355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Жан-Поль Эймишен » Электроника?.. Нет ничего проще! » Текст книги (страница 9)
Электроника?.. Нет ничего проще!
  • Текст добавлен: 10 мая 2017, 18:30

Текст книги "Электроника?.. Нет ничего проще!"


Автор книги: Жан-Поль Эймишен



сообщить о нарушении

Текущая страница: 9 (всего у книги 21 страниц)

А когда транзистор, например Т1, резко отпирается, то схема по его коллектору как бы замыкается накоротко. Этим и объясняется большая крутизна спада напряжения на коллекторах, которую можно видеть на кривых изменения потенциалов коллекторов Т1 и Т2. Кроме того, не следует забывать, что обе базы транзисторов не могут одновременно стать положительными. Как только база оказывается под малым положительным потенциалом, переход база – эмиттер становится проводящим, образуя настоящее короткое замыкание на корпус. Этим и объясняются горизонтальные участки кривых напряжений обеих баз на рис. 79.


Рис. 79. Форма напряжений показанного на предыдущем рисунке мультивибратора.


Можно было бы еще очень много рассказать о мультивибраторе, но твоих знаний уже достаточно, чтобы иметь возможность использовать его в качестве делителя частоты.


Условия насыщения

Н. – Прежде чем заняться делением частоты, я хотел бы задать один вопрос. Ты сказал, что транзисторы Т1 и Т2 находятся в состоянии насыщения, когда работают. Я тебе верю, но хотел бы знать, почему.

Л. – Задавая этот вопрос, ты абсолютно прав. Предположим, например, что сейчас ток проводит транзистор Т1. Ток его базы проходит через резистор R3. Потенциал базы почти равен потенциалу эмиттера, как это бывает в любом незапертом транзисторе. Следовательно, падение напряжения на резисторе R3 практически равно . Значит, протекающий по этому резистору ток, т. е. ток базы транзистора Т1 приблизительно равен E/R3.


Кроме того, если этот транзистор находится в состоянии насыщения, потенциал его коллектора практически равен нулю, а ток коллектора приблизительно равен E/R1. Поэтому для выполнения условия насыщения достаточно иметь такой коэффициент усиления транзистора по току (который мы обозначаем буквой β), чтобы произведение тока базы E/R3 на β было больше максимального тока, который сможет пропустить коллектор, т. е.

Возьмем для наглядности числовой пример. Пусть коэффициент усиления транзистора по току β = 30. Тогда для выполнения условия насыщения произведение 30·(Е/R3) – должно быть больше E/R1, для чего достаточно, чтобы сопротивление резистора R3 было меньше 30·R1.

Н. – До сих пор я внимательно следил за тобой, но имеется еще один момент: ты пренебрегаешь токами, которые могут поступать или уходить с баз или коллекторов вследствие зарядов или разрядов конденсаторов.

Л. – Они только упорядочивают работу схемы. Например, когда конденсатор C1 заряжается через резистор R2, зарядный ток прибавляется к току, поступающему на базу транзистора Т1 через резистор R3. Как ты видишь, он просто улучшит положение.


Синхронизация

Л. – А теперь я воспользуюсь диодом Д1, который до сих пор оставался без дела, чтобы подать на коллектор Т1 отрицательный импульс из точки А через конденсатор С3.

Н. – А какую роль играет резистор R5?

Л. – Этот резистор просто-напросто устанавливает средний потенциал катода диода Д1 на уровне . Поэтому диод может проводить ток только при запертом транзисторе Т1 (потому что это повышает потенциал коллектора транзистора Т1 и потенциал анода диода до уровня ), когда катод этого диода стал отрицательным под воздействием поступающего через конденсатор С3 импульса.


Н. – Но это ужасно! Если ты таким образом подашь импульс на коллектор транзистора Т1, то полностью нарушишь работу схемы!

Л. – Должен признаться, что именно это я и намерен сделать. Предположим, например, что мультивибратор имеет тенденцию работать с частотой повторения 100 гц. Подадим ему в точку А отрицательные импульсы с частотой 330 гц. Предположим для начала, что первое срабатывание мультивибратора, совпадающее с резким падением потенциала на коллекторе транзистора Т1 произойдет точно в момент поступления импульса в точку А.

