355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (БИ) » Текст книги (страница 28)
Большая Советская Энциклопедия (БИ)
  • Текст добавлен: 26 сентября 2016, 14:54

Текст книги "Большая Советская Энциклопедия (БИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 28 (всего у книги 42 страниц)

Биотехническая система

Биотехни'ческая систе'ма, совокупность взаимосвязанных и взаимозависимых биологических и технических систем или объектов. Например на борту космического корабля Б. с. состоит из подобранного, в зависимости от назначения и продолжительности полёта, биокомплекса и технических средств, обеспечивающих оптимальные условия его функционирования. В состав технических средств входят подсистемы создания и распределения света, энергообеспечения, терморегулирования, а также космическая оранжерея, кухня, блоки регенерации воздуха и воды, минерализации отходов и т.д. Примерами Б. с. могут служить также электростимулятор сердца, манипулятор для работы в условиях, при которых соприкосновение человека с объектом управления нежелательно, и т.д. (см. Система «человек и машина»).

Биотехния

Биоте'хния (от био... и греч. téchnē – умение, мастерство), комплекс мероприятий, направленных на увеличение запасов полезных животных и улучшение их продуктивных свойств. Термин «Б.» появился в 30-х гг. 20 в. в СССР, где широко развернулись работы по охране и разведению в природных условиях промысловых животных. Организация действенной охраны (путём создания заповедников, заказников и государственных заповедно-охотничьих хозяйств, установления сроков добычи животных, запрета добычи на определённый срок и других мер) и проведение биотехнических мероприятий позволили восстановить и увеличить численность многих ценных видов зверей, птиц и рыб, почти полностью истребленных хищническим промыслом в дореволюционной России.

  Биотехнические мероприятия имеют целью: 1) увеличение запасов промысловых животных: улучшение кормовой базы (посадка и посев кормовых растений в охотничьих угодьях и водоёмах, подкормка животных); улучшение защитных и гнездовых условий (посадка деревьев и кустарников, посевы высокостебельчатых трав для укрытия животных; устройство защитных участков – ремиз, обсаженных колючим кустарником); создание участков «покоя» в глухих малопосещаемых местах; устройство нор и других убежищ для разных видов животных; истребление вредных хищников; борьба с заболеваниями животных; реакклиматизация зверей, птиц и рыб в районах прежнего обитания; внедрение в фауну страны ценных диких животных, завезённых из других стран; 2) улучшение продуктивных свойств промысловых животных (повышение меховых достоинств пушных зверей и мясных качеств копытных животных и пернатой дичи, увеличение размеров тела добываемых рыб и др.) включает селекцию (отбор животных в соответствии с поставленными задачами и подбор родительских пар с целью усиления в потомстве полезных признаков, метизацию и гибридизацию, использование мутационных форм с ценными продуктивными свойствами), а также создание условий, способствующих развитию продуктивных свойств животных.

  Большой вклад в Б. внесли советские учёные: Б. М. Житков, П. А. Мантейфель, С. И. Огнев, Н. П. Лавров, С. П. Наумов, Б. А. Кузнецов, И. Н. Арнольд, А. Н. Елеонский, В. П. Врасский, В. А. Мовчан, Г. В. Никольский и др. В СССР разработкой научных проблем Б. и внедрением их в практику охотничьего хозяйства занимается Всесоюзный научно-исследовательский институт охотничьего хозяйства и звероводства и другие научные учреждения. Большой опыт в разработке и осуществлении различных биотехнических мероприятий накоплен в охотничьем и рыбном хозяйствах многих зарубежных стран (США, Англии, Франции, Канады, Финляндии, Югославии, Венгрии, Чехословакии, ГДР и др.). См. Охотничье хозяйство,Охота.

  Лит.: Колосов А. М., Биотехния, М., 1965; Дементьев В. И., Биотехнические мероприятия в охотничьем хозяйстве, Л., 1966; Кузнецов Б. А., Биотехнические мероприятия в охотничьем хозяйстве, М., 1967; Колосов А. М., Лавров Н. П., Обогащение промысловой фауны СССР, М., 1968.

  Б. А. Кузнецов.

Биотин

Биоти'н (витамин Н), водорастворимый витамин, содержащийся в дрожжах и других микроорганизмах, а также в печени, яичном желтке, почках, молоке, цветной капусте и других растительных продуктах. Суточная потребность человека в Б. (0,25 мг) обычно обеспечивается микрофлорой кишечного тракта, поэтому вводить его с пищей не нужно. Б. получен синтетически.

