355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (БИ) » Текст книги (страница 27)
Большая Советская Энциклопедия (БИ)
  • Текст добавлен: 26 сентября 2016, 14:54

Текст книги "Большая Советская Энциклопедия (БИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 27 (всего у книги 42 страниц)

Биопсия

Биопси'я (от био... и греч. ópsis – вид, зрелище), иссечение кусочка болезненно измененной ткани живого организма с последующим микроскопическим исследованием его для определения характера патологического процесса (воспаление, опухоль и т.д.). Б. позволяет не только уточнить клинический диагноз, но и установить границы поражения.

Био-Савара закон

Био' – Сава'ра зако'н – закон, определяющий напряжённость магнитного поля, создаваемого электрическим током. Б.—С. з. был открыт французскими учёными Ж. Б. Био (J. В. Biot) и Ф. Саваром (F. Savart) в 1820 и сформулирован в общем виде П. Лапласом (P. Laplace). Согласно этому закону, малый отрезок проводника Dl (см. рис.), по которому течёт ток силой I, создаёт в данной точке пространства М, находящейся на расстоянии r от отрезка Dl (Dl « r), магнитное поле напряжённостью

 

Здесь J – угол между направлением тока в отрезке Dl и радиусом-вектором r, проведённым от отрезка к точке наблюдения М, а k — коэффициент пропорциональности, зависящий от выбора системы единиц. В системе СГС (Гаусса) k = 1/с, где с = 3 · 1010см/сек — скорость света в вакууме, в системе СИ k = 1/4p.

  Напряжённость магнитного поля DН перпендикулярна плоскости Р, содержащей Dl и r, и её направление определяется правилом буравчика: если вращать рукоятку буравчика (с правой нарезкой) от Dl к r, то поступательное движение буравчика укажет направление DН.

  Полная напряжённость магнитного поля Н, создаваемого проводником с током в точке М, равна векторной сумме величин DН, обусловленных всеми элементами Dl проводника. В частности, напряжённость Н магнитного поля на расстоянии d от длинного (много больше d) прямого провода, по которому течёт ток силой I, равна; H = k2I/d; в центре кругового контура (радиуса R), некоторому течёт ток силой I, H = k´2pI/R, а на его оси в точке, отстоящей от плоскости контура на расстоянии d « R, H = k´2pR2I/d3, на оси соленоида из n витков H = k´4pnI.

  Б.—С. з. можно рассматривать также как закон, определяющий магнитную индукцию DВ. В системе СГС для этого нужно выражение для DН умножить на магнитную проницаемость среды m, а в системе СИ, кроме того, – на магнитную проницаемость вакуума m = 4p´10-7гн/м.

  Г. Я. Мякишев.

Био – Савара закон.

Биосинтез

Биоси'нтез (от био... и синтез), образование органических веществ из более простых соединений, протекающее в живых организмах или вне их под действием биокатализаторов – ферментов. Б. – часть процесса обмена веществ растений, животных и микроорганизмов. Непосредственным источником энергии для Б. служат богатые энергией соединения (см. Биоэнергетика), а в конечном счёте (для всех организмов, кроме бактерий, осуществляющих хемосинтез)энергия солнечного излучения, аккумулированная зелёными растениями (см. Ассимиляция,Фотосинтез). Каждый одноклеточный организм, как и каждая клетка многоклеточного организма, синтезирует составляющие её вещества. Характер Б., осуществляемого в клетке, определяется наследственной информацией, «закодированной» в её генетическом аппарате (см. Белки, Биосинтез; Генетический код). Б., производимый вне организмов, широко применяется как способ (иногда единственно возможный) промышленного получения биологически важных веществ – витаминов, некоторых гормонов, антибиотиков, аминокислот, а также белков и других соединений. См. Микробиологическая промышленность.

  С. Е. Северин.

Биосистематика

Биосистема'тика, раздел ботаники, изучающий таксономическую и популяционную структуру вида, его морфологогеографическую, экологическую и генетическую дифференциацию, происхождение и эволюцию. Б. оперирует не только собственно таксономическими категориями, как вид и подвид, но и генэкологическими и популяционно-генетическими – экотип,биотип,популяция и дем (элементарная локальная популяция) или гамодем (у амфимиктических растений). Б. возникла как наука, сочетающая различные подходы к структуре и эволюции вида, т. е. задачи её выходят за рамки собственно систематики.