Есть все основания полагать, что когда в точку А придет следующий импульс, транзистор Т1 еще будет в состоянии насыщения. Поэтому приложенный на катод диода импульс не будет передан. Следующий импульс может застать транзистор Т1 в состоянии насыщения и также не вызовет никакого результата. Третий импульс придет в момент, когда мультивибратор вот-вот самопроизвольно опрокинется; Т1 еще заперт, а база транзистора Т2 почти готова открыться. Этот третий импульс опрокинет мультивибратор на какое-то мгновение раньше, чем он сделал бы это сам. Три периода сигнала с частотой 330 гц занимают времени чуть меньше одной сотой доли секунды. Через три следующих импульса картина повторяется во всех мельчайших подробностях; поступивший в точку А импульс вызовет опрокидывание мультивибратора немного раньше положенного ему срока. Таким образом, наш мультивибратор станет работать несколько быстрее, чем если бы ему предоставили полную свободу действий. Он станет давать сигналы с частотой 110 гц, т. е. с частотой, ровно в 3 раза меньшей приложенной (рис. 80).



Рис. 80. Подаваемые в точку А синхронизирующие импульсы вызывают опрокидывание мультивибратора несколько раньше момента его самопроизвольного опрокидывания. В результате мультивибратор дает сигналы с частотой в 3 раза ниже частоты подаваемых в точку А синхронизирующих импульсов.

Н. – Ну, с этим я не согласен. В первый раз, когда мы применением грубой силы заставим мультивибратор сработать преждевременно, неизбежно произойдет какая-то деформация мультивибратора. При повторном проявлении насилия следующая деформация наложится на первую. И через два или три периода мультивибратор вообще откажется подчиняться.

Л. – Как раз нет, Незнайкин. Мультивибратор не обладает памятью. Каждый раз после срабатывания, как самопроизвольного, так и вызванного внешним импульсом, мультивибратор оказывается в строго определенном состоянии, которое не зависит от вызвавшей его опрокидывание причины.

Н. – Если я правильно понял, твой мультивибратор не помнит зла.

Л. – Радиоэлектроника не располагает средствами психоанализа, которые позволили бы определить настроение мультивибраторов. Говоря проще на языке техники, они не имеют запоминающего устройства. Впрочем, это очень полезное для нас свойство.


Стабильность деления

Н. – Это действительно не кажется мне очень сложным. Но что произойдет, если я изменю частоту подаваемых в точку А импульсов? Например, если увеличу частоту до 400 гц?

Л. – Может быть, система еще будет действовать, и мультивибратор согласится ускорить ритм своей работы до 400 гц: 3 = 133 гц. Но может случиться и так, что после опрокидывания синхронно с одним импульсом к моменту прихода следующего импульса мультивибратор еще не станет чувствительным к пусковому импульсу. В этих условиях он не признает третьего импульса и сработает на четвертом, который поступает точно в тот момент, когда мультивибратор должен был опрокинуться самопроизвольно. Тогда система будет делить подаваемую частоту не на три, а на четыре.

Н. – Так, значит, система не очень стабильна?

Л. – Она стабильна, если не очень сильно изменять подлежащую делению частоту. Такая система не пригодна для деления любой частоты в одно и то же число раз. Если подаваемая на вход частота изменяется в небольших пределах, то ты получишь превосходный делитель частоты.

Н. – Теперь-то я знаю, где мне использовать это устройство; уже давно мне хотелось сделать делитель на 819, чтобы превратить строчную частоту в кадровую[12]12
  Во Франции действуют два телевизионных стандарта: передачи первой программы ведутся с разложением на 819 строк, а второй и третьей – на 625 строк. (Прим. перев.)


[Закрыть]
. Для этого я сделаю мультивибратор с собственной частотой срабатывания около 25 гц, вернее, немного меньше (как ты мне объяснил, синхронизация может только ускорить ритм), и подам на него импульсы с частотой строчной развертки.

