355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Жан-Поль Эймишен » Электроника?.. Нет ничего проще! » Текст книги (страница 11)
Электроника?.. Нет ничего проще!
  • Текст добавлен: 10 мая 2017, 18:30

Текст книги "Электроника?.. Нет ничего проще!"


Автор книги: Жан-Поль Эймишен



сообщить о нарушении

Текущая страница: 11 (всего у книги 21 страниц)

Беседа десятая
РЕЛЕ И ДВИГАТЕЛИ

Наши друзья проследили за полными приключений путешествиями сигнала и подошли к моменту, когда у них возникло желание использовать сигнал. Незнайкин узнает, что «Реле – это не так просто». Выясняется, что для осуществления вращения необходим двигатель. Любознайкин открывает ему секреты этих устройств и схем, которые могут ими управлять.

Любознайкин – А теперь мы рассмотрим различные типы исполнительных механизмов.

Незнайкин – Что это за приборы? До сих пор ты о них мне ничего не говорил.

Л. – Неправда, мы уже говорили о них; ты, вероятно, просто забыл, что всякая электронная аппаратура состоит из:

1) первичного преобразователя, превращающего исследуемое физическое явление в электрический сигнал;

2) промежуточного преобразователя сигнала;

3) исполнительного элемента, использующего преобразованный сигнал для измерения или выполнения требуемого действия.

Н. – О, наконец-то мы добрались до последнего звена. Это начинает становиться серьезным.

Л. – Но это, Незнайкин, всегда было серьезным. И если мы сейчас приступаем к последнему звену, нам еще придется немало поговорить о различных частных применениях электронных устройств. Но как бы то ни было, начнем мы с реле.


Сопротивление катушки реле

Н. – Это совершенно излишне, я основательно знаком с этим вопросом.

Л. – Ну, если по твоему преисполненному скромности выражению «ты основательно знаком с вопросом», я позволю себе спросить, а можешь ли ты сказать, как зависит сопротивление катушки конкретного реле от напряжения, при котором оно должно работать?

Н. – Хм… но это скорее вопрос для математика!

Л. – О, я не требую от тебя длинных и сложных математических выражений, я лишь прошу тебя немного подумать. Важной характеристикой каждого реле является необходимое для срабатывания число ампер-витков, иначе говоря, произведение количества витков катушки на ток, необходимый для того, чтобы сердечник притянул якорь и тем самым замкнул контакты реле.

Рассмотрим изображенное на рис. 92 реле. Размер реле в значительной степени определяется размерами катушки. Катушка состоит из некоторого количества витков провода определенного сечения и с определенным сопротивлением. Предположим, что мы заменим этот провод другим с втрое меньшим диаметром. Как изменится его сечение?


Рис. 92. Реле (его условное обозначение приведено справа) имеет катушку, создающую магнитное поле, под действием которого притягивается якорь, что приводит к замыканию или размыканию так называемых рабочих контактов.

Н. – Очень просто, в 3 раза.

Л. – За такой ответ, Незнайкин, я ставлю тебе нуль. Как можешь ты утверждать, что при уменьшении диаметра круга в 3 раза его площадь уменьшается во столько же раз? Ведь ты уже давно должен знать, что площадь круга пропорциональна квадрату его радиуса! Следовательно, уменьшив в 3 раза радиус (или диаметр) провода, мы в 9 раз уменьшим его сечение, что позволит нам при тех же размерах катушки намотать провода в 9 раз больше. Можешь ли ты сказать, какое сопротивление будет иметь наша новая катушка?


Н. – На этот раз все очень просто. Длина провода увеличилась в 9 раз, значит и его сопротивление стало в 9 раз больше.

Л. – На этот раз ты, Незнайкин, переходишь всякие границы! Разве ты забыл, что длина провода увеличилась в 9 раз, а его сечение уменьшилось тоже в 9 раз; следовательно, сопротивление провода возросло в 81 раз.

