Текст книги "Электроника?.. Нет ничего проще!"
Автор книги: Жан-Поль Эймишен
Жанр:
Радиоэлектроника
сообщить о нарушении
Текущая страница: 3 (всего у книги 21 страниц)
Рис. 22. Фотоэлектрический элемент. Под воздействием света катод испускает электроны, а анод эти электроны собирает.
Н. – Как я вижу, фотоэлемент не так уж сложен. Это просто диод, у которого катод не нагрет, а освещен. Но скажи мне, пожалуйста, почему ты нарисовал анод таким маленьким, как кусочек тонкой проволоки? Его следовало бы сделать значительно больше.
Л. – В этом нет необходимости и, кроме того, не забывай, что анод должен пропускать весь свет и не должен отбрасывать на катод тень. А кроме того, для небольшого анодного тока Ia (который редко достигает десятка микроампер и часто составляет всего лишь доли микроампера) большой анод не нужен.
Н. – До чего же маленькие токи в фотоэлементе. А кроме того, наверно, очень неудобно размещать анод на пути светового потока!
Л. – Как ты увидишь, мы очень легко приспосабливаемся к этим маленьким токам. Что же касается размещения анода, то можно сделать катод полупрозрачным и нанести его фотослой на внутреннюю стенку колбы: лучи света будут падать на фотослой катода с одной стороны (внешней), а электроны вылетать с другой стороны (внутренней), и тогда отпадет необходимость располагать анод со стороны источника света. И уж если мы начали говорить о катоде, позволь мне сказать, что имеется большое количество различных катодов. Катоды из цезия, нанесенного на слой сурьмы, чувствительны к синим и фиолетовым лучам; катоды из цезия, нанесенного на окись серебра, чувствительны в основном к красным и инфракрасным лучам. И наконец, запомни, что анодный ток Iа почти не зависит от анодного напряжения – он зависит только от освещенности катода (эта зависимость почти прямо пропорциональна, что позволяет установить чувствительность фотоэлемента в микроамперах на люмен[7]7
Люмен (лм) – единица измерения светового потока, посылаемого источником с силой света, равной 1 международной свече (1 св), внутрь единичного телесного угла (один стерадиан – 1 стер). (Прим. ред.)
[Закрыть]). В принципе вакуумный фотоэлемент ведет себя примерно так же, как диод в режиме насыщения, ток насыщения которого зависит от температуры нити накала.
Н. – Ты говоришь вакуумные фотоэлементы? Значит, бывают и другие?
Л. – К сожалению, да. Например, газонаполненные фотоэлементы, которые практически идентичны описанным выше, но отличаются от них тем, что в них вводят небольшое количество газа, ионизирующегося под воздействием исходящих с катода электронов. Ионизация газа увеличивает фотоэлектрический ток в несколько раз (может доходить до 4) и…
Н. – Так ведь это просто здорово, если первоначальный ток так мал. Почему же ты сказал «к сожалению»?
Л. – Поэтому что эти фотоэлементы годятся лишь для воспроизводящей головки звукового кинопроекта. Ты, вероятно, знаешь, что в звуковом кино звук чаще всего записывается в виде «звуковой дорожки» – узкой полоски переменной прозрачности, идущей по краю кинопленки. При демонстрации фильма эта дорожка проходит между лампой Л (рис. 23) и фотоэлементом Ф.
Рис. 23. С одного края кинопленки находится звуковая дорожка переменной прозрачности. При движении пленки в кинопроекторе звуковая дорожка в большей или меньшей степени ослабляет световые лучи, идущие от лампы Л к фотоэлектрическому элементу Ф; таким образом воспроизводится ток низкой частоты звукового сопровождения.