  История Б. начинается с работ шведского эколога Г. Турессона (1922, 1923) и американского эколога Д. Клаусена (1921—22), изучавших экологическую и генетическую дифференциацию вида. Новое направление, названное Турессоном (1923) генэкологией, сформировалось позднее в науку, которую М. Кэмп и Н. Гилли назвали «Б.» (1943). Генэкология осталась одним из разделов Б., изучающим внутривидовую изменчивость растений. Б. изучает, кроме того, и микроэволюцию. В СССР работы в этом направлении начали ещё в 20-х гг. М. А. Розанова, Е. Н. Синская и др. Под руководством Н. И. Вавилова во Всесоюзном институте растениеводства велось изучение экологогеографической и генетической дифференциации многих видов культурных растений. Эти исследования имели большое значение для дальнейшего развития Б., хотя они и относились скорее к «дифференциальной систематике», как её понимал Н. И. Вавилов.

  Лит.: Вавилов Н. И., Линнеевский вид как система, «Тр. по прикладной ботанике, генетике и селекции», 1931, т. 26, т. 3, с. 109—34; Розанова М. А., Экспериментальные основы систематики растений, М.—Л., 1946; Синская Е.Н., Динамика вида, М.—Л., 1948; Завадский К. М., Вид и видообразование, Л., 1968; Тахтаджян А. Л., Биосистематика: прошлое, настоящее и будущее, «Ботанический журнал», 1970, т. 55, в. 3; Heslop-Harrison J. W., New concepts in flowering-plant taxonomy, L., 1953; его же. Forty years of Genecology, в сборнике: Advances in ecological research, v. 2, L.—N. Y., 1965; Davis P. Н. and Heywood V. H., Principles of angiosperm taxonomy, Edinburg—L., 1963; Reproductive biology and taxonomy of vascular plants, ed. J. G. Hawkes, Oxf., 1966; Modern methods in plant taxonomy, ed. V. H. Heywood, L., 1968; Briggs D. and Walters S. M., Plant variation and evolution, L., 1969.

  А. Л. Тахтаджян.

Биостратиграфия

Биостратигра'фия (от био... и стратиграфия), отрасль стратиграфии, изучающая распределение ископаемых остатков организмов в осадочных отложениях с целью установления относительного возраста и соотношения одновозрастных слоев на различных территориях. Задача Б. – разработка шкал относительно возраста слоев (разной детальности и масштаба, в частности зональных). Последовательность биостратиграфических зон отражает смену в геологическом разрезе ископаемых остатков группы вымерших организмов разного систематического ранга или их комплексов. Особенное значение для выделения зон, и в первую очередь биозон, имеют группы вымерших организмов с относительно кратким сроком существования, но достигавшие широкого распространения, значительного изобилия и разнообразия (например, нуммулиты,граптолиты,динозавры). Нередко зоны обосновываются стадиями эволюции некоторых быстро изменявшихся во времени групп вымерших организмов (например, кораллов – ругоз). Для целей Б. важно изучение остатков древних микроскопических организмов (микропалеонтология), количество которых может быть велико даже в небольших образцах (например, из глубоких скважин). Остатки планктонных организмов (фора-минифер, водорослей и др.), разносившихся течениями на большие расстояния, допускают выделение зон большой территориальной протяжённости. Ископаемые остатки спор и пыльцы растений, далеко разносившихся ветрами, важны для корреляции одновозрастных осадков морского и континентального происхождения. Б. широко использует методы палеоэкологии для реконструкции условий существования древних организмов, с тем чтобы отличать одновозрастные комплексы организмов, живших в разных условиях, от разновозрастных, живших в сходных условиях.

  Лит.: Меннер В. В., Биостратиграфические основы сопоставления морских, лагунных и континентальных свит, «Тр. геологического института АН СССР», 1962, в. 65; Стратиграфическая классификация, терминология и номенклатура, Л., 1965; Степанов Д. Л., Принципы и методы биостратиграфических исследований, Л., 1958.

