355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Большая Советская Энциклопедия » Большая Советская Энциклопедия (БИ) » Текст книги (страница 20)
Большая Советская Энциклопедия (БИ)
  • Текст добавлен: 26 сентября 2016, 14:54

Текст книги "Большая Советская Энциклопедия (БИ)"


Автор книги: Большая Советская Энциклопедия


Жанр:

   

Энциклопедии


сообщить о нарушении

Текущая страница: 20 (всего у книги 42 страниц)

Биологические станции

Биологи'ческие ста'нции, научно-исследовательские учреждения, предназначенные для всестороннего стационарного изучения растений и животных в естественных (природных) условиях и проведения экспериментальных исследований. На Б. с. разрабатываются также проблемы, связанные с решением вопросов большого практического значения (акклиматизация, рыболовство, рыборазведение, освоение пустынь, высокогорных районов, повышение биологической продуктивности природных комплексов и т.п.). Б. с. расположены в районах, отличающихся спецификой природных условий (Б. с. морские, пресноводные, лесные, степные, пустынные, высокогорные, тропические, арктические и т.д.) и своеобразием населяющих их живых организмов.

  Первыми Б. с. были морские; их возникновение связано с расширением интереса биологов за пределы систематики и морфологии и усиленным изучением физиологии и эмбриологии (30—40-е гг. 19 в.). Толчок к развитию ряда общебиологических проблем (филогения, соотношение онтогенеза и филогенеза, взаимоотношения организма со средой и т.д.), вызванный учением Ч. Дарвина, ещё более усилил этот интерес. Попытки немецкого естествоиспытателя К. Фохта организовать стационарную научную морскую лабораторию не увенчались успехом. В 1859 возникла первая небольшая лаборатория «морской зоологии и физиологии» в Конкарно (Франция). Однако лишь блестящие открытия в области эмбриологии русских учёных А. О. Ковалевского и И. И. Мечникова (60-е гг. 19 в.), осуществленные на морских животных Средиземного моря, убедили в необходимости организации крупных Б. с. В 1869 по инициативе Н. Н. Миклухо-Маклая 2-й съезд русских естествоиспытателей принял решение об организации Б. с. на Чёрном море и поручил его осуществление Новороссийскому (Одесскому) обществу естествоиспытателей, которое и основало в 1871 Б. с. в Севастополе. В 1892 Севастопольская Б. с. перешла в ведение Петербургской АН. Во главе станции стал А. О. Ковалевский, который расширил и переоборудовал её в крупнейшую русскую Б. с. В 1874 по инициативе А. Дорна и в основном на его средства, а также на средства учёных всего мира и субсидии ряда государств (в т. ч. России) была открыта Неаполитанская зоологическая станция. Были основаны французская Б. с. в Роскофе (1872), Вимерё (1874), в Баньюльсе и Андуме (под Марселем), В 1881 Н. Н. Миклухо-Маклай добился организации Б. с. в окрестностях Сиднея (Австралия); профессор Киевского университета А. Коротнев организовал в Виллафранке (Франция) русскую Б. с. (1886). В США крупнейшая морская Б. с. была создана в 1888 в Вудс-Холе (штат Массачусетс), Крупнейшая Б. с. в Англии – Плимутская – создана в 1888. В 1881 в России на Белом море была основана Соловецкая Б. с. Петербургского общества естествоиспытателей; в 1899 она была перенесена на Мурманское побережье Кольского залива, где благодаря тёплому атлантическому течению фауна отличается богатством и разнообразием, На Севастопольской и Мурманской Б. с. было изучено распределение животных в Севастопольской бухте и Кольском заливе. На Астраханской (1898) и Бакинской (1912) Б. с. велись преимущественно рыбохозяйственные исследования. Во всём мире насчитывается (1970) около 200 морских Б. с.

  Организация пресноводных Б. с. связана с развитием лимнологии и гидробиологии и изучением биологической продуктивности водоёмов. В 1888 была основана Б. с. на Почерницком пруду в Чехии, в 1890 – Плёнская гидробиологическая станция (Германия), в 1891 – первая русская пресноводная Б. с. на озере Глубоком, близ Москвы, Позднее в России возникли Б. с.: на Бологовском озере (1896, позже перенесена на озеро Селигер и названа Бородинской в честь её основателя И. П. Бородина), Волжская – в Саратове (1900), Косинская – близ Москвы (1908—40), Днепровская – в Киеве (1908) и Звенигородская (1910).