Промодулированный дорожкой свет попадает на фотоэлемент, который и преобразует его в электрические сигналы; последние поступают на усилитель. На протяжении многих лет газонаполненные фотоэлементы вытесняли все другие. Однако они очень недолговечны; их чувствительность изменяется во времени и зависит от температуры, а из-за запаздывания ионизации или деионизации они не могут правильно воспроизводить очень быстрые изменения света (уже на частоте 10 кгц они создают потери 3 дб)…
Н. – Достаточно, не выдвигай других обвинений. Для меня газонаполненные фотоэлементы осуждены окончательно и без права обжалования приговора. И сожалею только о том, что, кроме вакуумных фотоэлементов, нет никаких других приборов, чувствительных к свету.
Светочувствительные приборы
Л. – Твои сожаления совершенно излишни. Уже существует великое множество светочувствительных приборов. В первую очередь следует назвать фоторезисторы; некоторые вещества, в частности сульфид свинца, сульфид кадмия, а также селениды и антимониды, после соответствующей обработки обладают определенным электрическим сопротивлением, изменяющимся в зависимости от освещения. Но из этих веществ не всегда можно сделать настоящие резисторы; некоторые из них представляют собой полупроводники (протекающий по ним ток не пропорционален приложенному напряжению). Кроме того, они могут отличаться большой инерционностью (несколько десятых долей секунды). Поэтому фоторезисторы мало пригодны для измерения света, но прекрасно служат, когда нужно включить реле (рис. 24).
Рис. 24. При освещении фоторезистора его сопротивление снижается, и проходящий по нему ток может без дополнительного усиления включить реле.
Н. – Я думаю, что это как раз то, чего мне не хватало для моей системы охраны ювелирного магазина от воров.
Л. – Совершенно верно, особенно если учесть, что фоторезисторы достаточно чувствительны к инфракрасным лучам.
Н. – Опять эти инфракрасные лучи! Что это такое и как их получают?
Л. – Здесь нет ничего таинственного. Инфракрасные лучи располагаются в спектре немного дальше красных лучей в сторону более низких частот (более длинных волн). Наш глаз не может их увидеть, но некоторые фотоэлементы, чувствительны к ним так же, как к видимому свету. Для получения инфракрасных лучей используют простую лампу накаливания и фильтр, задерживающий все видимые световые лучи и пропускающий только инфракрасные. Таким образом, ты можешь получить луч невидимого света, который можно обнаружить вакуумным фотоэлементом с катодом, чувствительным к инфракрасным лучам; такой катод состоит из слоя цезия, нанесенного на пластинку из окиси серебра. Обычно фирмы, выпускающие фотоэлементы, называют эти катоды «катодами Si». Ты можешь также использовать фоторезистор, и никто не сможет увидеть твоей системы предупреждения.
Н. – Это, действительно, очень практично. Назови мне, пожалуйста, другие преобразователи света – я догадываюсь, что их должно быть немало!
Фотодиоды
Л. – О, да! Действительно имеется очень большое количество других. Но я назову тебе лишь фотодиоды (рис. 25). Это плоскостный диод из германия или кремния, имеющий зону n и зону р. Если зону р сделать положительной относительно зоны n, то ток свободно пройдет. А если подать обратное смещение, то ток не пройдет…
Рис. 25. Так обозначается на схемах фотодиод.
Н. – Как и в любом диоде из порядочной семьи!
Л. – Да, но этот диод «из порядочной семьи» набирается дурных идей, когда на его переход попадает свет: удары фотонов (частичек света) порождают на переходе пары «электрон – дырка», и диод ведет себя так, как если бы появился «ток утечки», впрочем, мало зависящий от напряжения.
Н. – Диод меня побери! Ты объяснил мне одно явление, которого я никак не мог понять: однажды я сделал универсальный измерительный прибор с гальванометром и четырьмя плоскостными германиевыми диодами и заметил, что при измерении переменных напряжений мое сооружение утром работает плохо, а во второй половине дня намного лучше. Окна моей лаборатории обращены на восток, и утром солнце сильно освещало диоды.
Л. – Это может служить объяснением. Но возможно также, что причина заключается в нагревании твоих диодов. Их предохраняют от воздействия света, покрывая черной краской.