  Р. Л. Мерклин.

Биосфера

Биосфе'ра (от био... и сфера), оболочка Земли, состав, структура и энергетика которой в существенных чертах обусловлены прошлой или современной деятельностью живых организмов. Б. охватывает часть атмосферы, гидросферу и верхнюю часть литосферы, которые взаимосвязаны сложными биогеохимическими циклами миграции веществ и энергии (по В. И. Вернадскому, – биогенная миграция атомов); начальный момент этих циклов заключён в трансформации солнечной энергии растениями и синтезе биогенных веществ на Земле (см. Фотосинтез. Хемосинтез). Термин «Б.» ввёл в 1875 австрийский геолог Э. Зюсс. Общее учение о Б. создано в 20—30-х гг. 20 в. В. И. Вернадским, развившим идеи В. В. Докучаева о комплексном естественно-историческом анализе взаимодействующих в природе разнокачественных объектов и явлений (факторов почвообразования) и выявлении самостоятельных природных объектов гетерогенной структуры и состава (почвы, природные зоны). В основе учения Вернадского лежат представления: 1) о планетарной геохимической роли живого вещества (совокупность всех живых организмов, существовавших или существующих в определённый отрезок времени, рассматриваемых как мощный геологический, фактор; в отличие от живых существ, изучаемых в биологии на всех уровнях их организации, начиная от молекулярного, живое вещество, в понимании Вернадского, как биогеохимический фактор, количественно выражается в элементарном химическом составе, массе и энергии) и 2) об организованности Б., являющейся продуктом сложного превращения вещественно-энергетического и информационного потоков живым веществом за время геологической истории Земли.

  Б. включает не только область жизни (биогеосферу, фитогеосферу, геомериду, витасферу), но и другие структуры Земли, генетически связанные с живым веществом. По Вернадскому, вещество Б. состоит из семи разнообразных, но геологически взаимосвязанных частей: живое вещество; биогенное вещество; косное вещество; биокосное вещество; радиоактивное вещество; рассеянные атомы; вещество космического происхождения. В пределах Б. везде встречается либо живое вещество, либо следы его биогеохимической деятельности. Газы атмосферы (кислород, азот, углекислота), природные воды, равно как и каустобиолиты (нефти, угли), известняки, глины и их метаморфические производные (сланцы, мраморы, граниты и др.) в своей основе созданы живым веществом планеты. Слои земной коры, лишённые в настоящее время живого вещества, но переработанные им в геологическом прошлом, Вернадский относил к области «былых биосфер». Б. мозаична по структуре и составу, отражая геохимическую и геофизическую неоднородность лика Земли (океаны, озёра, горы, ущелья, равнины и т.д.) и неравномерность в распределении живого вещества по планете как в прошлые эпохи, так и в наше время. Максимальное содержание живого вещества гидросферы приурочено к мелководьям, минимальное – к глубинным акваториям (абиссаль); на суше эта неравномерность проявляется в мозаике биогеоценотического покрова (леса, болота, степи, пустыни и др.) с минимумом плотности живого вещества в высокогорьях, пустынях и полярных областях (см. Биомасса). Элементарная структура активной части современной Б. – биогеоценоз.

  Живое вещество выполняет следующие биогеохимические функции: газовые (миграция газов и их превращения); концентрационные (аккумуляция живыми организмами химических элементов из внешней среды); окислительно-восстановительные (химические превращения веществ, содержащих атомы с переменной валентностью, – соединений железа, марганца, микроэлементов и т.д.); биохимические и биогеохимические функции, связанные с деятельностью человека (техногенез, форма созидания и превращения вещества в Б., стимулирующая переход Б. в новое состояние – ноосферу). Совокупность этих функций определяет все химические превращения в Б. Эволюция Б. диалектически связана с эволюцией форм живого вещества (организмы и их сообщества), усложнением его биохимических функций, совершающихся на фоне геологической истории Земли.