  Возникновение Б. с., посвященных изучению наземной фауны и флоры, относится к более позднему периоду 20 в. и связано с развитием экологических исследований. Ряд Б. с. изучает жизненные условия лесов, степей, пустынь, тропиков, высокогорных районов, полярных областей. Некоторые Б. с., лежащие на путях перелётов птиц (например, на острове Гельголанд), используются для их изучения при помощи массового кольцевания. Своеобразными Б. с. являются заповедники.

  После Октябрьской революции сеть Б. с. в СССР стала быстро расти. АН СССР и АН союзных республик, а также крупнейшие университеты СССР имеют собственные Б. с. Так, например, АН СССР принадлежат: Мурманская Б. с. (перенесённая в 1936 в Дальнезеленецкую губу и преобразованная в 1958 в Мурманский морской биологический институт Кольского филиала АН СССР), Байкальская лимнологическая станция (1928, преобразована в 1961 в Лимнологический институт), научно-исследовательская станция «Борок» им. Н. А. Морозова (преобразована в 1962 в Институт биологии внутренних вод, расположен на Рыбинском водохранилище) и др.; АН УССР принадлежат: Севастопольская Б. с. (преобразованная в 1963 в Институт биологии южных морей); научно-экспериментальная Б. с. в Коми АССР, Б. с. в Калининградской области, Куйбышевская Б. с., Карадагская Б. с. на Чёрном море (1914); Херсонская гидробиологическая база, экспериментальная база «Александрия» и др.; АН Армянской ССР – Севанская гидробиологическая станция; АН Киргизской ССР – Б. с. на острове Иссык-Куль; МГУ – Б. с. на Белом море (1938). За годы Советской власти работа Б. с. приобрела специализированное направление, особенно рыбохозяйственное: Всесоюзный научно-исследовательский институт морского рыбного хозяйства и океанографии, Государственный научно-исследовательский институт озёрного и речного рыбного хозяйства и Всероссийский научно-исследовательский институт прудового рыбного хозяйства имеют широкую сеть Б. с., на которых проводятся исследования, связанные с разработкой биологических основ рационального использования и воспроизводства рыбных и других (животных и растительных) ресурсов морей и внутренних водоёмов. Варзобская горно-ботаническая станция, Памирская база АН Таджикской ССР, Горно-таёжная станция им.В. Л.Комарова (Приморский край) Дальневосточного филиала Сибирского отделения АН СССР и др. разрабатывают проблемы освоения природных ресурсов горных территорий. Вопросами освоения пустынь занимаются, например, Репетекская песчано-пустынная станция (1912) АН Туркменской ССР, Небит-Дагская агролесомелиоративная станция, Приаральская и туркменская опытные станции растениеводческого направления. Вопросы растениеводческой и животноводческой практики разрабатывает особая сеть сельскохозяйственных и зоотехнических станций. На многих Б. с., помимо исследовательской работы, про-водится летняя учебная и производственная практика студентов вузов. Запросы, выдвигаемые средней школой, удовлетворяют специальные школьные Б. с. юных натуралистов.

  Лит;. Келлер К., Жизнь моря. Животный и растительный мир моря, его жизнь и взаимоотношения, пер. с нем. с добавлением новой отдельной части «Жизнь русских морей» П.Ю. Шмидта,2изд., СПБ,1905; Зернов С.А., Общая гидробиология, М., -Л., 1949; Виноградов К.А., Очерки по истории отечественных гидробиологических исследований на Черном море, К., 1958: Зенкевич Л. А., Биология морей СССР, М., 1963; Kofoid Ch. A., The biological stations of Europe, Wash., 1910; Lenz F., Limnologische Laboratorien, в кн.: Handbuch der biologischen Arbeitsmethoden, hrsg. von E. Abderhalden, Abt. 9, Tl 2, Lfg 232, в.– W., 1927; Vaughan Т. W., International aspects of oceanography. Wash., 1937; Lillie F. K., The woods hole marine biological laboratory, Chi., 1944; Jack H. A., Biological field stations of the world. «Chronica botanica», 1945, v. 9, № 1; Hiatt R. W. (ed.). World directory of hydrobiological and fisheries institutions, Wash., 1963.

  А. Е. Гайсинович.