Н. – Да, сначала краска была, но я ее соскоблил, чтобы посмотреть, что находится внутри.
Л. – Весьма поучительная история – любопытство всегда наказывается. Фотодиод интересен тем, что он часто в 300 раз более чувствителен, чем лучший из вакуумных фотоэлементов. А кроме того, он отличается малой инерционностью и легко воспроизводит изменения света со скоростью до 100 000 периодов в 1 сек. Основной его недостаток, общий для всех полупроводниковых приборов, – чувствительность к повышению температуры.
Н. – В 300 раз чувствительнее лучших вакуумных фотоэлементов! Да это просто чудо! Фотодиоды можно использовать только в сумерках!
Л. – Ты серьезно ошибаешься. Чувствительная поверхность фотодиодов очень маленькая, и требуется хорошее освещение, чтобы на эту крошечную поверхность попал поток в несколько люменов, необходимый для получения достаточного тока. Тем не менее это очень полезные приборы, и они несомненно заменят газовые фотоэлементы в воспроизводящих головках звуковых кинопроекторов.
Н. – Прекрасно!
Л. – Я тоже не надену траура. Однако существует и другое средство для чрезвычайно большого повышения чувствительности фотоэлементов.
Н. – Усиление?
Л. – Совершенно верно. Но сейчас я думаю не о том методе усиления, который ты знаешь, а о методе, основанном на использовании вторичной электронной эмиссии.
Фотоумножители
Н. – Что это еще за пугало? А, вспомнил. Это явление доставляло нам столько неприятностей в тетродах: ускоренные экранной сеткой электроны при попадании на анод выбивают из него новые электроны. В некоторых случаях когда потенциал сетки выше потенциала анода, экранная сетка улавливает эти электроны, что порождает определенный ток, протекающий от анода к экрану, и анод становится вторичным катодом.
Л. – Двадцать из двадцати, дорогой Незнайкнн! Для использования этого явления в фотоэлементах делают так, что электроны, исходящие с освещенного катода (его потенциал равен 0), попадают на первый электрод (с потенциалом +100 в). Этот электрод покрыт веществом, обладающим большой вторичной эмиссией, а расположен он рядом с другим электродом с потенциалом +200 в. На каждый электрон, вылетевший с фото катода и попавшим на электрод с потенциалом +100 в, с этого электрода вырывается 2 или 3 электрона, которые летят на электрод с потенциалом +200 в. Рядом с последним еще один электрод с потенциалом +300 в. он получает уже 4 или 9 электронов (рис. 26).
Рис. 26. В фотоумножителе испускаемые катодом электроны вызывают вторичную эмиссию на первом диноде, который посылает электроны на другой динод, имеющий более высокий потенциал. Этот второй динод еще раз умножает количество электронов и направляет их на анод.
Н. – Все это очень хорошо, но скажи, пожалуйста, Любознайкин, что мешает исходящим с фото катода электронам отправиться прямо на электрод с потенциалом +200 в, а еще лучше на электрод с потенциалом +300 в?
Л. – Этому препятствует само взаимное расположение электродов, создающее электрические поля соответствующей формы. Но тем не менее всегда находится несколько электронов с «дурной головой», которые идут туда, куда им ходить не следовало бы. Главное в том, что, говоря языком статистики, они немногочисленны.
Создав фотоумножитель с десятком каскадов умножения, можно достичь усиления фотоэлектрического тока в несколько миллионов раз. Чувствительность таких фотоумножителей бывает просто фантастической. Впрочем, эти электровакуумные приборы широко используются для измерений в промышленности, в астрономии…
Я принес с собою один такой прибор, чтобы показать его тебе.
Н. – О! А я-то ожидал увидеть колоссальное сооружение, особенно когда узнал, что в нем 11 фотоумножающих каскадов. Кстати, как называются эти электроды, которые одновременно являются анодами (для предшествующей части) и катодами (для последующей части)?