Н. – Вот так раз! Я никогда не подумал бы, что при уменьшении диаметра провода только в 3 раза так резко растет его сопротивление. Но ведь прохождение тока по такому проводу вызовет колоссальное рассеяние мощности.

Л. – Совсем нет. Раз новая катушка имеет витков в 9 раз больше, чем первая, то пропускаемый ток можно уменьшить в 9 раз. А принимая во внимание, что рассеиваемая мощность пропорциональна сопротивлению и квадрату тока, рассеиваемая в новой катушке мощность будет точно такой же, как в первой катушке. Полученный нами результат дает лишь самое общее представление; после определения объема меди в катушке только рассеиваемая в этой катушке мощность характеризует магнитное воздействие на якорь реле. Поэтому, характеризуя реле, говорят, что его мощность возбуждения 1 вт или 1/2 вт. Реле с катушкой из толстого провода рассчитано на управление большим током при низком напряжении, а реле с катушкой из тонкого провода включается в цепи с небольшим током при более высоком напряжении.

Обычные реле часто требуют для управления мощность около 1 вт. У более чувствительных реле для притягивания якоря достаточно 0,2 или даже 0,1 вт. Ультрачувствительные реле могут срабатывать при мощностях возбуждения порядка милливатта; обычно они способны включать и выключать только очень небольшие токи и поэтому непосредственно в исполнительных цепях совершенно не используются. Их применяют для приведения в действие промежуточных более мощных реле.



Транзистор управляет реле

Н. – Мне в голову пришла великолепная идея: а что если ток пустить не прямо в обмотку реле, а подать его на базу транзистора, коллекторный ток которого протекает по катушке реле, ведь тогда для включения реле потребовалась бы значительно меньшая мощность. В случае надобности нужную мощность управляющего сигнала можно сократить, введя в схему еще один усилительный каскад на транзисторе.

Л. – Ты совершенно прав, Незнайкин, и мне остается лишь добавить, что эта идея уже предложена и даже реализована. Заводы уже выпускают реле, у которых рядом с катушкой размещается транзисторный усилитель (рис. 93); такие реле для своего управления требуют ничтожных мощностей. Существуют даже реле, в которых перед усилителем стоит триггер Шмитта, который с высокой точностью определяет уровни срабатывания и отпускания реле.


Рис. 93. Для эффективного управления работой реле можно использовать транзистор.

Н. – Опять кто-то меня опередил… Я уже начинаю сомневаться, что мне когда-нибудь удастся раньше других найти что-нибудь новое!

Л. – Не стоит отчаиваться, Незнайкин, будет и на твоей улице праздник. Но сначала нужно хорошо овладеть техникой. Это абсолютно необходимо, чтобы раньше других находить новинки. Но вернемся к нашим реле. Я хочу сказать тебе несколько слов о совершенно незнакомой тебе категории реле, о так называемых поляризованных реле. В этих реле имеется постоянный магнит, сила которого складывается с силой притяжения катушки, иначе говоря, в зависимости от направления тока катушка притягивает или отталкивает якорь. Поляризованные реле срабатывают только при одном определенном направлении тока в катушке.


Н. – Такого результата можно было бы достичь значительно проще: достаточно последовательно с катушкой включить простой диод.

Л. – Да, если задача заключается только в том, чтобы реле срабатывало при заданном направлении тока, но поляризованное реле способно на большее. Можно сделать так, что подвижный якорь при направлении тока, принятом в качестве положительного, переместится вправо и замкнет определенный контакт. В отсутствие тока якорь может оставаться в среднем положении, а при подаче тока обратного направления якорь переместится влево и замкнет другой контакт. Такое реле обладает большими возможностями, чем обычное реле с диодом, включенным последовательно с катушкой. Впрочем, Незнайкин, ты знаешь, что в обычных реле имеется так называемый нормально замкнутый (НЗ) контакт, который замкнут, когда реле не возбуждено; при срабатывании этот контакт размыкается. Обычно для размыкания нормально замкнутого контакта и для замыкания нормально разомкнутых (HP) контактов при притягивании якоря используются одни и те же подвижные контакты. В этом случае мы имеем дело с перекидной контактной группой. В одном реле может быть несколько таких контактных групп[14]14
  Положение контактов в схемах реле всегда соответствует (обесточенной катушке, точнее непритянутому якорю. (Прим. ред.)