Биологические циклы

Биологи'ческие ци'клы, ритмическое повторение биологических явлений в сообществах организмов (популяциях, биоценозах), служащее приспособлением к циклическим изменениям условий их существования. Б. ц. входят в более общее понятие – биологические ритмы, включающее все ритмически повторяющиеся биологические явления. Б. ц. могут быть суточными, сезонными (годовыми) или многолетними. Суточные Б. ц. выражаются в закономерных колебаниях физиологических явлений и поведения животных в течение суток (см. Активности цикл). В основе их лежат автоматические механизмы, которые корректируются воздействием внешних факторов – суточными колебаниями освещённости, температуры, влажности и др. В основе сезонных Б. ц. лежат те же изменения обмена веществ, регулируемые у животных с помощью гормонов. В разные сезоны меняются состояние и поведение организмов в пределах популяции или биоценоза: происходит накопление (расходование) резервных веществ, смена покровов (линька), начинаются (заканчиваются) размножение, миграции животных, спячка и другие сезонные явления. Будучи в значительной мере автоматизированными, эти явления корректируются внешними влияниями (состоянием погоды, запасов пищи и т.п.). Многолетние Б. ц. обусловливаются циклическими колебаниями климата и других условий существования (в связи с изменением солнечной активности и других космических или планетарных факторов); такие Б. ц. совершаются в популяциях и биоценозах и выражаются в колебаниях размножения и численности отдельных видов (см. Динамика численности животных, Волны жизни), в расселении популяции в новые места или вымирании её части. Эти явления – суммированный результат циклических изменений популяций и биоценозов и колебаний условий их существования, главным образом климата.

  Лит.: Щербиневский Н. С., Пустынная саранча шистоцерка, М., 1952; Наумов Н. П., Экология животных, 2 изд., М., 1963; Биологические часы. Сб. ст., пер. с англ., М., 1964; Мартека В., Бионика, пер. с англ., М., 1967; Эмме А. М., Биологические часы, Новосибирск. 1967.

  Н. П. Наумов.

«Биологические часы»

«Биологи'ческиечасы'», условный термин, обозначающий способность живого организма ориентироваться во времени. Основа «Б. ч.» – строгая периодичность протекающих в клетках физико-химических процессов, скорость которых закономерно меняется. Ритм этих изменений наследственно закреплен естественным отбором и связан с циклическими изменениями геофизических факторов. Предложен ряд химических, физических и математических моделей «Б. ч.». Некоторые исследователи считают, что в основе «Б. ч.» лежит способность организмов воспринимать циклические колебания проникающих геофизических факторов (суточная и сезонная периодичность электрического и магнитного поля Земли, солнечной и космической радиации и др.). У животных возникает связанная с «Б. ч.» система измерения времени, позволяющая отсчитывать любые его интервалы (условный рефлекс на время). См. также Биологические ритмы.

  Лит.: Эмме А. М., Биологические часы, Новосибирск, 1967; Мартека В., Бионика, пер. с англ., М., 1967, с. 11—31.

  В. Б. Чернышев.

Биологический институт Сибирского отделения АН СССР

Биологи'ческийинститу'т Сибирского отделения АН СССР, разрабатывает теоретические основы рационального использования, восстановления и обогащения биологических ресурсов Сибири. Находится в Новосибирске. Организован в 1944 в составе Западно-Сибирского филиала АН СССР под названием Медико-биологический, в 1955 переименован в Б. и. В 1958 институт вошёл в состав вновь организованного Сибирского отделения АН СССР. В институте имеются лаборатории по зоологическому профилю, микробиологии и вирусологии насекомых, лесоведению, цитологии и апомиксису растений. С первых лет институт занимался широким исследованием флоры, особенно лекарственных растений, и фауны Сибири. С 1950 проводились исследования с целью разработки теоретических основ охраны и увеличения поголовья охотничье-промысловых животных, освоения целинных и залежных земель, улучшения лугов, выращивания полезащитных лесных полос, ландшафтной типизации очагов природных инфекций. С 1959 ведутся исследования по экологии животных, по борьбе с гнусом и подкожными оводами, по разработке биологических методов борьбы с вредителями леса и сельского хозяйства, по управлению динамикой численности популяций отдельных видов в зооценозах, по выяснению роли перелётных птиц в распространении арбовирусов, по цитологии и апомиксису растений. Институт имеет очную и заочную аспирантуру, издаёт «Труды Биологического института» (с 1956), выпуски – «Новые и малоизвестные виды фауны Сибири» (с 1965) и отдельные тематические сборники и монографии. Из Б. и. выделились Центральный сибирский ботанический сад (в 1955) и Институт почвоведения и агрохимии Сибирского отделения АН СССР (в 1968).