  У лабораторных животных можно вызвать авитаминоз Н скармливанием больших количеств сырого яичного белка, содержащего антагонист Б. – авидин, разрушающийся при нагревании до 100°С. При авитаминозе Н наблюдаются поражения кожи типа себореи. Б. – кофермент, участвует в процессах переноса углекислого газа и фиксации его при биосинтезе; другие функции его не выяснены.

Биотип

Биоти'п, группа организмов, входящих в состав местной популяции, имеющих одинаковый генотип и сходных практически по всем признакам. Датский биолог В. Иогансен считал гомозиготный Б. у самоопыляющихся растений самой элементарной единицей структуры популяции (1909). Советский ботаник В. Н. Сукачев (1927, 1935) называл Б. клоны растений, полученные многократным черенкованием корней растения или делением одного куста. В популяциях перекрёстноопыляемых видов Б. можно выделить как последовательным отбором с изоляцией потомства, так и многократным размножением в близких степенях родства (инбридинг). В 20—30-е гг. 20 в. многие биологи (шведский ботаник Г. Турессон, советские биологи Н. И. Вавилов, М. А. Розанова и др.) считали Б. мельчайшей таксономической единицей. Вид, по их мнению, складывается из совокупности Б. в результате перекомбинирования и отбора.

  Биологическими типами, или жизненной формой, называются также большие группы организмов, часто состоящие из многих видов и характеризующиеся сходными приспособлениями к использованию определённых условий обитания. К биологическим типам в этом значении термина относят, например, группу подземных роющих грызунов, группу эфемерных растений пустынь и т.д.

  Лит.: Берман 3. И., Завадский К. М., Зеликман А. Л. и др., Современные проблемы эволюционной теории, Л., 1967; Завадский К. М., Вид и видообразование, Л., 1968.

  К. М. Завадский.

Биотит

Биоти'т [по имени французского учёного Ж. Б. Био (J. В. Biot), 1774—1862], минерал из группы слюд. По структуре относится к слоистым алюмосиликатам. Химическая формула K (Mg, Fe)3AlSi3 O10(OH, F)2. Цвет в тонких листочках от черновато-бурого до буро-зелёного. Б. широко распространён как породообразующий минерал в изверженных и метаморфических породах. Наиболее крупные кристаллы Б., достигающие 1—1,5 м, встречаются в пегматитовых жилах. Б. применяют в малоответственных электроизоляционных изделиях, порошок его также идёт на изготовление бронзовой краски. См. Слюды.

Биотические факторы

Биоти'ческие фа'кторы среды, совокупность влияний, оказываемых на организмы жизнедеятельностью других организмов. Эти влияния носят самый разнообразный характер. Живые существа могут служить источником пищи для других организмов, являться средой обитания (например, организм-хозяин, в котором поселяются паразиты), способствовать их размножению (например, деятельность животных-опылителей), оказывать химическое (токсины бактерий), механическое и другие воздействия. В отличие от абиотических факторов среды, действие Б. ф. проявляется в форме взаимовлияния живых организмов разных видов друг на друга. Так, растения выделяют кислород, необходимый для дыхания животных, а животные обеспечивают поступление в атмосферу углекислого газа, который используется растениями в процессе фотосинтеза; деятельность хищников оказывает влияние на динамику численности их жертв, что, в свою очередь, сказывается на изменениях численности хищников. Действие Б. ф. может быть не только непосредственным, но и косвенным, выражаясь в изменении условий окружающей неживой природы (например, изменение состава почвы бактериями или изменение микроклимата под пологом леса).

  Лит.: Наумов Н. П., Экология животных, М., 1955; Макфедьен Э., Экология животных. Цели и методы, [пер. с англ.], М., 1965.

  И. А. Шилов.

Биотический потенциал

Биоти'ческий потенциа'л в экологии, способность вида противостоять неблагоприятным воздействиям внешней среды. Термин введён американским экологом Р. Чепменом (1925) в связи с проблемой динамики численности животных. По Чепмену, Б. п. – количественное выражение способности организмов противостоять сопротивлению внешней среды. Согласно его теории, потенциальная плодовитость животных не реализуется, поскольку она подавляется односторонним воздействием внешней среды, с которой организмы находятся в антагонистических отношениях. По современным воззрениям, такая точка зрения выглядит упрощённой. Изменения плодовитости и выживания животных происходят как под влиянием абиотических факторов, так и в результате межвидовых и внутривидовых взаимоотношений. Большую роль в этих процессах играют внутрипопуляционные механизмы, обеспечивающие активную реакцию популяции на внешние воздействия.