Л. – Они называются вторично-электронными катодами или динодами. Соответствующие потенциалы подаются на них с помощью цепочки резисторов или последовательно включенных маленьких неоновых лампочек, обладающих еще одним преимуществом, а именно, – способность стабилизировать напряжение. Тем не менее я предпочитаю (рис. 27) цепочку из резисторов, которая позволяет получить одинаковую разницу потенциалов между соседними динодами. Действительно, чувствительность всего устройства (а вернее, кратность умножения каскадов) очень сильно зависит от разности напряжения между двумя соседними динодами.
Рис. 27. Для питания многокаскадного фотоумножителя лучше подавать смещение на диоды с помощью цепочки резисторов, включенной между катодом (с высоким отрицательным потенциалом) и корпусом.
Н. – Понятно. Но почему на своей схеме ты подал на катод отрицательное напряжение?
Л. – Я предпочел подать на катод – 1000 в относительно корпуса и таким образом иметь потенциал последнего электрода (анода) близким к нулю, потому что именно с того электрода я буду снимать усиленный фотоэлектрический ток.
Н. – Но скажи, пожалуйста, зачем все-таки нужен фотоэлемент с такой чудовищной чувствительностью?
Л. – Весьма часто приходится иметь дело с очень слабым лучом света. Наиболее типичным случаем является использование фотоумножителей в сцинтилляционных счетчиках, предназначенных для обнаружения ядерного излучения[8]8
Сцинтилляции – отдельные вспышки света. (Прим. ред.)
[Закрыть].
Н. – Ты хочешь сказать атомных лучей?
Л. – В известном смысле, да, но мне абсолютно не нравится это выражение, порожденное авторами низкопробного фантастического чтива. Во всех явлениях, которые неверно называются «атомными», на самом деле происходят изменения ядра.
Н. – Я понял, к чему ты ведешь. Вырывание электронов с катода электронной лампы или из ионизированного газа затрагивает атомы и поэтому могло бы заслуживать название «атомного явления».
Л. – Совершенно верно. А кроме того, ты забыл о химических реакциях, когда различные атомы обмениваются между собой электронами. Тогда как при распаде радия изменение претерпевают ядра атомов; такие же явления происходят в металле атомных бомб (которые следовало бы назвать «ядерными бомбами») или в атомах материала, используемого в реакторах для производства плутония.
Н. – Все эти истории с радиоактивностью представляются мне довольно туманными. И раз ты начал мне говорить об этом, то я могу сделать вывод, что нам предстоит сменить класс рассматриваемых преобразователей, но часы показывают очень поздний час, и я думаю, что сегодня я не способен больше что-либо воспринять. Если ты не возражаешь, мы продолжим нашу беседу завтра.
Л. – Согласен, и мы сможем завершить вопрос о преобразователях. Он, несомненно, немного скучен, но имеет очень большое значение в электронике.
Беседа четвертая
ИЗМЕРЕНИЯ В ХИМИИ И ЯДЕРНОЙ ФИЗИКЕ
Проникнув в глубь вещества, Любознайкин посвящает своего друга в тайны протонов, нейтронов и других элементарных частиц, а также в тайны ядерных излучений. Сразу же после этого он переходит к преобразователям, чувствительным к этим излучениям (счетчики Гейгера, ионизационные камеры, сцинтилляционные счетчики); начав разговор о частицах, наши друзья добрались и до процессов, происходящих с ионами в растворах. Незнайкин узнает, что такое pH, характеризующее кислотность раствора, его окисляющие свойства, а также с помощью каких преобразователей можно измерить это число.
Незнайкин – Дорогой Любознайкин, я совершенно обескуражен. Я попытался прочитать статью о «ядерных явлениях» (как ты их называешь) и был буквально подавлен лавиной таких незнакомых терминов, как бета-лучи, нейтроны, изотопы, электрон-вольты, бетатрон…
Любознайкин – Я не стану объяснять значения всех этих терминов, но ты сам увидишь, что все это не так ужасно, как тебе кажется. Прежде всего я попрошу тебя напомнить мне, как устроены ядра атомов.