[Закрыть]
(рис. 94).



Рис. 94. Одна катушка может приводить в действие две перекидные контактные группы, размыкая два нормально замкнутых контакта и замыкая два нормально разомкнутых контакта.


Меры предосторожности при использовании транзистора для управления реле

Н. – Я полагаю, что теперь я все знаю о реле.

Л. – Я всегда знал, что скромность никогда не была твоим основным качеством, Незнайкин. О реле написаны целые тома, я же ограничусь еще некоторыми деталями. Прежде всего, знаешь ли ты, какие особые меры предосторожности необходимо принять, когда для управления током в катушке реле используют транзистор или электронную лампу?

Н. – Я полагаю, что следует выбрать транзистор или лампу, способные без особого труда дать необходимый ток.

Л. – Естественно, это первое условие, но одного его недостаточно. Можешь ли ты себе представить, что произойдет, если после установления тока в катушке реле транзистор резко запирается соответствующим напряжением, поданным на его базу?

Н. – В этих условиях ток в катушке обрывается и якорь отходит от сердечника катушки.

Л. – Твое невежество, Незнайкин, может иметь самые гибельные последствия. Ты, кажется, забыл, что катушка реле обладает высоким значением самоиндукции и что поэтому она довольно резко противодействует быстрым изменениям тока. Есть еще один принцип, который я посоветовал бы тебе вырезать на своем камине, если там еще осталось свободное место. Принцип этот сводится к следующему:

«Проходящий по катушке ток не может измениться на конечную величину за бесконечно малое время».

Следовательно, если, желая резко прервать ток в катушке, мы запрем транзистор, то на выводах катушки возникает напряжение, которое может достичь высокого значения. Это напряжение может оказаться настолько большим, что разрушит транзистор или катушку реле или, если нам особенно не повезет, то и другое одновременно.


Н. – И это ты называешь невезением? Я бы просто сказал, что это нормальное проявление хорошо известной теоремы «о бутерброде с маслом».

Л. – О чем там идет речь?

Н. – Теорема гласит, что когда ты роняешь бутерброд с маслом, он всегда падает намазанной стороной вниз и полностью опровергает любые расчеты, основанные на теории вероятностей.

Л. – На мой взгляд, дорогой Незнайкин, в твои объяснения вкралась небольшая неточность. Дело в том, что наличие масла несколько сместило центр тяжести бутерброда, и мне представляется, что для твоей знаменитой теоремы можно найти физическое, а не мистическое объяснение. Но оставим эти высокие рассуждения и вернемся к нашим реле. Мы должны констатировать, что значительные перенапряжения возможны и поэтому следует заняться поиском средства для защиты от них реле и управляющего им транзистора. Существует довольно простой метод, заключающийся в использовании полупроводников, сопротивление которых изменяется в зависимости от приложенного к ним напряжения, иначе говоря, речь идет об элементах, не подчиняющихся закону Ома. Такие приборы называют варисторами (резисторы, сопротивление которых зависит от приложенного напряжения). Так, например, существует варистор, который при напряжении 12 в пропускает ток 5 ма, а при напряжении 24 в пропускает ток, в 15 раз больший 75 ма. Такой варистор можно включить параллельно катушке реле, рассчитанной на 12 в. При резком выключении проходящего по катушке тока, если этот ток не превышает 75 ма, он сначала пройдет по варистору и поднимет там напряжение всего лишь до 24 в, а оно быстро спадет. При обычных рабочих условиях напряжение на выводах варистора равно 12 в, и поэтому этот элемент потребляет только 5 ма, что практически ничтожно по сравнению с большим током, потребляемым реле.