  Лит.: Наумов Н. П., Экология животных, М., 1955; Вилли К., Биология, пер. с англ., М., 1968, с. 700.

  И. А. Шилов.

Биотоп

Биото'п (био... и греч. topós – место), участок земной поверхности (суши или водоёма) с однотипными абиотическими условиями среды (рельеф, почвы, климат и т.п.), занимаемый тем или иным биоценозом. Характерный для данного Б. комплекс условий определяет как видовой состав организмов, так и особенности их существования и, в свою очередь, подвергается изменениям под воздействием биоценоза. Т. о., Б. – неорганический компонент биогеоценоза. Сходные Б. объединяют в биохоры, совокупности которых составляют биоциклы.

Биотопливо

Биото'пливо, биологическое топливо, различные органические материалы, выделяющие в процессе разложения тепло, которое используется для обогрева теплиц, парников и утеплённого грунта. В качестве Б. применяют навоз (конский, коровий, овечий, свиной), бытовой мусор, корьё (кора, снятая с дерева), древесные опилки, льняную костру, отходы текстильной промышленности, сухой древесный лист, неразложившийся торф. При средней плотности укладки объёмная масса составляет (в т/м3): навоза конского и овечьего 0,35—0,45, коровьего—0,40—0,50, бытового мусора – 0,70—0,75, корья – 0,40,—0,45. Б. поздней осенью складывают на хранение (раздельно по видам) в штабели, сильно утрамбовывая и утепляя соломистым навозом, Во время хранения в Б. поддерживают температуру от 0 до 10°С. За 2—3 нед до использования Б. перебивают (разрыхляют). Для ускорения разогревания сырое и плотное Б. смешивают с сухим и рыхлым. Если в течение 1 нед Б. не разогревается, прибегают к его искусственному разогреву (укладка очагами горячего Б. или негашёной извести, укладка горячих камней и т.д.). На 1 м2 площади теплиц и утеплённого грунта требуется Б. 0,25—0,4 м3, на 1 рамоместо парников 0,6—1,5 м3.

  В. А. Брызгалов.

Биоуправление

Биоуправле'ние, система управления приборами, механизмами и устройствами, в которой в качестве управляющих сигналов используются различные проявления жизнедеятельности организма, за исключением большинства произвольных движений. Для Б. могут служить: биоэлектрические потенциалы, генерируемые различными возбудимыми тканями, механические и акустические явления, сопровождающие функционирование сердечно-сосудистой системы и дыхания, колебания температуры тела и др. Наиболее широко распространены системы биоэлектрического управления. В этих системах биопотенциалы, генерируемые скелетными мышцами, сердцем, головным мозгом, нервами, подвергаются усилению, переработке и затем выполняют роль командных, управляющих сигналов. Использование биопотенциалов головного мозга позволило создать приборы для автоматической сигнализации начальной стадии кислородного голодания, для автоматического управления подачей наркотического вещества и поддержания заданной стадии наркоза, прибор для автоматического управления электроэнцефалографом (см. Электроэнцефалография) в связи с выделением характерных изменений состояния мозга.

  Больше всего приборов, управляемых биопотенциалами сердца. При этом в качестве сигнала могут служить, например, характерные изменения электрокардиограммы при заболеваниях. Первая группа приборов, управляемых биопотенциалами сердца, это приборы диагностические, обеспечивающие включение сигнализирующей и регистрирующей аппаратуры при нарушениях сердечного ритма, кислородном голодании сердечной мышцы и др. Вторая группа – приборы лечебного назначения, служащие для автоматического включения электростимулятора, задающего нужный ритм сердечных сокращений (при нарушениях естественного ритма, резком замедлении сердечных сокращений или остановке сердца), для осуществления синхронного с сердечными сокращениями массажа периферических сосудов, для временной разгрузки сердца с помощью вспомогательного искусственного сердца. Важную группу устройств с биоэлектрическим управлением составляют активные протезы, для управления которыми используются биопотенциалы частично ампутированных, парализованных или полностью сохранённых мышц. Выполняя привычные движения, человек управляет электромеханическим или пневматическим приводом, который осуществляет движения в суставах парализованной конечности или шарнирах протеза. В 60-х гг. 20 в. не только в СССР, но и в Англии, Канаде (по советским лицензиям) налажен промышленный выпуск биоуправляемых протезов.