Строение атома
Н. – Это маленькие шарики, заряженные положительно и содержащие в себе почти всю массу атома.
Л. – Правильно, но об атомных ядрах известно намного больше. Они состоят из частиц двух типов: протонов – мельчайших зернышек с положительным зарядом, и нейтронов – мельчайших зернышек с такой же массой, но не имеющих электрического заряда. Заряд протона равен заряду электрона, но имеет противоположный знак. Само собой разумеется, что в ядре нейтрального атома имеется столько же протонов, сколько электронов вращается вокруг этого ядра. Количество протонов называется «атомным номером». Например, наиболее простое по своему устройству ядро водорода состоит всего лишь из одного протона, вокруг которого вращается один электрон.
Следовательно, атомный номер водорода 1. Но существует также и другой водород, именуемый тяжелым водородом (или дейтерием). В природе он существует в виде очень небольшой примеси к простому водороду (на 1 000 атомов простого водорода не более 1 атома тяжелого). Ядро этого тяжелого водорода состоит из одного протона и одного нейтрона (рис. 28).
Рис. 28. Ядро простого водорода состоит только из одного протона. В ядре тяжелого изотопа водорода дейтерия кроме протона имеется еще один нейтрон. У атомов обоих типов водорода вокруг ядра вращается только один электрон.
Каждый такой атом, как и атом простого водорода, имеет только один электрон. Дейтерий имеет более высокую плотность, чем легкий водород, но обладает почти идентичными химическими свойствами. В периодической таблице элементов Менделеева легкий водород и дейтерий располагаются вместе, и именно поэтому дейтерий и легкий водород называют изотопами от греческих слов «изос» (тот же) и «топос» (место).
Существуют и другие атомы, ядра которых содержат одинаковое количество протонов (имеют один и тот же атомный номер), но могут существовать в двух формах. Эти формы отличаются одна от другой по количеству нейтронов, объединенных с протонами в ядре. Например, хлор с атомным номером 17 (17 протонов в ядре и 17 электронов вокруг ядра) имеет два типа атомов: у одних ядро состоит из 17 протонов и 18 нейтронов (общее число частиц в ядре 35), а у других ядро состоит из 17 протонов и 20 нейтронов (общее число частиц в ядре 37). Эти два типа хлора, строго идентичные с точки зрения химии, и являются изотопами.
Смесь изотопов
Н. – А из каких атомов состоит газ, который называют «хлором», с 18 или 20 нейтронами?
Л. – Он содержит примерно 3/4 атомов с 18 нейтронами и 1/4 атомов хлора с 20 нейтронами.
Н. – Изменяется ли это соотношение в зависимости от происхождения хлора?
Л. – Нет. Это одно из наиболее любопытных известных явлений природы; соотношение двух изотопов строго одинаково как в хлоре, добытом из соли Индийского океана, так и в хлоре калиевой соли, добываемой в шахтах Эльзаса.
Н. – Можно ли разделить эти изотопы?
Л. – Да, можно, но чрезвычайно трудно. В таком разделении изотопов заключается значительная часть работы современных ядерных производств: разделение природного урана на изотоп 235 (92 протона и 143 нейтрона) и изотоп 238 (92 протона и 146 нейтронов). Изотоп 235 единственный радиоактивный изотоп урана, т. е. такой, ядра которого распадаются самопроизвольно. В природном уране его содержится всего лишь 0,7 %.
В принципе, Незнайкин, большинство веществ, которые называют «простыми», на самом деле состоят из смеси изотопов, но их так трудно разделить, что лишь в начале XX века установили, что они представляют собой смесь. Прими во внимание, что с точки зрения химии эти изотопы строго идентичны, и ты поймешь, почему их так недавно открыли.