Л. – Если тебе удастся осуществить свои планы, я готов преподнести тебе в лучшем ресторане фаршированную трюфелями курицу. Но сначала скажи, каким образом намерен ты сделать свои мультивибратор настолько хитрым, что он сработает не на 818-м, а именно на 819-м импульсе? Ведь состояние мультивибратора между этими двумя импульсами изменится настолько незначительно, что для обеспечения стабильности потребуется просто ювелирная регулировка.


Однако, сказанное не означает, что сделать делитель, уменьшающий поступающую частоту в 819 раз, невозможно, только делить ее придется в несколько приемов; ты может быть заметил, что 819 представляет собой произведение трех сомножителей: 9, 7 и 13. В первом каскаде ты разделишь свою частоту на 9. Полученные на первом мультивибраторе импульсы подашь на второй, который разделит их частоту на 7; второй каскад соединишь с третьим, который разделит подаваемую ему частоту на 13. И на этой третьей ступени деления ты, вероятно, столкнешься с наибольшими трудностями.

Н. – Если я правильно понял, ты, Любознайкин, просто суеверный человек – ты боишься числа 13…

Л. – Заверяю тебя, что суеверие здесь ни при чем. Я проявил бы еще больше беспокойства, при делении на 15 или 17. Ибо чем выше коэффициент деления, тем труднее осуществить деление; ведь наш мультивибратор не имеет права опрокинуться на двенадцатом импульсе, а обязан наверняка сработать на тринадцатом. В принципе это возможно, хотя и не так легко осуществить. Для подобных делений используют более сложные схемы, о которых сейчас я предпочитаю не говорить, так как это увело бы нас слишком далеко.


Деление на четное число

Н. – Согласен, спасибо за твои объяснения, но у меня появился один вопрос. Когда ты говорил о числе 13, ты заметил, что еще большее беспокойство вызвало бы у тебя деление на 15 или 17. Почему ты назвал только нечетные числа?

Л. – Очень хорошо, что ты обратил внимание на это обстоятельство. Для деления на четные числа существует очень хитрое устройство, обладающее лучшей стабильностью. Посмотри на схему, которую я начертил для тебя на рис. 81. Я не нарисовал остальную часть мультивибратора; скажу только, что он выполнен очень тщательно для достижения максимальной симметрии, т. е. чтобы в отсутствие синхронизирующих импульсов оба транзистора в каждый период оставались запертыми строго одинаковое время, и мультивибратор вырабатывал очень симметричные сигналы. Для достижения такой цели стараются сделать в пределах возможного одинаковыми по величине резисторы R3 и R4 (см. рис. 78) и конденсаторы С1 и С2. Величины R1 и R2 имеют меньшее значение.


Рис. 81. Включение в схему двух диодов позволяет симметрично подавать сигналы на вход мультивибратора, чтобы синхронизировать каждое опрокидывание схемы и делить подаваемую частоту на четное число.

Н. – Я предполагаю, что ты постараешься также подобрать транзисторы с возможно одинаковыми параметрами.

Л. – Это, конечно, не повредит, но и пользы особой не принесет, так как наши транзисторы при переходе от запертого состояния к состоянию насыщения работают как прерыватели.

Предположим, что наш мультивибратор имеет тенденцию работать на частоте примерно 90 гц. Подадим ему в точку А отрицательные импульсы с частотой 400 гц. Они одновременно подаются в катоды диодов Д1 и Д2. Пропустить импульс может только тот диод, чей анод соединен с запертым транзистором. Предположим, что один из этих импульсов опрокинул мультивибратор, заперев транзистор Т1, и приведя в состояние насыщения транзистор Т2. Следующий импульс может дойти до коллектора транзистора Т1, потому что его потенциал равен . Но этот импульс приходит через 1/400 сек после срабатывания мультивибратора, т. е. задолго до момента его очередного самопроизвольного опрокидывания, и если посланный импульс имеет правильно выбранную амплитуду, его окажется недостаточно для переброса схемы. Следующий импульс поступает через 1/200 сек после опрокидывания, т. е. незадолго до момента, когда мультивибратор опрокинулся бы самопроизвольно (напомню, что наш мультивибратор симметричный и каждое самопроизвольное опрокидывание происходит точно через 1/180 сек после предыдущего). Следовательно, этот второй импульс вызовет срабатывание мультивибратора; в результате транзистор Т1 перейдет в состояние насыщения, а транзистор Т2 будет заперт. Теперь передавать импульсы будет диод Д2. Рассмотренная нами картина начнет повторяться; первый импульс не пройдет, вернее его воздействие не будет иметь последствий, и только следующий после него импульс вызовет новое опрокидывание схемы.