Н. – А нельзя ли вместо такого странного элемента, как варистор, поставить простой резистор?

Л. – Да, в принципе это возможно, но представь себе, что мы пожелали ограничить перенапряжение 24 в, тогда понадобилось бы поставить резистор, который при напряжении 24 в мог пропустить ток 75 ма, – такой резистор должен иметь сопротивление 320 ом. Этот резистор, включенный параллельно катушке в нормальных рабочих условиях, потреблял бы около 37 ма, что далеко не ничтожно по сравнению с проходящим по реле током. Для нашей схемы потребовался бы транзистор, способный пропускать ток 37 ма + 75 ма – 112 ма, из которых только 75 ма с пользой используются реле.

Н. – О, теперь я прекрасно вижу, какой интерес представляют варисторы. Но, если подумать, они по сути дела выполняют примерно такую же роль, что и спусковые диоды мультивибратора, о котором мы уже говорили. В самом деле, при нормальном режиме работы они почти отключены от реле, а при повышении напряжения включаются.



Защитное устройство из диодов

Л. – Действительно, здесь есть определенная аналогия. Впрочем, для защиты реле можно также использовать диод; достаточно включить его, как я показал на рис. 95. Как ты видишь, при любом резком отключении коллекторного тока потенциал коллектора этого транзистора не может подняться выше 24 в.


Рис. 95. При резком запирании транзистора возникающая э. д. с. повышает потенциал коллектора до такой величины, что диод Д начинает проводить ток. Таким образом диод защищает транзистор.

Н. – Я предпочитаю схему с варистором, потому что она не требует вспомогательного источника напряжения 24 в. Но один момент меня серьезно беспокоит в твоем числовом примере. Ты говорил о реле, потребляющем ток 75 ма при напряжении 12 в, т. е. с мощностью в катушке 0,9 вт.

Л. – Но ведь это совершенно нормальная величина, Незнайкин, и, если ты помнишь, я тебе об этом недавно говорил.

Н. – Да, реле у меня не вызывает никакого сомнения, но я полагаю, что транзистор должен быть довольно мощным, потому что ему приходится рассеивать 1 вт.

Л. – Совсем нет, дорогой Незнайкин. Подумай сам, ведь при нормальных рабочих условиях транзистор находится в состоянии насыщения; коллекторный ток составляет 75 ма, но напряжение на его коллекторе почти равно нулю, так как 12 в почти полностью находятся на зажимах катушки реле. В этих условиях на коллекторе транзистора рассеивается чрезвычайно небольшая мощность.

Н. – Значит, я могу обойтись совсем маломощным транзистором при условии, если он выдерживает коллекторный ток 75 ма и 24 в в запертом состоянии?


Л. – Несомненно, если ты уверен, что транзистор используется либо в запертом состоянии, либо в состоянии насыщения. Но если транзистор также используется в состоянии между насыщением и запиранием, то на коллекторе будет рассеиваться определенная мощность. Несложно рассчитать, что здесь, как и для любого транзистора с напряжением питания , поступающим через резистор R, максимальная рассеиваемая на коллекторе мощность составляет E2/4R или равна четверти максимальной мощности, рассеиваемой на резисторе, когда транзистор находится в состоянии насыщения. Эта максимальная рассеиваемая на коллекторе транзистора мощность соответствует режиму, когда напряжение на выводах транзистора равно напряжению на выводах нагрузки (оба эти напряжения равны Е/2). В интересующем нас случае наибольшая мощность на коллекторе транзистора будет рассеиваться, когда напряжение на выводах нагрузки составит 6 в (и, следовательно, на выводах транзистора будет тоже 6 в). Как я уже сказал, она соответствует четверти максимальной мощности рассеяния в катушке реле или несколько превышает 0,22 вт. Такую мощность свободно выдерживают многие даже очень маломощные транзисторы.