Мир частиц
Н. – Теперь я достаточно хорошо понимаю, что такое изотопы. Но я хотел бы также узнать, что представляют собой бета-частицы и другие…
Л. – Именно об этом я и хочу рассказать. Так называемые радиоактивные вещества отличаются определенной неустойчивостью: их ядра самопроизвольно распадаются, и мелкие кусочки ядра разлетаются во все стороны. Такими осколками ядер могут быть нейтроны (испускание нейтронов), иногда электроны (тогда говорят, что мы имеем дело с бета-лучами или β)[9]9
β-частицы являются быстрыми электронами, скорости которых могут достигать 99 % скорости света. (Прим. ред.)
[Закрыть]. Случается также, что из ядра вылетают группы, состоящие из четырех частиц: двух нейтронов и двух протонов. Эти группы называют альфа-частицами α или «гелионами», а поток этих частиц называют альфа-лучами[10]10
α-частицы являются ядрами гелия, движущимися со скоростями около (104 – 2·104) км/сек. (Прим. ред.)
[Закрыть].
Ядерные явления сопровождаются также гамма-излучением (γ), которое аналогично свету (или, вернее, рентгеновским лучам) и проявляет волновые свойства.
Н. – Как я вижу, это излучение совсем не похоже на другие; это своего рода свет, а не поток частиц.
Л. – О! Знаешь, между излучением частиц и излучением светового типа разница не столь уж велика. Они различаются между собой скорее всего проникающей способностью. Альфа-лучи далеко не уходят – их путь в воздухе всего несколько миллиметров. Бета-лучи способны уйти дальше и пройти сквозь лист алюминия и даже через тонкий стальной лист (чем меньше плотность вещества, тем легче проходит через него ядерное излучение). Гамма-лучи обладают высокой проникающей способностью. Все эти три вида излучения обладают ионизирующими свойствами, т. е. они способны вызвать ионизацию газа. При прохождении через газ они могут разделить молекулы газа на нейтральные с точки зрения электричества части (ионы) и сделать газ проводником. Они могут также вызвать конденсацию паров воды, когда последние охлаждены ниже температуры, в которой (при данной концентрации) должна происходить конденсация. Пар может находиться в этом неустойчивом состоянии перенасыщения…
Н. – … как вода, которую удается охладить на несколько градусов ниже нуля без превращения в лед.
Л. – Прекрасное сравнение. Такой пар может быстро превратиться в воду, если через него пройдут ядерные α, β или γ-лучи, что можно наблюдать по образованному мелкими капельками воды следу.
Н. – Если я правильно понял, α, β и γ-лучи можно различить по их проникающей способности?
Л. – Да, этой идеей можно воспользоваться, но обычно предпочитают пропускать излучение через магнитное поле: альфа-лучи (очень тяжелые положительно заряженные частицы) несколько отклоняются в одну сторону; бета-лучи (очень легкие частицы с отрицательным зарядом) сильно отклоняются в другую сторону, а гамма-лучи вообще не отклоняются (рис. 29).
Рис. 29. Магнитное поле Н не отклоняет гамма-лучи, немного отклоняет альфа-лучи и сильно отклоняет (в противоположную сторону) бета-лучи.
Нейтроны тоже не отклоняются магнитным полем. Пучок нейтронов не обладает также ионизирующим свойством и не конденсирует паров воды; его обнаруживают косвенными методами.
Н. – А могут ли эти лучи, наподобие рентгеновских, пронизать человеческое тело?
Л. – Да, за исключением α-лучей. Как и рентгеновские лучи, они в больших дозах чрезвычайно вредны для человека и живых существ, поэтому очень важно уметь их обнаруживать.
Измерение излучения
Н. – Ты, вероятно, используешь для этой цели конденсацию водяных паров, находящихся в состоянии «отсроченной конденсации»?
Л. – Такой пар называют «перенасыщенным». Его действительно можно использовать, и именно таким образом изучали радиоактивность лет тридцать назад. Камеру, содержащую пар, называют «камерой Вильсона». Но нам лучше было бы воспользоваться свойством ядерных излучений делать газ проводником электричества. Для этого газ нужно поместить в закрытый сосуд (называемый ионизационной камерой) между двух электродов, к которым приложено определенное напряжение. Теперь достаточно замерить проходящий через ионизационную камеру ток – он пропорционален интенсивности излучения, давлению газа и объему камеры (в предположении, что весь газ в камере подвергается воздействию излучения).