  Лит.: Черепанов А. И., Состояние и задачи исследований в Биологическом институте Западно-Сибирского филиала АН СССР, «Изв. АН СССР. Серия биологич.», 1958, № 2; его же, О состоянии и перспективах зоологических исследований в Биологическом институте, «Тр. Биологического института Сибирского отделения АН СССР», 1959, в. 5.

  А. И. Черепанов.

Биологический искусственный спутник Земли

Биологи'ческий иску'сственный спу'тник Земли', предназначен для медико-биологических экспериментов, связанных с космическими полётами. Б. и. с. З. имеют на борту подопытных животных и другие организмы – растения, бактерии и т.п. (например, «Космос-110»). В ряде случаев медико-биологические эксперименты проводились на спутниках, имеющих другое основное назначение, например на советских кораблях-спутниках, пуски которых были осуществлены с целью подготовки первых полётов человека в космос.

Биологический метод защиты растений

Биологи'ческий ме'тод защи'ты расте'ний от вредителей и болезней, использование межвидовых и внутривидовых взаимоотношений в биоценозах и биологических особенностей их обитателей (компонентов) с целью контроля численности и вредоносности организмов, повреждающих с.-х. растения. См. Защита растений.

Биологический музей им. К. А. Тимирязева

Биологи'ческий музе'й им. К. А. Тимирязева, в Москве, культурно-просветительное учреждение общебиологического профиля. Открыт 7 мая 1922 при кафедре биологии Коммунистического университета им. Я. М. Свердлова. Первым директором музея был Б. М. Завадовский, сыгравший большую роль в разработке принципов организации музея нового мировоззренческого типа. Н. К. Крупская писала: «Когда я смотрела естественно-исторический музей при Свердловском университете, организованный т. Завадовским и его группой, я думала, как бы приветствовал Ильич устройство такого музея...» («Советский музей», 1934, №1, с. 5). В 1934 музей получил при содействии А. М. Горького постоянное помещение на Малой Грузинской улице. Фонды Б. м. включают ряд уникальных предметов и коллекций, в том числе материалы, связанные с жизнью и деятельностью К. А. Тимирязева, И. В. Мичурина и других учёных; собрание скульптурных портретов первобытных людей, выполненное М. М. Герасимовым, собрание представителей фауны СССР – чучела и тушки животных и птиц (в т. ч. из собраний русских учёных Е. П. Спангенберга, М. А. Мензбира, П. П. Сушкина и др.); чучела и скульптуры с.-х. животных, ценные ботанические собрания натуральных и гербаризированных материалов, отражающих различные этапы и методы работы по созданию новых сортов с.-х. растений и пород животных. В 1966 в Б. м. была организована экспозиция «Основы молекулярной биологии, генетики и селекции». В Б. м. демонстрируются открытый Н. И. Вавиловым закон гомологических рядов в наследственной изменчивости, а также составленная им карта с обозначением центров происхождения культурных растений.

  В 1970 в 17 залах Б. м. демонстрировались экспозиции на следующие темы: строение Солнечной системы, возникновение и развитие нашей планеты; происхождение и развитие жизни на Земле; происхождение и становление человека; многообразие растительного мира; многообразие животного мира; биология и физиология растений (жизнь растений); жизнь и деятельность К. А. Тимирязева; биология и физиология животных и человека; эволюционное учение Ч. Дарвина; учение академика И. П. Павлова о высшей нервной деятельности; жизнь и деятельность, принципы и методы работы И. В. Мичурина; методы работы и достижения советских селекционеров в растениеводстве; методы работы и достижения советских селекционеров в животноводстве; основы генетики и селекции; человек и природа. В Б. м. периодически организуются выставки по цветоводству, садоводству, аквариумному рыбоводству и т.д.; экскурсии проводятся более чем по 40 темам. Ежегодно Б. м. на базе своей экспозиции проводит свыше 3,5 тыс. тематических экскурсий.

  И. П. Кряжин.

Биологическое действие ионизирующих излучений

Биологи'ческое де'йствие ионизи'рующих излуче'ний, изменения, вызываемые в жизнедеятельности и структуре живых организмов при воздействии коротковолновых электромагнитных волн (рентгеновского излучения и гамма-излучения) или потоков заряженных частиц (альфа-частиц, бета-излучения, протонов) и нейтронов.