Н. – Но этого не может быть, твой мультивибратор запускается каждым вторым импульсом, т. е. он должен работать с частотой 200 гц.

Л. – Не забыл ли ты, дорогой Незнайкин, что полный период работы мультивибратора соответствует двум опрокидываниям. Имеется своего рода опрокидывание «туда» и опрокидывание «обратно». Иначе говоря, вполне нормально, что наш мультивибратор опрокидывается 200 раз в 1 сек, а его истинная частота равна 100 гц.

Н. – Еще раз я не подумал, как следует! Ты в самом деле прав. Но это чрезвычайно симпатично. Хотя частота делится на 4, мультивибратор запускается каждым вторым поступающим на вход импульсом, что несомненно повышает стабильность его работы.


Л. – Разумеется, именно поэтому я только что сказал тебе о трудности делить на 13 и тем более на 15 или на 17… А вот разделить на 14 было бы значительно легче, чем на 13.


Деление на 2

Н. – Вот о чем я сейчас подумал: если потребовалось бы разделить частоту на 2, работа была выполнена бы почти безукоризненно, так как мультивибратор срабатывал бы от каждого поступающего на вход импульса.

Л. – Ты совершенно прав, Незнайкин. Но сейчас я расскажу тебе о совершенно безупречном способе деления на 2, который никак не зависит от частоты. Я познакомлю тебя с новым устройством – с триггером с двумя устойчивыми состояниями, носящим еще название триггера Экклеса – Джордана. Вот тебе схема этого устройства (рис. 82).


Рис. 82. Схема триггера с двумя устойчивыми состояниями; диоды пропускают синхронизирующий импульс на тот из транзисторов, который находится в состоянии насыщения.

Н. – Ой, ой! Какая она сложная!

Л. – Может быть и сложная, но разобраться в ней совсем нетрудно. Здесь ты увидишь некоторую аналогию с мультивибратором (см. рис. 78). Когда один из транзисторов пропускает ток, он напряжением своего коллектора воздействует на базу другого транзистора. В отличие от мультивибратора здесь мы имеем прямую связь между каждым коллектором и базой противоположного транзистора. Так, например, если ток пропускает транзистор Т1 (если возможно в состоянии насыщения), потенциал его коллектора очень низкий. С помощью делителя напряжения R3 – R4 он придает потенциалу базы Т2 небольшую отрицательную величину, что надежно запирает транзистор Т2. Но когда запертым оказывается транзистор Т1, потенциал его коллектора близок к и делитель из резисторов R3 – R4 будет стремиться создать на базе Т2 положительное напряжение. Как только база станет положительной, ток базы подрежет сверху напряжение, подводимое к ней через резисторы R3 и R4.

Н. – Уф, хотя я и очень внимательно следил за твоим рассказом, числовой пример принес бы мне немалую пользу.




Режимы работы триггера с двумя устойчивыми состояниями

Л. – Согласен, я полагаю, что ты будешь доволен, если посмотришь на рис. 82; там в скобках я указал напряжение питания , равное 12 в, напряжение смещения – Uc (в нашем случае – 6 в), а также номиналы резисторов. Предположим, что ток пропускает транзистор T1, находящийся в состоянии насыщения. Отсюда следует, что потенциал его коллектора упал почти до нуля, а ток коллектора близок к 4 ма, потому что питание на этот коллектор подается от источника с напряжением 12 в через резистор R1 с сопротивлением 3 ком. Два равные по сопротивлению резистора R3 и R4 создают на базе Т2 потенциал, близкий к —3 в, т. е. транзистор Т2 надежно заперт.