Выбор транзистора

Н. – Итак, подведем итоги. Если я правильно тебя понял, имеются две возможности: 1) транзистор работает только в запертом состоянии и в состоянии насыщения, и тогда на коллекторе рассеивается незначительная мощность; 2) транзистор постепенно переходит от запертого состояния к состоянию насыщения, и тогда он должен обладать способностью рассеивать 0,22 вт. Но в таком состоянии, когда он рассеивает 0,22 вт, транзистор находится очень короткое время (напряжение на выводах катушки составляет всего лишь половину номинального, и вполне вероятно, что в этих условиях реле не сработает). Поэтому можно взять транзистор, рассчитанный на 150 мвт или даже на еще меньшую мощность.

Л. – Нет, Незнайкин, при работе с транзисторами нельзя рассуждать так же, как при работе с лампами. Даже на очень короткое время нельзя допускать превышения теоретических пределов рассеяния. Транзисторный переход обладает очень небольшой термической инерцией, иначе говоря, его температура поднимается очень быстро вслед за изменением рассеиваемой мощности. Лампы отличаются большим запасом прочности, например, лампа, предназначенная для рассеяния на ее аноде не более одного ватта, может в течение нескольких секунд выдержать 4 или даже 5 вт при условии, что она не очень часто будет подвергаться такому испытанию. Установленные для транзистора, пределы необходимо выдерживать значительно строже. Кроме того, анод лампы разогревается довольно долго, тогда как нагревание перехода в транзисторе продолжается всего лишь несколько миллисекунд. И, наконец, следует сказать, что нет абсолютно никаких доказательств, что в один прекрасный день система не окажется в таком состоянии, когда транзистор рассеивает 0,22 вт (т. е. в самом неблагоприятном режиме).

Н. – Так, значит, использовать транзистор меньшей мощности невозможно?

Л. – Вполне возможно, но для этого необходимо управлять транзистором, например, с помощью триггера Шмитта, чтобы транзистор всегда был заперт или насыщен и никогда не мог оказаться в промежуточном состоянии. Но тогда вновь придется столкнуться с неприятностями, уже упоминавшимися в связи со слишком быстрыми изменениями коллекторного тока. Возникает опасность появления значительных перенапряжений, от которых в качестве защиты придется использовать диод или варистор.

Н. – А нельзя ли в этом случае между триггером Шмитта и базой транзистора включить небольшой фильтр низких частот такого типа, который ты называешь интегрирующей схемой. Тогда переход от насыщения к запиранию все равно происходил бы достаточно быстро и транзистор очень небольшое время пребывал в неблагоприятном состоянии, рассеивая 0,22 вт, но в то же время переход был бы не настолько быстрым, чтобы вызвать значительное перенапряжение.

Л. – Превосходно рассудил, Незнайкин, но может случиться, что приемлемый компромисс будет трудно найти. Во всяком случае, при передаче импульса с крутым фронтом на базу транзистора, в Цепь коллектора которого включена катушка, настоятельно рекомендуется снизить крутизну фронта с помощью интегрирующей схемы. А теперь, если у тебя есть желание, мы рассмотрим другую категорию исполнительных элементов, какими являются двигатели.

Н. – Эти устройства отличаются большой сложностью, и я имею о них довольно смутное представление.



Двигатель постоянного тока

Л. – Я несколько сомневаюсь в справедливости твоих слов, и поэтому мы немного займемся электротехникой. Начнем с двигателя постоянного тока. Посмотри, что я нарисовал на рис. 96.


Рис. 96. Схематическое изображение принципа действия электродвигателя. Виток помещен в магнитное поле NS, создаваемое постоянным магнитом; протекающий по витку ток создает магнитное поле N'S', которое, взаимодействуя с полем магнита, поворачивает виток.