Н. – Ты собираешься измерить ток амперметром?
Л. – О, разумеется нет! Даже у самого чувствительного из микроамперметров стрелка отклонилась бы только в случае использования гигантской камеры, подверженной чудовищному облучению. На практике приходится сталкиваться с токами порядка миллионной доли микроампермера или даже еще меньше. Эти токи пропускают (рис. 30) через резисторы с чрезвычайно большими сопротивлениями (несколько тысяч или миллионов мегом), а разницу потенциалов на их выводах замеряют уже упоминавшимся электрометрическим усилителем, о котором мы еще будем говорить.
Рис. 30. Ядерные частицы, проходя через ионизационную камеру, ионизируют находящийся там газ, в результате чего начинает проходить очень небольшой ток. Падение напряжения, создаваемое этим током, измеряют на резисторе с очень большим сопротивлением.
Н. – Значит, твой метод с ионизационной камерой совсем нечувствительный?
Л. – Чувствительность мала, но она позволяет измерять излучения в очень широком диапазоне интенсивностей: от таких, которые человек без особого вреда выдерживает десятки часов до могущих убить его в одну минуту.
Н. – В последнем случае я предпочел бы держать ионизационную камеру на конце длинного шеста!
Счетчик Гейгера – Мюллера
Л. – Нередко делают еще лучше – измерения поручают проводить управляемым по радио роботам. При измерении менее интенсивных излучений применяют счетчики Гейгера – Мюллера, в которых ионизирующие свойства используются иначе, чем в ионизационной камере.
Н. – Что это за инструмент?
Л. – Он чрезвычайно прост и представляет собой запаянную колбу, заполненную газом с низким давлением. В колбе находится металлическая трубочка, в которой проходит изолированный от нее провод (рис. 31). Если создать некоторую разность потенциалов между проводом и трубочкой, то получим…
Рис. 31. Счетчик Гейгера – Мюллера. Трубочка с натянутой по ее оси проволокой помещена в колбу, заполненную газом с низким давлением. Ионизация, вызываемая каждой ядерной частицей, приводит к электрическому пробою газа.
Н. – … ионизационную камеру.
Л. – Действительно, сходство большое, и наш счетчик можно было бы использовать как ионизационную камеру. Но приложенная разность потенциалов относительно велика – она близка к той, которая требуется для начала электрического разряда газа в колбе. Если ядерная частица пройдет через газ, она может вызвать электрический разряд.
Н. – Точно так же, как и в ионизационной камере.
Л. – Нет, и по двум причинам. Во-первых, разность потенциалов между двумя электродами достаточно высока, чтобы под воздействием местной ионизации, вызванной ядерной частицей, лавинообразно ионизировался весь газ в колбе и возник электрический разряд. Во-вторых, мы не ставим задачу измерять возникающий электрический ток, а стараемся лишь установить, сколько раз в секунду произошло это явление.
Н. – Так, значит, нам нужно сосчитать импульсы, а их может быть очень много. Это не очень практично. Но ты мне сказал, что ионизация становится общей под воздействием напряжения труба – провод, а как же она тогда гаснет?
Л. – Полезное замечание. Действительно, если не предпринять специальных мер, она не погаснет. Для этой цели можно использовать электронную схему, называемую схемой гашения, которая после импульса ионизации значительно снижает напряжение на выводах счетчика и тем самым вызывает деионизацию. Но наилучшее решение заключается во введении в находящийся в колбе газ небольшого количества паров спирта или брома; тяжелые молекулы примеси своей инерцией вызовут деионизацию газа в счетчике сразу же после его ионизации, получится самогасящийся счетчик. Посмотри, я принес с собой такой счетчик. Я подаю на него питание, а к выводам резистора, по которому протекает ток центрального проводника, подключен вход усилителя. Громкоговоритель на выходе усилителя позволит нам услышать импульсы. Я подношу к нашему счетчику кусочек уранита (руды, содержащей радий и уран); слышишь, как часто следует один за другим щелчки?