А теперь предположим, что заперт транзистор T1. Тогда потенциал его коллектора близок к +12 в, делитель из резисторов R3 – R4 стремится повысить потенциал базы транзистора Т2до +3 в. Само собой разумеется, что напряжение на этой базе достигнет лишь +0,3 в (обычное значение напряжения база – коллектор в нормально проводящем германиевом триоде). В этих условиях легко рассчитать, какой ток поступает на эту базу через резисторы R1 и R3 общим сопротивлением 23 ком; ток имеет величину: 12 в: 23 000 ом = 0,00052 а или 0,52 ма. В то же время через резистор R4 течет ток, равный 6 в: 20 000 ом = 0,0003 а или 0,3 ма. База же получает разность этих токов или 0,52 ма – 0,3 ма = 0,22 Если коэффициент усиления транзистора по току превышает 20, можно с уверенностью сказать, что мы довели транзистор до состояния насыщения, ибо максимальный ток его коллектора равен 4 ма.

Н. – Хорошо, теперь я действительно вижу, что когда один из транзисторов твоей схемы пропускает ток, он запирает другой и, наоборот, запертый транзистор приводит другой в состояние насыщения. Но как узнать, какой из транзисторов будет заперт и какой будет находиться в состоянии насыщения?


Л. – А на этот вопрос, дорогой Незнайкин, я не могу ответить с желаемой тобой определенностью. Возможно, что запертым будет транзистор Т1, а Т2 будет в состоянии насыщения, но одинаково возможен и случай, что в состоянии насыщения окажется Т1 а Т2 будет заперт.

Н. Значит, твоя схема сама не знает, чего она хочет!

Л. – Не вдаваясь в вопросы психологического анализа, я просто скажу тебе, что рассматриваемая схема имеет два устойчивых состояния или, как говорят, она бистабильна. Тебе уж доводилось встречаться с такими схемами и, в частности, с триггером Шмитта (см. рис. 61), у которого напряжение базы транзистора Т1 находилось между двумя порогами.

Н. – Так, значит, эта схема может некоторое время провести с запертым Т1 и насыщенным Т2 и наоборот.

Л. – Согласен с тобой, но с одной оговоркой – я не стал бы говорить «некоторое время». Оказавшись в каком-то определенном положении, схема (рис. 82) может бесконечно долго оставаться в этом положении, пока мы не изменим ее состояния.



Запуск триггера с двумя устойчивыми состояниями

Н. – Но как ты «изменишь состояние» схемы?

Л. – Здесь на сцену выступают диоды Д1 и Д2. Предположим, что схема находится в таком состоянии, когда транзистор Т1 заперт, а Т2 насыщен. Как мы видим, в этих условиях на катоды диодов через резисторы R7 и R8 поданы следующие потенциалы: у диода Д1 почти + 12 в, а у диода Д2 почти нуль. Подадим в точку А отрицательный импульс; через конденсаторы С3 и С4 этот импульс одновременно будет приложен к катодам обоих диодов. Но так как катод диода Д1 имеет потенциал +12 в, а его анод – отрицательный потенциал (транзистор Тзаперт), потребовался бы импульс больше 12 в, чтобы сделать диод проводящим. А у диода Д2 потенциал катода равен (или почти равен) нулю, а потенциал его анода также близок к нулю или имеет очень небольшую положительную величину (мы говорили о 0,2 или 0,3 в). Поэтому импульс будет передан только диодом Д2. Отрицательный импульс, попадая на базу транзистора Т2, запрет его. Соответствующее повышение напряжения на его коллекторе передается на базу транзистора Т1 через делитель из резисторов R5 – R6 и особенно через конденсатор С1, хорошо передающий крутые фронты, и отопрет транзистор Т1. Таким образом, завершится переход системы из одного состояния в другое.

