиваются в результате взаимодействия генотипа и внешней среды. Одни признаки обусловлены преимущественно генотипом, при формировании др. признаков генотип выступает в качестве предрасполагающего фактора (или фактора, лимитирующего норму реакции организма на действия внешней среды).

  Геном человека включает несколько миллионов генов, способных к тому же по-разному влиять на развитие признаков. В результате мутаций и перекомбинации генов возникает присущее человеку разнообразие по самым разным признакам. Гены человека мутируют каждый с частотой от 1 на 100000 до 1 на 100000000 гамет на поколение. Распространение мутаций среди больших групп населения изучает популяционная Г. ч., позволяющая составить карты распространения генов, определяющих развитие нормальных признаков и наследственных болезней. Особый интерес для популяционной Г. ч. представляют изоляты – группы населения, в которых по каким-либо причинам (географическим, экономическим, социальным, религиозным и др.) браки заключаются чаще между членами группы. Это приводит к повышению частоты кровного родства вступающих в брак, а значит, и вероятности того, что рецессивные гены перейдут в гомозиготное состояние и проявятся, что особенно заметно при малочисленности изолята.

  Исследования в области Г. ч. продемонстрировали наличие естественного отбора в человеческих популяциях. Однако отбор у человека приобретает специфические черты: он интенсивно действует только на эмбриональной стадии (т. н. самопроизвольные аборты – отражение такого отбора). Отбор в человеческом обществе осуществляется посредством дифференциальной брачности и плодовитости, т. е. в результате взаимодействия социальных и биологических факторов. Мутационный процесс и отбор обусловливают огромное разнообразие (полиморфизм) по ряду признаков, присущее человеку, что делает его с биологической точки зрения необычайно пластичным и приспособленным видом.

  Широкое использование в Г. ч. цитологических методов способствовало развитию цитогенетики, где основной объект исследования – хромосомы, т. е. структуры клеточного ядра, в которых локализованы гены. Установлено (1946), что хромосомный набор в клетках тела человека (соматических) состоит из 46 хромосом, причём женский пол определяется наличием двух Х-хромосом, а мужской – Х-хромосомы и Y-xpomocomы. В зрелых половых клетках находится половинное (гаплоидное) число хромосом. Митоз, мейози оплодотворение поддерживают преемственность и постоянство хромосомного набора как в ряду клеточных поколений, так и в поколениях организмов. В результате нарушений указанных процессов могут возникать аномалии хромосомного набора с изменением числа и структуры хромосом, что приводит к возникновению т. н. хромосомных болезней, которые нередко выражаются в слабоумии, развитии тяжёлых врождённых уродств, аномалий половой дифференцировки или обусловливают самопроизвольные аборты.

  Успехи в развитии Г. ч. сделали возможными предупреждение и лечение наследственных заболеваний. Один из эффективных методов их предупреждения – медико-генетическое консультирование с предсказанием риска появления больного в потомстве лиц, страдающих данным заболеванием или имеющих больного родственника. Достижения биохимической Г. ч. раскрыли первопричину (молекулярный механизм) многих наследственно обусловленных дефектов, аномалий обмена веществ, что способствовало разработке методов экспресс-диагностики, позволяющих быстро и рано выявлять больных, и лечения многих прежде неизлечимых наследственных болезней. Чаще всего лечение состоит во введении в организм веществ, не образующихся в нём вследствие генетического дефекта, или в составлении специальных диет, из которых устранены вещества, оказывающие токсическое действие на организм в результате наследственно обусловленной неспособности к их расщеплению. Многие генетические дефекты исправляются с помощью своевременного хирургического. вмешательства или педагогической коррекции. Практические мероприятия, направленные на поддержание наследственного здоровья человека, на охрану генофондачеловечества, осуществляются через систему медико-генетических консультаций. Основная цель медико-генетические консультирования – информировать заинтересованных лиц о вероятности риска появления в потомстве больных. К медико-генетическим мероприятиям относится также пропаганда генетических знаний среди населения, т.к. это способствует более ответственному подходу к деторождению. Медико-генетическая консультация воздерживается от мер принудительного или поощрительного характера в вопросах деторождения или вступления в брак, принимая на себя лишь функцию информации. Большое значение имеет система мер, направленных на создание наилучших условий для проявления положительных наследственных задатков и предотвращение вредных воздействий среды на наследственность человека.

  Г. ч. представляет собой естественнонаучную основу борьбы с расизмом, убедительно показывая, что расы– это формы адаптации человека к конкретным условиям среды (климатическим и иным), что они отличаются друг от друга не наличием «хороших» или «плохих» генов, а частотой распространения обычных генов, свойственных всем расам. Г. ч. показывает, что все расы равноценны (но не одинаковы) с биологической точки зрения и обладают равными возможностями для развития, определяемого не генетическими, а социально-историческими условиями. Констатация биологических наследственных различий между отдельными людьми или расами не может служить основанием для каких-либо выводов морального, юридического или социального порядка, ущемляющих права этих людей или рас (см. Геноцид, Сегрегация).

  Лит.: Ниль Дж. и Шэлл У. Наследственность человека, пер с англ., М, 1958; Канаев И. И., Близнецы, М. – Л., 1959; Штерн К., Основы генетики человека, пер. с англ., М., 1965; Маккьюсик В., Генетика человека, пер. с англ., М., 1967; Биология человека, пер. с англ., М. 1968: Эфроимсон В. П., Введение в медицинскую генетику, 2 изд., М., 1968: Основы цитогенетики человека, [М., 1969]; Li Ching-chun, Human genetics, N. Y., 1961.