Большой подковообразный магнит создает горизонтальное магнитное поле; в этом поле я поместил горизонтально расположенный виток провода и пропустил по нему ток. Забудем на минуту о магните; скажи, пожалуйста, что произойдет с нашим витком под воздействием протекающего по нему тока?

Н. – О, это я знаю. Виток превратился в нечто аналогичное совершенно плоскому магниту; северный полюс этого магнита расположится сверху, а южный – снизу.

Л. – Абсолютно верно. Но скажи, Незнайкин, как, по твоему мнению, постоянный и неподвижный магните горизонтальным магнитным полем будет воздействовать на виток, обладающий вертикальным магнитным полем?

Н. – Я полагаю, что оба магнита будут воздействовать друг на друга и в результате такого взаимодействия магнит или виток повернулся.

Л. – Так как магнит прочно укреплен, повернется виток, он будет стремиться подвести свой северный полюс к южному полюсу магнита. Если виток укрепить на оси, то повернется и эта ось.

Н. – Мне не хотелось бы тебя огорчать. Любознайкин, но, если я правильно понимаю, «двигатель Любознайкина» может повернуться только на четверть оборота, иначе говоря, он очень мало меня интересует.

Л. – Не торопись с подобной критикой. Если бы у меня был только один подобный виток, то он (я в этом с тобой полностью согласен) смог бы повернуться только на четверть оборота. Но я хитрей, чем ты думаешь. Я укреплю на оси несколько витков, несколько сместив один относительно другого, чтобы они могли работать поочередно.

Н. – Но тогда нужно приставить специального человека, который посылал бы ток в различные витки. Он должен поворачиваться очень быстро и посылать ток именно в нужный виток.


Коллектор и щетки

Л. – Начнем с того, что предложенному тобой человеку вообще нечего делать, потому что по мере вращения оси витки сами будут проходить поочередно перед ними. Посмотри на рис. 97, где я нарисовал два витка и обозначил их цифрами 1 и 2.


Рис. 97. Чтобы изображенный на предыдущем рисунке двигатель мог повернуться более чем на 1/4 оборота, пришедший в движение виток 1 заменяют витком 2.

Как ты видишь, витки заканчиваются небольшими пластинками, при соединении которых со щетками В и В' по виткам протекает ток. Когда виток 1 расположен горизонтально (или немного наклонно) щетки В и В' подают ток в него. Когда (под воздействием магнита на создаваемое этим витком магнитное поле) ось начнет вращаться, ток перестанет поступать в виток 1, но в это время его место займет виток 2, в котором и начнет протекать ток через щетки В и В'.

Н. – Очень хитрая система. Значит ты расположишь перпендикулярно два витка, которые будут работать поочередно.

Л. – Я поставлю не два, а значительно большее количество витков, следовательно, больше придется поставить и пластинок. Реальная конструкция витков намного сложнее, но и описанная мной система вполне пригодна для практического использования. Таким образом, мы создали двигатель постоянного тока. Барабан из пластинок, вращающийся между щетками и поочередно подключающий к ним различные витки, называется коллектором. Иногда для создания магнитного поля, воздействующего на витки, используют постоянный магнит, как это показано на рис. 96, но часто предпочтение отдают электромагниту. Его катушку называют обмоткой возбуждения, а вращающуюся катушку – обмоткой якоря.

Н. – По сути дела электрический двигатель не так сложен, как я думал.