  Исследования Б. д. и. и. были начаты сразу после открытия рентгеновского излучения (1895) и радиоактивности(1896). В 1896 русский физиолог И. Р. Тарханов показал, что рентгеновское излучение, проходя через живые организмы, нарушает их жизнедеятельность. Особенно интенсивно стали развиваться исследования Б. д. и. и. с началом применения атомного оружия (1945), а затем и мирного использования атомной энергии (см. Радиобиология).

  Для Б. д. и. и. характерен ряд общих закономерностей. 1) Глубокие нарушения жизнедеятельности вызываются ничтожно малыми количествами поглощаемой энергии. Так, энергия, поглощённая телом млекопитающего животного или человека при облучении смертельной дозой, при превращении в тепловую привела бы к нагреву тела всего на 0,001°С. Попытка объяснить «несоответствие» количества энергии результатам воздействия привела к созданию теории мишени (см. Мишени теория), согласно которой лучевое повреждение развивается при попадании энергии в особенно радиочувствительную часть клетки – «мишень». 2) Б. д. и. и. не ограничивается подвергнутым облучению организмом, но может распространяться и на последующие поколения, что объясняется действием на наследственный аппарат организма. Именно эта особенность очень остро ставит перед человечеством вопросы изучения Б. д. и. и. и защиты организма от излучений. 3) Для Б. д. и. и. характерен скрытый (латентный) период, т. е. развитие лучевого поражения наблюдается не сразу. Продолжительность латентного периода может варьировать от нескольких мин до десятков лет в зависимости от дозы облучения, радиочувствительности организма и наблюдаемой функции (рис. 1, 3). Так, при облучении в очень больших дозах (десятки тыс. рад) можно вызвать «смерть под лучом», длительное же облучение в малых дозах ведёт к изменению состояния нервной и других систем, к возникновению опухолей спустя годы после облучения.

Радиочувствительность разных видов организмов различна. Смерть половины облученных животных (при общем облучении) в течение 30 сут после облучения (летальная доза – ЛД 50/30) вызывается следующими дозами рентгеновского излучения: морские свинки 250 р, собаки 335 р, обезьяны 600 р, мыши 550—650 р, караси (при 18°С) 1800 р, змеи 8000—20000 р. Более устойчивы одноклеточные организмы: дрожжи погибают при дозе 30000 р, амёбы – 100000 р, а инфузории выдерживают облучение в дозе 300000 р. Радиочувствительность высших растений тоже различна: семена лилии полностью теряют всхожесть при дозе облучения 2000 р, на семена капусты не влияет доза в 64000 р.

  Большое значение имеют также возраст (рис. 2), физиологическое состояние, интенсивность обменных процессов организма, а также условия облучения. При этом, помимо дозы облучения организма, играют роль: мощность, ритм и характер облучения (однократное, многократное, прерывистое, хроническое, внешнее, общее или частичное, внутреннее), его физические особенности, определяющие глубину проникновения энергии в организм (рентгеновское и гамма-излучение проникает на большую глубину, альфа-частицы до 40 мкм, бета-частицы – на несколько мм), плотность вызываемой излучением ионизации (под влиянием альфа-частиц она больше, чем при действии других видов излучения). Все эти особенности воздействующего лучевого агента определяют относительную биологическую эффективность излучения. Если источником излучения служат попавшие в организм радиоактивные изотопы, то огромное значение для Б. д. и. и.. испускаемого этими изотопами, имеет их химическая характеристика, определяющая участие изотопа в обмене веществ, концентрацию в том или ином органе, а следовательно, и характер облучения организма.

  Первичное действие радиации любого вида на любой биологический объект начинается с поглощения энергии излучения, что сопровождается возбуждением молекул и их ионизацией. При ионизации молекул воды (косвенное действие излучения) в присутствии кислорода возникают активные радикалы (ОН– и др.), гидратированные электроны, а также молекулы перекиси водорода, включающиеся затем в цепь химических реакций в клетке. При ионизации органических молекул (прямое действие излучения) возникают свободные радикалы (см. Радикалы свободные), которые, включаясь в протекающие в организме химические реакции, нарушают течение обмена веществ и, вызывая появление несвойственных организму соединений, нарушают процессы жизнедеятельности. При облучении в дозе 1000 р в клетке средней величины (10-9г) возникает около 1 млн. таких радикалов, каждый из которых в присутствии кислорода воздуха может дать начало цепным реакциям окисления, во много раз увеличивающим количество измененных молекул в клетке и вызывающим дальнейшее изменение надмолекулярных (субмикроскопических) структур. Выяснение большой роли свободного кислорода в цепных реакциях, ведущих к лучевому поражению, т.н. кислородного эффекта, способствовало разработке ряда эффективных радиозащитных веществ, вызывающих искусственную гипоксию в тканях организма. Большое значение имеет и миграция энергии по молекулам биополимеров, в результате которой поглощение энергии, происшедшее в любом месте макромолекулы, приводит к поражению её активного центра (например, к инактивации белка-фермента). Физические и физико-химические процессы, лежащие в основе Б. д. и. и., т. е. поглощение энергии и ионизация молекул, занимают доли сек (рис. 3).