  Биоэлектрическое управление применяют также в технике, например, в биоманипуляторах, управляемых на расстоянии при работе в подводных или вредных условиях.

  Лит.: Кобринский А. Е. [и др.], Биоэлектрическая система управления, «Докл. АН СССР», 1957, т. 117, № 1; Гурфинкель В. С., Биоэлектрическое управление в медицине, «Вести. АМН СССР», 1964, №2.

  В.С. Горфинкель.

Биофабрика

Биофа'брика, государственное хозрасчётное предприятие, изготовляющее биологические препараты для диагностики, профилактики и лечения болезней животных. В СССР Б. начали создавать с 1930 на базе ветеринарных бактериологических лабораторий и станций по производству вакцин и сывороток. Вначале Б. были небольшой производительности с узким ассортиментом выпуска биологических препаратов. В 1970 большинство Б. представляет собой предприятия широкого профиля, изготовляющие 8—10 видов биологических препаратов.

Биофизика

Биофи'зика, биологическая физика, наука, изучающая физические и физико-химические процессы, протекающие в живых организмах, а также ультраструктуру биологических систем на всех уровнях организации живой материи – от субмолекулярного и молекулярного до клетки и целого организма. Развитие Б. тесно связано с интенсивным взаимопроникновением идей, теоретических подходов и методов современной биологии, физики, химии и математики. Развитие биологии показало, что для понимания и изучения элементарных биологических явлений необходимо применение понятий и методов точных наук. Такой подход оправдан тем, что все биологические объекты представляют в конечном итоге совокупность атомов и молекул и подчиняются физическим и химическим закономерностям. Но так как биологические системы – это самоорганизующиеся системы, сложившиеся в процессе эволюции, им присущи многие свойства, не имеющие места в неживой природе. Сложность биологических систем обеспечивает протекание процессов, маловероятных для условий, обычно рассматриваемых в физике. Б. в основном рассматривает целостные системы, не разлагая их, по возможности, на химические компоненты. В связи с этим возникает необходимость перерабатывать известные физико-химические методы, создавая высокоспециализированные биофизические методы и приёмы.

  Современная Б., согласно классификации, принятой Международным союзом теоретической и прикладной биофизики (1961), включает следующие основные разделы: молекулярная Б., в задачу которой входит исследование физических и физико-химических свойств макромолекул и молекулярных комплексов, составляющих живые организмы, а также характера взаимодействия и энергетики протекающих в них процессов; Б. клетки, изучающая физико-химические основы функции клетки, связь молекулярной структуры мембран и клеточных органелл с их функцией, механические и электрические свойства, энергетику и термодинамику клеточных процессов; Б. процессов управления и регуляции, которая занимается исследованием и моделированием внутренних связей системы управления в организмах, их физической природой, исследованием физических закономерностей живого на уровне целого организма.

  Однако исторически сложившийся круг проблем, которыми занимается Б., шире. К Б. относится: изучение влияния физических факторов на организм (см. Вибрация. Ускорение,Невесомость); исследование биологического действия ионизирующих излучений, которое в связи с важностью и актуальностью этого вопроса стало предметом радиобиологии, специальной науки, выделившейся из Б. Физический анализ деятельности органов чувств, в первую очередь оптики глаза, анализ работы органов движения, дыхания, кровообращения как физических систем, вопросы прочности и эластичности тканей (см. Биомеханика) существенные, исторически сложившиеся разделы Б. Важное значение имеет и разработка физических методов исследования биологических систем – от макромолекул до целого организма, без которых невозможно современное биологическое исследование.