  К. Н. Гринберг, А. А. Прокофьева-Бельговская.

Генетико-автоматические процессы

Гене'тико-автомати'ческие проце'ссы, вероятностные процессы, определяющие изменение частоты разных аллелей в популяции. В больших, свободно скрещивающихся популяциях в отсутствие отбора и давления мутаций соотношение аллелей, независимо от их абсолютной исходной частоты, должно сохраняться во всех поколениях. Однако в реальных, ограниченных по численности популяциях частота генов не остаётся постоянной не только под давлением мутаций и отбора, но и в силу случайных отклонений. Детальный анализ Г.-а. п. был проведён советскими генетиками Н. П. Дубининым (1931), Н. П. Дубининым и Д. Д. Ромашовым (1932), английским – Р. Фишером (1931) и американским – С. Райтом (1931). Случайные колебания частоты аллелей популяции связаны с тем, что распределение аллелей между гаметами и комбинирование гамет в зиготе – вероятностные процессы. Г.-а. п. оказывают несистематический эффект, т.к. частота аллелей в разных поколениях может повышаться или понижаться. В малых популяциях или в популяциях, которые распадаются под действием изоляционных механизмов на отдельные подгруппы, может происходить чисто случайная стабилизация аллелей (гомозиготы) или их элиминация; в результате довольно быстро проявляются новые стабилизированные комбинации генов. Наиболее отчётливо Г.-а. п. проявляются при возникновении новых изолированных популяций. Например, в секте меннонитов (Ланкастер, штат Пенсильвания, США), насчитывающей около 8000 человек, значителен процент карликов с многопалостью (13% меннонитов гетерозиготны по гену, который в гомозиготном состоянии обусловливает появление таких карликов); это объясняется тем, что члены секты вступают в брак только между собой, а такая изоляция способствует появлению гомозиготных индивидуумов. В больших популяциях Г.-а. п. не могут обусловить такой стабилизации или элиминации аллелей, т.к. влияние этих процессов компенсируется за счёт разных факторов в последующих поколениях или в разных подразделениях популяции. Теория Г.-а. п. объяснила генетические последствия изоляции, судьбу рецессивных мутаций на уровнях малых концентраций и эволюцию популяций по нейтральным признакам. Г.-а. п. объясняют многие расовые различия человека, возникшие без действия отбора. Наряду с термином «Г.-а. п.» широко используется термин «дрейф генов», предложенный С. Райтом. Советский генетик С. С. Четвериков, подчёркивая роль вероятностно-статистических закономерностей при дрейфе генов, предлагал назвать это явление генетико-стохастическими процессами.

  Лит.: Дубинин Н. П., Эволюция популяции и радиация, М., 1966, с. 421—33.

  Н. П. Дубинин, В. Н. Сойер.

Генетиков и селекционеров общество

Гене'тиков и селекционе'ров о'бщество Всесоюзное имени Н. И. Вавилова (ВОГИС) научно-общественная организация при АН СССР, объединяющая ученых и практиков СССР, ра6отающих в области генетики и селекции. Создано в 1965. 30—31 мая 1966 Москве состоялся учредительный съезд общества; был утвержден устав общества избраны центральный совет (80 чел.) и президиум (23 чел.; находится в Москве). Президентом избран Б. Л. Астауров. К началу 1971 общество насчитывало 3670 член, имело 26 отделений в столицах союзных республик, краевых, областных центрах и др. городах. Цели и задачи ВОГИС: активное участие в развитии всех отраслей генетики и селекции, повышение квалификации членов общества и реализация их исследований, популяризация и пропаганда новейших теоретических и практических достижений в области генетики и селекции, содействие преподаванию генетики и селекции в средней и высшей школе.

  В. Ф. Мирек.

Генетическая информация

Генети'ческая информа'ция, заложенная в наследственных структурах организмов (в хромосомах, цитоплазме, клеточных органеллах), получаемая от предков в виде совокупности генов информация о составе, строении и характере обмена составляющих организм веществ (прежде всего белков и нуклеиновых кислот) и связанных с ними функциях. У многоклеточных форм при половом размножении Г. и. передается из поколения в поколение через посредство половых клеток – гамет, единственная функция которых – передача и хранение Г. и. У микроорганизмов и вирусов имеются особые типы передачи Г. и. (см. Сексдукция, Трансдукция, Трансформация). Г. и. заключена преимущественно в хромосомах, где она зашифрована в определённой линейной последовательности нуклеотидов в молекулах дезоксирибонуклеиновой кислоты – ДНК (см. Генетический код). Г. и. реализуется в ходе онтогенеза– развития особи – передачей Г. и. от гена к признаку. Все клетки организма возникают в результате делений единственной исходной клетки – зиготы– и потому имеют один и тот же набор генов – потенциально одну и ту же Г. и. Специфичность клеток разных тканей определяется тем, что в них активны разные гены, т. е. реализуется не вся Г. и., а только её часть, необходимая для функционирования данной ткани.

  Ю. С. Демин.


    Ваша оценка произведения:

Популярные книги за неделю