Л. – Правильно, в принципе это очень просто. Видишь ли, Незнайкин, вся хитрость конструкции двигателя заключается в использовании силы воздействия поперечных силовых линий магнитного поля на электрический ток. На заре электротехники думали использовать силу электромагнита, притягивающего железо. Эта сила в большей степени зависит от расстояния между электромагнитом и куском железа и поэтому требует создания сложной системы переключения катушек. Это обстоятельство побудило ряд очень серьезных авторов заявить, что электрический двигатель осужден окончательно и бесповоротно и что его никогда и нигде, кроме как в игрушках, использовать не удастся. К счастью, после этого подумали об использовании боковых сил. Попутно скажу тебе, что якорь обычно делают не из одного куска металла, а набирают из пластин, как трансформаторы, чтобы избежать возникновения вихревых токов. В якоре прорезают канавки, куда укладывают витки провода, о которых я тебе уже говорил. Стальные детали в форме полумесяца, именуемые полюсными наконечниками (потому что они соединены с полюсами магнита или электромагнита), расположены почти вплотную к якорю, чтобы облегчить замыкание в нем магнитных силовых линий. А теперь, Незнайкин, я задам тебе каверзный вопрос. Что случится, если я возьму двигатель постоянного тока с постоянным магнитом и начну вращать его якорь?


Динамомашина

Н. – О, своим вопросом ты ставишь меня в довольно затруднительное положение. Я полагаю, что раз витки провода пересекают магнитное поле, в этих витках должно наводиться напряжение.

Л. – Совершенно верно; благодаря щеткам и коллектору проводник, в котором магнитный поток изменяется наиболее быстро, всегда окажется соединенным через щетки с внешней цепью, и наш двигатель превратится в источник электрического тока.

Н. – Согласен, я внимательно следил за твоими объяснениями, но хотел бы знать, какова будет частота этого тока?

Л. – Тебе, Незнайкин, придется немало потрудиться, чтобы ее найти, потому что она равна нулю… На практике наша машина не даст строго постоянного тока: когда щетки будут покинуты парой пластин коллектора, сменяемой другой парой, в цепи возникнут небольшие колебания. Но так как очередной подключаемый к щеткам виток вращающегося якоря всегда занимает одно и то же положение относительно магнита, то ток во внешней цепи, подключенной к щеткам, будет всегда протекать в одном направлении. Таким образом, мы создали прибор, который называется динамомашиной.

Н. – Одно обстоятельство меня серьезно беспокоит, я не вижу никакой разницы между двигателем и динамомашиной!

Л. – Ты прав, Незнайкин, потому что конструктивно это абсолютно одно и то же. Все сводится только к вопросу об использовании. Если я вращаю якорь, затрачивая механическую энергию, и собираю произведенную электроэнергию, то я использую наш прибор как динамомашину; если я подаю ток в якорь, затрачивая электрическую энергию, и применяю полученную механическую энергию, то я использую его как электродвигатель.


Противоэлектродвижущая сила

Н. – Согласен, но и здесь один вопрос меня беспокоит. Когда мы заставим наш прибор работать как электродвигатель, а он на это время не забудет, что может быть динамомашиной… Тогда он в свою очередь начнет производить электрический ток, который наложится на тот, что мы ему подаем… Что же будет делать этот ток, помогать или мешать?

Л. – Превосходно рассудил, Незнайкин, но ты мог бы сам найти ответ на свой вопрос, вспомнив о противоречивом характере индукции, ты можешь быть заранее уверен, что создаваемая нашим прибором э. д. с. (так как он всегда остается динамомашиной) будет противостоять тому току, который мы создаем внешним источником, чтобы заставить работать прибор как двигатель. Эту препятствующую э. д. с. называют противоэлектродвижущей силой двигателя.

Н. – Но это уже ужасно! В двигателе не будет никакого тока, и он перестанет вращаться… Но если он перестанет вращаться, исчезнет противо-э. д. с. и он опять начнет вращаться… Я чувствую, что схожу с ума!

Л. – Не нервничай, Незнайкин, все это намного проще. Представь себе, что я подаю на двигатель некоторое напряжение, в результате по виткам якоря потечет ток, частота вращения будет нарастать. По мере увеличения частоты вращения повышается и противо-э. д. с. Через некоторое время наступает момент, когда она станет достаточно близкой к приложенному напряжению, в результате чего разность между этими двумя напряжениями пропустит в двигатель относительно небольшой ток. Этого тока будет достаточно только для поддержания вращения: полученная механическая энергия целиком уйдет на преодоление силы трения. Теперь заставим двигатель выполнять работу и для этого подключим к нему какую-нибудь нагрузку. Движение двигателя несколько замедлится, что вызовет уменьшение противо-э. д. с., которая перестанет (в такой мере, как раньше) уравновешивать приложенное к двигателю напряжение, благодаря чему ток в двигателе возрастет и даст ему достаточную механическую энергию, чтобы справиться с увеличившейся нагрузкой.