  Отдельные исследования биофизического характера можно проследить с 17 в. В этот период были сделаны попытки применить понятия, созданные в физике и химии, для анализа биологических явлений. Французский учёный Р. Декарт рассматривал человеческое тело как сложную машину. Он опубликовал ряд работ по исследованию органов чувств – биоакустике и оптике. Последователь Декарта – итальянский учёный Дж. А. Борелли пытался объяснять движение живых существ чисто физическими закономерностями. Л. Эйлер, профессор Петербургского университета, впервые математически описал движение крови по сосудам. М. В. Ломоносов выдвинул в 1756 одну из первых гипотез цветного зрения. Могучим толчком к физико-химическим исследованиям явлений жизни послужили опыты итальянского учёного Л. Гальвани, который доказал наличие «животного электричества». Во 2-й половине 19 в. немецкие учёные Г. Гельмгольц и В. Вундт сформулировали основные закономерности физиологической акустики и физиологической оптики. Немецкий врач Ю. Р. Майер, наблюдая насыщение кислородом гемоглобина в крови человека в тропическом и умеренном климате, сформулировал закон сохранения энергии. Г. Гельмгольц и М. Рубнер продолжили исследования этого закона на живых организмах. Работами немецких учёных Г. Гельмгольца, Э. Дюбуа-Реймона, Д. Бернштейна и ряда др. были заложены основы представлений о механизме возникновения электрических потенциалов в тканях и распространения возбуждения по нерву. Значение ионного состава и реакции среды в жизни клеток и тканей было выяснено в работах американского исследователя Ж. Лёба, немецких учёных В. Нернста и Р. Гебера.

  В России И. М. Сеченов в конце 19 в. исследовал физические закономерности растворения газов в крови и биомеханику движений. К. А. Тимирязев изучал фотосинтетическую активность отдельных участков солнечного спектра в связи с распределением энергии в нём и особенностями спектра поглощения хлорофилла (1903). А. Ф. Самойлов описал акустические свойства среднего уха. П. П. Лазареву принадлежит заслуга в развитии ионной теории возбуждения (1916). М. Н. Шатерников использовал термодинамические представления в исследованиях энергетического баланса организмов (1910—20). В 1905—15 были выполнены классические исследования Н. К. Кольцова о роли физико-химических факторов (поверхностного натяжения, концентрации водородных ионов, катионов) в жизни клетки. Этот этап предыстории Б., охватывающий период до 20 гг. 20 в., характерен появлением отдельных работ с использованием идей и методов физики и физической химии при исследовании движения, слухового и зрительного аппаратов, фотосинтеза, механизма генерации электродвижущей силы в нерве и мышце, значения ионной среды для жизнедеятельности клеток и тканей.

  После Октябрьской революции сложились благоприятные условия для развития Б. в СССР. В 1919 П. П. Лазарев создал в Москве институт биологической физики, где вели работы по ионной теории возбуждения, кинетике реакций, идущих под действием света, исследовали спектры поглощения и флуоресценции биологических объектов, а также процессы первичного действия на организм различных факторов внешней среды. Позже такие институты были созданы и в других странах. В 20-е гг. Кольцов сформулировал концепцию о молекулярной структуре гена и матричном механизме передачи наследственной информации и синтеза макромолекул. В 20—30-е гг. вышел ряд книг, оказавших глубокое влияние на последующее развитие Б. в СССР: «Биосфера» В. И. Вернадского (1926),»Теоретическая биология» Э. С. Бауэра (1935), «Физико-химические основы биологии» Д. Л. Рубинштейна (1932), «Организация клетки» Н. К. Кольцова (1936), «Реакция живого вещества на внешние воздействия» Д. Н. Насонова и В. Я. Александрова (1940).

  В эти годы шло постепенное формирование базы для биофизических исследований, разрабатывались новые методы, росло техническое оснащение лабораторий. После 2-й мировой войны в СССР и ведущих капиталистических странах в результате огромного размаха исследований по физике и химии, возникновения мощной приборостроительной промышленности и резкого увеличения финансирования биологических исследований начинается бурное развитие Б.