  Последующие биохимические процессы лучевого повреждения развиваются медленнее. Образовавшиеся активные радикалы нарушают нормальные ферментативные процессы в клетке, что ведёт к уменьшению количества богатых энергией (макроэргических) соединений. Особенно чувствителен к облучению синтез дезоксирибонуклеиновых кислот (ДНК) в интенсивно делящихся клетках. Т. о., в результате цепных реакций, возникающих при поглощении энергии излучения, изменяются многие компоненты клетки, в том числе макромолекулы (ДНК, ферменты и др.) и сравнительно малые молекулы (аденозинтрифосфорная кислота, коферменты и др.). Это приводит к нарушению ферментативных реакций, физиологических процессов и клеточных структур.

  Воздействие ионизирующего излучения вызывает повреждение клеток. Наиболее важно нарушение клеточного деления – митоза. При облучении в сравнительно малых дозах наблюдается временная остановка митоза. Большие дозы могут вызвать полное прекращение деления или гибель клеток. Нарушение нормального хода митоза сопровождается хромосомными перестройками, возникновением мутаций, ведущими к сдвигам в генетическом аппарате клетки, а следовательно, к изменению последующих клеточных поколений (цитогенетический эффект.) При облучении половых клеток многоклеточных организмов нарушение генетического аппарата ведёт к изменению наследственных свойств развивающихся из них организмов (см. Генетическое действие излучении). При облучении в больших дозах происходит набухание и пикноз ядра (уплотнение хроматина), затем структура ядра исчезает. В цитоплазме при облучении в дозах 10 000—20 000 р наблюдаются изменение вязкости, набухание протоплазматических структур, образование вакуолей, повышение проницаемости. Всё это резко нарушает жизнедеятельность клетки.

  Сравнительное изучение радиочувствительности ядра и цитоплазмы показало, что в большинстве случаев чувствительно к облучению ядро (например, облучение ядер сердечной мышцы тритона в дозе нескольких протонов на ядро вызвало типичные деструктивные изменения; доза в несколько тысяч раз большая не повредила цитоплазмы). Многочисленные данные показывают, что клетки наиболее радиочувствительны в период деления и дифференцировки: при облучении поражаются прежде всего растущие ткани. Это делает облучение наиболее опасным для детей и беременных женщин. На этом же основана и радиотерапия опухолей – растущая ткань опухоли погибает при облучении в дозах, которые меньше повреждают окружающие нормальные ткани.

  Возникающие в облучаемых клетках изменения ведут к нарушениям в тканях, органах и жизнедеятельности всего организма. Особенно выражена реакция тканей, в которых отдельные клетки живут сравнительно недолго. Это слизистая оболочка желудка и кишечника, которая после облучения воспаляется, покрывается язвами, что ведёт к нарушению пищеварения и всасывания, а затем к истощению организма, отравлению его продуктами распада клеток (токсемия) и проникновению бактерий, живущих в кишечнике, в кровь (бактериемия). Сильно повреждается кроветворная система, что ведёт к резкому уменьшению числа лейкоцитов в периферической крови и к снижению её защитных свойств. Одновременно падает и выработка антител, что ещё больше ослабляет защитные силы организма. (Уменьшение способности облученного организма вырабатывать антитела и тем самым противостоять внедрению чужеродного белка используется при пересадке органов и тканей – перед операцией пациента облучают.) Уменьшается и количество эритроцитов, с чем связано нарушение дыхательной функции крови. Б. д. и. и. обусловливает нарушение половой функции и образования половых клеток вплоть до полного бесплодия (стерильности) облученных организмов. Важную роль в развитии лучевого поражения животных и человека играет нервная система. Так, у кроликов смертельный исход при облучении в дозе 1000 р часто определяется нарушениями в центральной нервной системе, вызывающими остановку сердечной деятельности и паралич дыхания. Исследования биоэлектрических потенциалов мозга облученных животных и людей, подвергающихся лучевой терапии, показали, что нервная система раньше других систем организма реагирует на радиационное воздействие. Облучение собак в дозе 5—20 р и хроническое облучение в дозе 0,05 р при достижении дозы в 3 р ведёт к изменению условных рефлексов. Большую роль в развитии лучевой болезни играют и нарушения деятельности желёз внутренней секреции.