  В учении о Б. выделяют следующие основные аспекты: энергетический, освещающий связь биосферно-планетарных явлений с космическими излучениями (в основном солнечными) и радиоактивными процессами в земных недрах; биогеохимический, отражающий роль живого вещества в распределении и поведении атомов (точнее их изотопов) в Б. и её структурах (см. Биогеохимия); информационный, изучающий принципы организации и управления, осуществляемые в живой природе в связи с исследованием влияния живого вещества на структуру и состав Б.; пространственно-временной, освещающий формирование и эволюцию различных структур Б. в геологическом времени в связи с особенностями пространственно-временной организованности живого вещества в Б. (проблемы симметрии и др.); ноосферный, изучающий глобальные эффекты воздействия человечества на структуру и химию Б.: разработка полезных ископаемых, получение новых, отсутствовавших до того в Б. веществ (например, чистые алюминий, железо и другие металлы), преобразование биогеоценотических структур Б. (сведение лесов, осушение болот, распашка целинных земель, создание водохранилищ, загрязнение вод, почв и атмосферы продуктами хозяйственной деятельности, внесение удобрений, эрозия почв, лесонасаждение, строительство городов, плотин, промысловое хозяйство и т.д.). Выход человека в космос, за пределы Б., будет стимулировать разработку новых сторон учения о Б. Существенный момент учения о Б. – представления о взаимосвязях (прямых и обратных связях) и сопряжённой эволюции всех структур Б. Это представление положено в основу разработки многими национальными и международными организациями, научными центрами и лабораториями проблемы «биосфера и человечество». Решению этой проблемы служат мероприятия, в которых участвуют многие страны, например Международное гидрологическое десятилетие, Международная биологическая программа (см. Биологическая программа международная) и т.д. Повышенный интерес к изучению Б. вызван тем, что локальное воздействие человека на Б., характерное для всей предшествовавшей истории, сменилось в 20 в. глобальным его влиянием на состав, структуру и ресурсы Б. На планете нет участка суши или моря, где бы не были обнаружены следы деятельности человека. Один из ярких примеров – глобальные выпадения радиоактивных осадков – продуктов ядерных взрывов. В атмосфере, океане и на суше повсеместно присутствуют (пусть в самых незначительных количествах) продукты сгорания нефти, угля, газов, отходы химической и другой индустрии, ядохимикаты и удобрения, сносимые с полей в процессе водной и ветровой эрозии. Интенсивное и нерациональное использование ресурсов Б. – водных, газовых, биологических и др., усугубляемое гонкой вооружений, испытаниями ядерного оружия и т.д., развеяло миф о бесконечности и неисчерпаемости этих ресурсов. Многочисленные примеры разрушительной деятельности человека и, к сожалению, редкие примеры его созидательной деятельности (в т. ч. в плане охраны природы) свидетельствуют об актуальности разумного ведения земных дел разумным человечеством, что возможно только при переходе от стихийного капиталистического производства к плановому хозяйству социалистического и коммунистического общества. Естественно-научной основой рационального подхода к проблеме «биосфера и человечество» – одной из грандиознейших проблем нашего времени – служат учение о Б. и биогеоценология — дисциплины, изучающие общие принципы и механизмы функционирования и эволюции сообществ живых организмов в определённых пространственных и временных условиях. Современная структура Б. – продукт длительной эволюции многих систем разной сложности, последовательно стремящихся к состоянию динамического равновесия. Практическое значение учения о Б. огромно. Особенно заинтересованы в развитии этого учения здравоохранение, сельское и промысловое хозяйство и другие отрасли человеческой практики, чаще других сталкивающиеся с «ответными ударами» со стороны Б., вызванными неразумным или неосторожным преобразованием природы человеком.

  Лит.: Вернадский В. И., Избр. соч., т. 5, М., 1960; его же, Химическое строение биосферы Земли и её окружения, М., 1965; Ковда В. А., Современное учение о биосфере, «Журнал общей биологии», 1969, т. 30, № 1; Перельман А. И., Геохимия ландшафта, М., 1961; Тимофеев-Ресовский Н. В. и Тюрюканов А. Н., Об элементарных биохорологических подразделениях биосферы, «Бюллетень Московского общества испытателей природы», 1966, т. 71(1); Хильми Г. Ф., Основы физики биосферы, Л., 1966; Дювиньо П. и Танг М., Биосфера и место в ней человека, пер. с франц., М., 1968.