  Формирование отдельных областей Б. Молекулярная Б. исследует механизм биологических явлений с точки зрения взаимодействия атомов и молекул, ионов и радикалов. В задачу этого раздела входит изучение пространств, строения, физико-химических свойств биологических систем на молекулярном уровне. Эта проблематика тесно связана с биохимией, что особенно ярко видно на примере изучения строения биологически важных макромолекул, выяснение пространственной структуры которых требует биофизического подхода и решается методом рентгеноструктурного анализа. Последний был успешно использован для расшифровки относительно простых биологических молекул (в 20-х гг. в Англии В. Астбери удалось частично расшифровать структуру молекулы целлюлозы). Работы по структуре белка были начаты в 30-х гг. английским учёным Дж. Берналом. К 1954 английские исследователи Дж. Кендрю и М. Перуц нашли метод расчёта пространственного расположения атомов в молекуле белка. Это позволило рассчитать структуру миоглобина и гемоглобина, что позволило вскрыть механизм возникновения серповидноклеточной анемии и глубже понять природу активного центра белковой молекулы. Работы по изучению пространственной структуры белков ведутся в СССР на физическом факультете МГУ, в институте биофизики АН СССР и других учреждениях. Исследования структуры фибриллярных белков (коллагена, фиброина шёлка) показали наличие регулярной структуры с периодически чередующимися группами аминокислот. Построена статистическая теория редупликации (удвоения) дезоксирибонуклеиновой кислоты (ДНК). К 1968 определена структура около 200 белков. Наряду с изучением строения отдельных молекул большие успехи достигнуты в исследовании молекулярных комплексов – ультраструктур, создающих функциональные единицы клетки.

  Исследования по молекулярной Б. тесно связаны с биохимией, генетикой и цитологией, молекулярной биологией.

  Значительное место в молекулярной Б. занимает проблема возбуждённых состояний молекул в биологических системах; такие молекулы приобретают высокую химическую активность. Наиболее изучены возбуждённые состояния, возникающие на первичной стадии фотобиологических процессов – фотосинтеза,зрения и биолюминесценции.

  Оригинальным направлением в отечественной Б. можно считать изучение сверхслабого ультрафиолетового свечения биологических систем (митогенетического излучения, А. Г. Гурвич, 1923—48). В 30-е гг. Г. М. Франк и С. Ф. Родионов разработали физический метод обнаружения сверхслабых свечений биологических объектов. Успехи в разработке методов регистрации сверхслабых световых потоков с помощью фотоэлектронных умножителей привели в 50-х гг. 20 в. к открытию сверхслабого свечения ряда животных и растительных объектов в видимой области спектра. Была показана связь этого свечения с рекомбинацией свободных радикалов. А. Н. Терениным с сотрудниками были исследованы механизмы элементарных фотофизических процессов с участием пигментов, указана роль состояний молекул, открыт механизм миграции энергии в них при фотохимических реакциях, изучен механизм люминесценции белков (1950—65). А. А. Красновский открыл и исследовал реакцию обратимого фотохимического восстановления хлорофилла и его аналогов (1949—60). Эти работы способствовали развитию биологической фотохимии.

  В одном из важных разделов Б. рассматривается превращение энергии в живых организмах, начиная с превращения и миграции энергии на молекулярном уровне и кончая энергетическим балансом целого организма (см. Биоэнергетика). Исследование взаимной трансформации химической и механической энергии при сокращении мышечного волокна, молекулярные механизмы движения ресничек и жгутиков у простейших, движения протоплазмы и клеточных органелл стали предметом изучения механохимии, находящейся на стыке биохимии и молекулярной Б. В 1938 в работе советских учёных В. А. Энгельгардта и М. Н. Любимовой, изучавших механизм мышечного сокращения, было впервые продемонстрировано наличие прямой связи между механическими и химическими процессами. В дальнейшем эти работы были развиты американским учёным А. Сент-Дьёрдьи.

  Традиционный раздел Б. – изучение физико-химических свойств клетки и проницаемости биологических мембран для различных веществ. Всё большее значение приобретают проблемы моделирования искусственных мембран и активного транспорта ионов. Одним из примеров практического применения знаний, полученных в этой области Б., биохимией и физиологией, является создание искусственной почки.

  Важной проблемой Б. является изучение биоэлектрических явлений. В этой области Б. тесно связана с физиологией (см. Биоэлектрические потенциалы). Исследования показали, что между наружной и внутренней средой каждой живой клетки поддерживается разность потенциалов около 0,1 в. Её источник – создаваемый клеткой ионный градиент между наружной и внутриклеточной средой. Эти данные послужили основой для создания мембранной теории генерации потенциалов в клетке, выдвинутой в начале века немецким учёным Д. Бернштейном и экспериментально обоснованной в 50—60-е гг. работами английских учёных А. Ходжкина, А. Хаксли и Б. Каца, изучавших изменение проницаемости мембраны нервного волокна и ионные потоки в нерве при возбуждении (см. Мембранная теория возбуждения). Значительное место занимают также исследования других физико-химических свойств клеток – вязкости, оптических свойств, их изменений при различных физиологических состояниях и тех или иных воздействиях.