Н. – Хорошо, до сих пор все понятно. Но следующий импульс произведет такой же эффект. А для возвращения схемы в первоначальное состояние ему нужно было бы сделать как раз обратное.

Л. – Как мне кажется, дорогой Незнайкин, ты забыл, что транзистор Т1 стал проводить ток, а транзистор Т2 в это время I заперся, следовательно, после опрокидывания схемы резистор R7 постепенно сделает потенциал анода диода Д1 близким к нулю; а в это время резистор R8 постепенно повысит потенциал катода диода Д2 до значения, близкого к +12 в. Если прежде чем посылать следующий импульс, ты немного подождешь, то увидишь, что картина с напряжениями смещения на катодах диодов стала обратной по сравнению с состоянием, предшествовавшим первому импульсу. Следовательно, второй импульс произведет обратное действие и вернет схему в ее первоначальное состояние.

Н. – Дьявольски хитрая система. По сути дела диоды Д1 и Д2 играют роль железнодорожной стрелки, направляющей импульс на тот транзистор, который как раз в нем нуждается для отпирания.

Л. – Ты совершенно прав, сравнивая это устройство с железнодорожной стрелкой, по хочу, чтобы ты обратил особое внимание на роль, которую в этой стрелке играют резисторы R7 и R8, а также конденсаторы С3 и С4. После опрокидывания схемы изменение потенциалов катодов диодов Д1 и Д2 происходит постепенно. В самом деле для заряда конденсатора С3 через резистор R7 и конденсатора С4 через резистор R8 требуется некоторое время. Иначе говоря, работой нашего направляющего разделителя управляет предыдущее положение триггера. Запаздывание в цепочках R7 – С8 и R8 – С4 играет исключительно важную роль; если вернуться к твоему сравнению с железной дорогой, задержка не позволяет перевести стрелку во время прохождения поезда.

Н. – Однако ничего подобного нет в схеме на рис. 81, где диоды играют роль аналогичного направляющего разделителя…



Диоды, которые не выполняют роли направляющего разделителя

Л. – Совсем не так, Незнайкин; ты совершаешь очень распространенную ошибку, но мне не хотелось бы, чтобы ты уподобился всем… В схеме на рис. 81 диоды Д1 и Д2 не предназначены для выполнения роли направляющего разделителя. Перед ними поставлена только одна цель – пропустить на один из коллекторов отрицательный импульс, который должен вызвать опрокидывание схемы, после чего диоды как бы отключают этот коллектор от источника импульсов. При необходимости в схеме на рис. 61 можно было бы обойтись без диодов и посылать импульсы из точки А просто через два небольших конденсатора С3 и С4 (рис. 83)…


Рис. 83. Для деления частоты на четное число мультивибратор делают по возможности максимально симметричным и синхронизируют импульсом, подаваемым через два конденсатора, включенных в цепи коллекторов транзисторов.

Н. – О, нет! В этом случае ты не сможешь посылать импульсы только на коллектор запертого транзистора, они одновременно пошли бы и на другой.

Л. – Но что может сделать отрицательный импульс, попавший на коллектор насыщенного транзистора, Незнайкин? Эффект будет примерно такой, как если поставить горчичники на деревянную ногу. Получивший такой импульс коллектор передаст его на базу запертого транзистора, но ведь это не сможет запереть еще больше. Только запертый транзистор чувствителен к поступающему на его коллектор отрицательному импульсу: он через конденсатор связи передаст его на базу транзистора, находящегося в состоянии насыщения, и тем самым начнет опрокидывание схемы.


Н. – Но тогда почему ты поставил в схему конденсатор С3, резистор R5 и два весьма дорогих диода Д1 и Д2. Ведь можно было бы вполне обойтись двумя конденсаторами.

Л. – Для начала разберемся с ценой. Должен тебе сказать, что хороший диод стоит не дороже конденсатора. Затем я поставил здесь диоды, чтобы мультивибратор лучше работал. Наличие двух конденсаторов, соединяющих точку А с коллекторами транзисторов для подачи отрицательных импульсов, может нарушить нормальную работу мультивибратора. При использовании же двух диодов, установленных, как показано в схеме на рис. 81, все обстоит иначе: проводящий первым диод передает импульс на коллектор соответствующего транзистора, а после опрокидывания схемы диод запирается. Все происходит так, как если бы в этот момент его отключили от источника импульсов.