  В. А. Ковда, А. Н. Тюрюканов.

Биота (род растений)

Био'та (Thuja), род однодомных древесных растений семейства кипарисовых. Представлен 1 видом – Б. восточной (Thuja orientalis, Biota orientalis).

  Дерево высотой 8—10 м, но чаще кустарник. Хвоя на взрослых ветвях чешуевидная, накрест-супротивно расположенная. Крона яйцевидная, состоит из многих плоских побегов («пластин»), расположенных в вертикальной плоскости. Направленные вверх шишки незрелые – голубовато-зелёные, впоследствии – сухие, большей частью красновато-коричневые. Семена созревают на второй год. Родина Б. – Китай и Корея. В южных районах СССР разводится как декоративное растение. Б. засухоустойчива, хорошо выносит стрижку.

  Лит.: Деревья и кустарники СССР, т. 1, М. – Л., 1949.

  А. П. Шиманюк.

Биота восточная: а – ветвь с женскими шишками; б – веточка.

Биота (совокупность растений и животных)

Био'та (от греч. biotē – жизнь), исторически сложившаяся совокупность растений и животных, объединённых общей областью распространения. В отличие от биоценоза, виды, входящие в состав Б., могут и не иметь экологических связей (например, кенгуру и двоякодышащая рыба цератодус, входящие в состав австралийской фауны). Однако во многих случаях одна и та же совокупность организмов может рассматриваться и как Б. (с позиций биогеографии) и как биоценоз (с позиций экологии).

  Лит.: Бобринский Н. А., География животных, М., 1951.

Биотелеметрия

Биотелеметри'я (от био...,теле...и ...метрия), способ дистанционного исследования биологических явлений и измерения биологических показателей. При Б. на изучаемом объекте (животном или человеке) укрепляют соответствующие датчики, сигналы которых, характеризующие те или иные биологические или физиологические процессы (движение, пульс, дыхание и др.), передают по каналам связи (радио– или телефонная связь) и регистрируют на пункте приёма информации. Исследуемый процесс, если он неэлектрической природы, предварительно преобразуют в какие-либо электрические сигналы. Применение телеметрии даёт возможность проводить исследование на очень больших расстояниях (например, при космических полётах) или во время движения изучаемого объекта (например, во время спортивных соревнований или трудовой деятельности). При Б. возможна передача сигналов и о процессах, происходящих во внутренних органах, для чего один или несколько сверхминиатюрных радиопередатчиков (т. н. радиокапсул) вводят в полости тела (например, в желудок или кишки, см. Эндорадиозондирование) или вживляют в ткани организма. Посредством Б. можно изучать поведенческие реакции животных в обычной для них среде обитания и в таких условиях, в которых прежде было невозможно исследование физиологии, процессов, например при полёте птиц.

  Б. приобрела важное значение в космической биологии и космической медицине, в физиологии труда и спорта, а также в экологии и физиологии животных. См. также Телеуправление, Телесигнализация.

  Лит.: Биотелеметрия. [Сб. ст.], пер. с англ., М., 1965; Розенблат В. В., Радиотелеметрические исследования в спортивной медицине, М., 1967; Проблемы радиотелеметрии в физиологии и медицине. Материалы III Всесоюзного симпозиума, Свердловск, 1968; Caceres С. A., Cooper I. К., Biomedical telemetry, N. Y.—L., 1965.

  Е. Б. Бабский.

Биотермическая яма

Биотерми'ческая я'ма, Беккари яма, пирятинская яма, чешская яма, сооружение для уничтожения трупов животных. Строится по типовому проекту из влаго– и термоустойчивого материала, имеет герметическую крышку и отверстия для притока воздуха. Через 20 сут после загрузки трупами температура в камере поднимается до 65° С. Процесс разложения трупов заканчивается за 35—40 сут с образованием однородного не имеющего запаха компоста, пригодного для удобрения. Б. я. имеют значительное преимущество перед скотомогильниками, т.к. обеспечивают быструю гибель многих микробов.


    Ваша оценка произведения:

Популярные книги за неделю