  Биофизические закономерности, свойственные организму в целом, рассматриваются в соответствующих разделах биоэнергетики (изучение механизма теплоотдачи, теплоизоляции, теплопродукции, скорости охлаждения при различных условиях и т.п.).

  Б. процессов управления неразрывно связана с кибернетикой биологической и биомеханикой. Созданию систем управления, выяснению принципов управления движениями животных и человека положили начало исследования советского учёного Н. А. Бернштейна. Он первым приступил к изучению обратной связи в биологических системах (1934). Изучение биомеханики движений (ходьба, бег, трудовые движения и др.), дыхания и кровообращения имеет исключительную важность в связи с вопросами физиологии труда и спорта, космическими полётами, а также для изучения причин сердечных и сосудистых заболеваний и создания аппаратов искусственного дыхания и кровообращения.

  Биофизические исследования ведутся в СССР во многих научных учреждениях, в частности в институте биофизики АН СССР, институте цитологии АН СССР, институте молекулярной биологии АН СССР, на кафедрах биофизики в МГУ, ЛГУ и в других учреждениях. Одна из первых в мире кафедр Б. была основана в МГУ в 1953 Б.Н. Тарусовым. Исследования по Б. и подготовка кадров ведутся во многих странах мира. Великобритания – Лондонский университет, Институт молекулярной биологии, Кембридж; Венгрия – университет в г. Печ; ГДР – Институт биологии и медицины, Берлин; Израиль – Институт Вейцмана, г. Реховот; Индия – Институт кристаллографии, молекулярной биологии и ядерной физики в Дели и университет в Мадрасе; КНР – Институт биофизики, Пекин; Польша – Варшавский университет и Институт биохимии и биофизики АН ПНР; Румыния – Институт биофизики, Бухарест; США – Йельский университет, Массачусетсский технологический институт, Калифорнийский университет, Гарвардский университет, Рокфеллеровский институт и многое др.; Франция – Институт физико-химической биологии в Париже, Институт макромолекулярных исследований в Страсбуре и др.; ФРГ – Институт биофизики общества М. Планка, Франкфурт-на-Майне, Институт биологической и медицинской физики при Гёттингенском университете и др.; Чехословакия – Институт биофизики в Брно, Пражский университет; Швеция – Отделение биофизики при Нобелевском институте в Стокгольме; Япония – университет в Осака, Институт белка, там же, Токийский университет.

  На 1-м Международном биофизическом конгрессе, состоявшемся в Стокгольме в 1961, был создан Международный союз теоретической и прикладной биофизики, в центральный совет которого входят представители СССР.

  Периодические издания, в которых публикуются работы по Б.: «Биофизика» (М., 1956—); «Молекулярная биология» (М., 1967—); «Радиобиология» (М., 1961—); «Advances in Biological and Medical Physics» (N. Y., 1948—); «Biochimica et Biophysica Acta» (N. Y.– Amst., 1947—); «Biophysical Journal» (N. Y., I960—); «Bulletin of Mathematical Biophysics» (Chi, 1939—); «Journal of Cell Biology» (N. Y., 1962—; в 1955– 1961 наз.—»Journal of Biophysical and Biochemical Cytology»); «Journal of Molecular Biology» (N. Y.—L., 1959—); «Journal of Ultrastructure Research» (N. Y.—L., 1957—); «Progress in Biophysics and Biophysical Chemistry» (L., 1950—).

  Лит.: Бернштейн Н. А., О построении движений, М., 1947; Лазарев П. П., Сочинения, т. 2, М.– Л., 1950; Бреслер С. Е., Введение в молекулярную биологию, М. —Л., 1966; Молекулярная биология. [Сб. ст.], пер. с англ., М., 1963; Пасынский А. Г., Биофизическая химия, М., 1963; Аккерман Ю., Биофизика, пер. с англ., М., 1964; Вопросы биофизики. Материалы I Международного биофизического конгресса. Стокгольм, июль – август 1961, М., 1964; Сетлоу Р., Поллард Э., Молекулярная биофизика, пер. с англ., М., 1964; Волькенштейн М. В., Молекулы и жизнь. Введение в молекулярную биофизику, М., 1965; Биофизика, М., 1968; Casey Е., Biophysics. Concepts and mechanisms, N. Y.—L., 1962; Physical techniques in biological research, v. 1—5, N. Y., 1955—64.


    Ваша оценка произведения:

Популярные книги за неделю