Н. – Так, значит, диоды просто выполняют роль прерывателя. Тогда их можно было бы заменить двумя маленькими переключателями и перебрасывать их после прохождения импульса.

Л. – В принципе, да. Но если ты сумеешь переводить свои переключатели с точностью до четверти микросекунды и в случае надобности проделывать эту операцию 20 000 раз в 1 сек, я настоятельно советую тебе бросить свою работу и поступить в цирк.

Н. – Понятно! Но еще одна вещь не дает мне покоя; разве в схеме на рис. 82 твои направляющие диоды Д1 и Д2 не играют той же роли отключателя источника импульсов от триггера?

Л. – Ты совершенно прав, эти диоды одновременно направляют импульсы по нужному адресу и отключают источник импульсов от триггера. А в схемах на рис. 78 и 81 диоды только отключают источник импульсов от сработавшей схемы. Для большей наглядности я приведу аналогичный пример из механики. Представь себе, что с трамплина один за другим прыгают в воду пловцы, а тренер «синхронизирует», подталкивая их сзади, чтобы заставить прыгнуть немного раньше назначенного момента.

Н. – Но результат окажется катастрофическим для несчастного, который окажется в воде раньше, чем думал!

Л. – Успокойся! Речь идет о совсем ничтожном опережении, и пловец уже готов прыгнуть в воду. Рассмотрим теперь, как действует тренер. Он толкает пловца вперед до тех пор, пока тот не кувыркнется вниз. Следовательно, между тренером и пловцом необходима односторонняя механическая «связь». Иначе говоря, тренер должен толкать пловца, но не давать ему тащить себя. Если вместо того, чтобы толкать пловца сзади, тренер будет крепко держать его за плечо, станут возможны два варианта: или тренер очень силен и не даст пловцу спрыгнуть в воду, или же пловец увлечет тренера с собой и тот полетит в воду…


Н. – И превосходно сделает!

Л. – Не отвлекайся, Незнайкин. Пойми, что в этом случае как и при опрокидывании мультивибратора, необходимо, чтобы связь работала только в одном направлении и чтобы она прерывалась сразу же после начала опрокидывания. Эту роль всегда выполняют диоды; в некоторых случаях, как, например, в схеме на рис. 82, они выполняют также роль направляющего разделителя.



Опрокидывание триггера с двумя устойчивыми состояниями

Н. – Я полагаю, что теперь мы о нем все рассказали. Каждый раз, когда в точку А поступает импульс, схема изменяет свое состояние, следовательно, потребуется подать в точку А два импульса, чтобы схема вернулась в свое первоначальное состояние.

Л. – Превосходно, ты совершенно правильно понял принцип работы этого устройства. Как ты видишь, такая система может использоваться для деления любой частоты на 2. Поэтому устройство называют апериодическим делителем частоты. Если сигналы с коллекторов этой схемы преобразовать дифференцирующей схемой такого типа, как изображенная на рис. 64, и использовать для пуска в ход другого триггера с двумя устойчивыми состояниями, то в результате частота будет разделена на 4. Как ты видишь, таким образом можно легко разделить частоту на 4, 8, 16, 32…

Н. – Наиболее важным в этом многоступенчатом устройстве мне представляется первый делитель, так как, вероятно, от него зависит максимальная частота, на которой может работать все устройство. Какими характеристиками обычно обладает такой делитель?

Л. – По изображенной на рис. 82 схеме легко сделать триггер, работающий на частотах до 5 или 6 Мгц. А путем подбора транзисторов и используя резисторы с меньшими, чем я назвал, номиналами, удается делить частоты до 30 Мгц.