Н. – Это, кажется, я понял. Но мне хотелось бы получить некоторые разъяснения относительно понятий силы торможения и частоты вращения.


Крутящий момент двигателя

Л. – Все это исключительно просто. Если ты силой остановишь якорь двигателя, то его желание вращаться (которое называют крутящим моментом; определение я дам тебе несколько позднее) будет пропорционально величине поступающего в якорь тока. Увеличь вдвое ток, и тем самым ты удвоишь желание двигателя вращаться. Для большей правильности выражений говорят о крутящем моменте двигателя. Этот момент характеризуется весом, который может поднять двигатель, когда этот вес привязан к шнуру, намотанному на укрепленный на оси барабан.

Радиус барабана имеет в этом случае определенную величину. Так, например, мы можем сказать, что крутящий момент двигателя при токе 1 а в его якоре 0,3 кг·см, если этот двигатель при токе в якоре не менее 1 а, способен оторвать от пола груз массой в 0,3 кг, привязанный к шнуру, намотанному на барабан радиусом 1 см, который укреплен на оси двигателя.

Н. – О! Это страшно сложно. Но зачем понадобилось здесь указывать диаметр барабана?

Л. – Да потому, что если я намотаю шнур на барабан очень малого диаметра, то даже двигатель малой мощности сможет поднять значительный груз, только поднимать он будет очень медленно, так как за каждый оборот будет выбирать совсем короткий кусочек шнура. И наоборот, значительно более почетно поднять такой же груз при большем диаметре барабана, потому что при такой же частоте вращения двигателя груз поднимается намного быстрее.

Н. – Судя по твоим объяснениям, протекающий по двигателю ток позволяет определить его желание вращаться (или, как ты говоришь, его крутящий момент, но я пока еще остерегаюсь употреблять этот термин, который остается для меня довольно таинственным).

Л. – Ты правильно понял, а теперь нам предстоит познакомиться еще с одним понятием – со скоростью двигателя для данного напряжения. Предположим, что двигатель полностью освобожден от трения, тогда противо-э. д. с. строго соответствует прилагаемому напряжению. Иначе говоря, когда ты прикладываешь к якорю двигателя напряжение 10 в, он приходит в движение и разгоняется до такой скорости, на которой двигатель в случае его использования в качестве динамомашины дал бы напряжение 10 в. В этот момент протекающий по якорю ток почти равен нулю. Впрочем, это вполне логично, раз от двигателя не требуют никакого крутящего момента, ему достаточно лишь поддерживать установившееся при этом вращение своего якоря.

На самом же деле эти рассуждения справедливы только для двигателя на холостом ходу (т. е. не выполняющего никакой внешней работы) или для случая, когда обмотка якоря имеет очень низкое сопротивление.

Н. – Я начинаю понимать. Ноты неоднократно подчеркивал, что все рассказанное тобой относится к двигателю постоянного тока, и я надеюсь, что теперь ты перейдешь к более современным устройствам, а именно к двигателям переменного тока.


Работа на переменном токе

Л. – Я действительно собираюсь рассказать тебе о двигателях переменного тока, но, пожалуйста, не думай, что они более совершенные. Они имеют свои преимущества и свои недостатки, но если требуется большой крутящий момент в начале пуска и способность хорошо приспосабливаться к изменяющимся условиям работы, лучшем несомненно окажется двигатель постоянного тока.


    Ваша оценка произведения:

Популярные книги за неделю