  Для Б. д. и. и. характерно последействие, которое может быть очень длительным, т.к. по окончании облучения цепь биохимических и физиологических реакций, начавшихся с поглощения энергии излучения, продолжается долгое время. К отдалённым последствиям облучения относятся изменения крови (уменьшение числа лейкоцитов и эритроцитов), нефросклероз, циррозы печени, изменения мышечных оболочек сосудов, раннее старение, появление опухолей (см. Бластомогенное действие излучений). Эти процессы связаны с нарушением обмена веществ и нейроэндокринной системы, а также повреждением генетического аппарата клеток тела (соматические мутации).

  Растения, по сравнению с животными, более радиоустойчивы. Облучение в небольших дозах может стимулировать жизнедеятельность растений (рис. 4) – прорастание семян, интенсивность роста корешков, накопление зелёной массы и др. Большие дозы (20 000—40 000 р) вызывают снижение выживаемости растений, появление уродств, мутаций, возникновение опухолей. Нарушения роста и развития растений при облучении в значительной степени связаны с изменениями обмена веществ и появлением первичных радиотоксинов, которые в малых количествах стимулируют жизнедеятельность, а в больших – подавляют и нарушают её. Так, промывка облученных семян в течение суток после облучения снижает угнетающий эффект на 50—70%.

  Лучевое повреждение организма сопровождается одновременно текущим процессом восстановления, который связан с нормализацией обмена веществ и регенерацией клеток. Поэтому облучение дробное или с малой мощностью доз вызывает меньшее повреждение, чем массивное воздействие. Изучение процессов восстановления важно для поисков радиозащитных веществ, а также средств и методов защиты организма от излучений. В небольших дозах все обитатели Земли постоянно подвержены действию ионизирующего излучения – космических лучей и радиоактивных изотопов, входящих в состав самих организмов и окружающей среды (см. Радиоактивность атмосферы, Радиоактивное загрязнение биосферы). Испытания атомного оружия и мирное применение атомной энергии повышают фон радиоактивный. Это делает изучение Б. д. и. и. и поиски защитных средств всё более важными.

  Б. д. и. и. пользуются в биологических исследованиях, в медицинской и с.-х. практике. На Б. д. и. и. основаны лучевая терапия, рентгенодиагностика, радиоизотопная терапия.

  В сельском хозяйстве радиационные воздействия применяются с целью выведения новых форм растений, для предпосевной обработки семян, борьбы с вредителями (путём выведения и выпуска на поражаемые плантации обеспложенных облучением самцов), для лучевой консервации фруктов и овощей, предохранения продуктов растениеводства от вредителей (дозы, губительные для насекомых, безвредны для зерна) и др.

  Лит.: Ливанов М. Н., Некоторые проблемы действия ионизирующей радиации на нервную систему, М., 1962; Кузин А. М., Радиационная биохимия, М., 1962; Бак З., Александер П. А., Основы радиобиологии, пер. с англ., М., 1963; Основы радиационной биологии, М., 1964; Первичные процессы лучевого поражения. Сб. ст., М., 1957; Корогодин В. И., Проблемы пострадиационного восстановления, М., 1966; Гродзенский Д. Э., Радиобиология, М., 1966; Радиационная медицина, М., 1968.

  С. П. Ландау-Тылкина. Под. ред. А. М. Кузина.

Рис. 1. Влияние дозы облучения на число (%) и сроки выживания клеток костного мозга крыс.

Рис. 2. Выживаемость облученных мышей (ЛД 50/30) в зависимости от возраста.

Рис. 3. Схема развития лучевого повреждения (в центре) и методы воздействия на него (справа).

Рис. 4. Зависимость числа проросших глазков картофеля сорта Лорх от дозы облучения.


    Ваша оценка произведения:

Популярные книги за неделю