Обрати внимание, до какой степени эта система отвечает требованиям, которые можно предъявить к совершенному делителю: тот же самый триггер, который, получая 30 миллионов импульсов в секунду, дает на выходе сигнал с 15 миллионами периодов в секунду, работает точно так же и при получении в секунду четырех импульсов – он даст выходной сигнал с частотой 2 гц.

Н. – Исключительно приятное устройство, но как досадно, что оно делит только на 2 (или на 4, 8, 16…).

Л. – Существуют системы с несколькими устойчивыми положениями, которые позволяют также безупречно делить не на 2, а на 3, 4, 5 и даже на другие числа. Системы эти основаны на тех же принципах, что и схема на рис. 82. Но они немного сложнее, и мы рассмотрим их позднее, когда поведем беседу о счетных устройствах.

Н. – Бедный я, несчастный! Твой триггер с двумя устойчивыми состояниями уже достаточно сложен, а если ты покажешь мне что-нибудь еще более сложное, боюсь, что моя голова не выдержит!

Л. – Не бойся, Незнайкин; усложнять материал мы будем постепенно, и ты убедишься, что на самом деле все намного проще, чем может показаться при взгляде на схему.

Н. – Хорошо, надеюсь, что так и будет. Должен признаться, что мне легче понять новую схему, когда ее можно сравнить с чем-нибудь мне уже знакомым. Впрочем, я вижу некоторую аналогию между твоим триггерем с двумя устойчивыми состояниями на рис. 82 и мультивибратором на рис. 78. Основное различие между ними заключается в том, что в мультивибраторе связь между коллектором и базой противоположного транзистора осуществляется конденсаторами, тогда как в триггере с двумя устойчивыми состояниями цепочка прямой связи состоит из резистивных делителей.


Однотактный триггер

Л. – Ты совершенно прав, Незнайкин. Я вижу, что сегодня ты в прекрасной форме, и поэтому я расскажу тебе о новом типе схемы, которую можно рассматривать как своеобразную дочь схем на рис. 82 и 78. Новую схему я начертил для тебя на рис. 84.


Рис. 84. Схема с одним устойчивым состоянием представляет собой своеобразную смесь мультивибратора и схемы с двумя устойчивыми состояниями; ее можно опрокинуть подачей импульса в точку А, но затем схема самопроизвольно возвращается в первоначальное состояние.

Н. – Очень любопытная схема; транзистор Т1, связан с транзистором Т2 делителем R3, R4 как в триггере с двумя устойчивыми состояниями, а коллектор транзистора Т2 связан с базой транзистора Т1 конденсатором С как в мультивибраторе с рис. 78. Так что же это: генерирующая или бистабильная схема?

Л. – Ни то, ни другое. Мультивибратор (см. рис. 78) относится к категории так называемых неустойчивых схем, т. е. схем, которые не могут оставаться в каком-либо состоянии: они выходят из этого состояния резким скачком, который возникает самопроизвольно или ускоряется внешним пусковым импульсом. Изображенная на рис. 84 схема обладает одним состоянием, в котором она может пребывать бесконечно долго. Это состояние наступает, когда ток транзистора Т1 доходит до насыщения, запирая транзистор Т2, т. е. так, как это происходит в триггере с двумя устойчивыми состояниями.

Н. – Но тогда это будет схема с двумя устойчивыми состояниями!

Л. – Нет, Незнайкин, эта схема не с двумя, а с одним устойчивым состоянием – ее называют однотактным триггером. В самом деле, если в точку А поступает отрицательный импульс, он через конденсатор С' передается на катод диода Д. Через этот диод и конденсатор С импульс будет стремиться запереть транзистор Т1. Как только ток этого транзистора начинает снижаться, происходит повышение потенциала его коллектора (уменьшается падение напряжения на резисторе R1). Это повышение потенциала передается на базу транзистора T2, который начинает пропускать ток. Потенциал коллектора транзистора Т2снижается, это снижение через конденсатор С передается на базу Т1 и усиливает воздействие первоначального импульса до тех пор, пока ему не удастся полностью запереть транзистор Т1 и ввести в состояние насыщения транзистор Т2.


    Ваша оценка произведения:

Популярные книги за неделю