Н. – Да, но звук производит странное впечатление, это не музыкальная нота. Несомненно причина в том, что звук порождается импульсами, а не синусоидами.
Л. – Совсем нет, Незнайкин. Распады ядер атомов подчиняются только закону случая. Может случиться так, что в одну секунду произойдет только один распад, а в следующую – десять. Эти импульсы следуют один за другим так же неравномерно, как стучат капли дождя по крыше. Но тем не менее можно установить средний темп в виде количества ударов в минуту (если за минуту происходит достаточное количество распадов, чтобы мог проявиться закон больших чисел).
Н. – А теперь убери подальше свой уранит. Постой, здесь наверное спрятано какое-то радиоактивное вещество – щелчки продолжаются, правда они стали очень редкими.
Космические лучи
Л. – То, что ты слышишь сейчас, Незнайкин, космические лучи, таинственные лучи, возникающие в верхних слоях атмосферы под воздействием прилетающих из звездного пространства частиц и падающих на нас, как непрерывный довольно слабый дождь. Они аналогичны гамма-излучению, но обладают большей проникающей способностью: несколько метров бетона не останавливает и 10 % космических лучей. Они причиняют много хлопот при измерениях, так как избавиться от них невозможно и приходится производить измерения с учетом наличия этих лучей, как если бы мы захотели производить измерения света, не имея возможности добиться в помещении полной темноты.
Н. – Но тебе не следовало этого мне говорить. Непрерывно пронизывающие меня насквозь лучи не способствуют хорошему настроению.
Л. – Успокойся, Незнайкин. Космические лучи пронизывают тебя точно так же, как всегда пронизывали все человечество, но мы себя от этого хуже не чувствуем.
Н. – Ну, ладно, но скажи мне, какие лучи можно обнаружить твоим счетчиком?
Л. – Все лучи, обладающие ионизирующими свойствами и достаточной проникающей способностью, чтобы достичь трубочки счетчика: все виды гамма-лучей, бета-лучи с достаточной проникающей способностью (особенно, если стенка колбы счетчика тонкая) и даже некоторые виды альфа-лучей, если на конце счетчика сделано тонкое окошко из пропускающего эти лучи материала, например из слюды. Во всяком случае счетчик Гейгера – Мюллера представляет собой высокочувствительный измерительный прибор: он начинает вырабатывать импульсы, значительно учащенные по сравнению с импульсами, вызываемыми космическими лучами, уже при очень низких уровнях радиации, не представляющих никакой опасности для человека, например при радиации от небольшого количества радиоактивной руды. Поэтому эти счетчики используют в геологической разведке и в научных исследованиях для обнаружения излучения.
Сцинтилляционный счетчик
Н. – Так, значит, счетчик Гейгера – Мюллера самый чувствительный прибор для обнаружения ядерных излучений?
Л. – Нет, его рекорд по чувствительности побит сцинтилляционным счетчиком.
Н. – Что это за прибор? Мне кажется, что ты уже упоминал о нем, когда рассказывал о фотоэлементах с умножением электронов?
Л. – Действительно. Здесь используется кристалл или кусочек специальной пластмассы, обладающей свойством давать вспышку света при попадании ядерной частицы. Этот кристалл помещается рядом с фото катодом фотоумножителя (рис. 32).
Рис. 32. Ядерные частицы проходят через черную бумагу или тонкий слой металла (их задача не пропустить свет) и попадают на кристалл. На каждую частицу кристалла воздействуют вспышкой света, обнаруживаемой фотоумножителем, на который наклеен кристалл.
Фото катод закрыт от воздействия постороннего света черной бумагой или каким-либо иным непрозрачным слоем, через который должны пройти частицы прежде, чем попасть на кристалл. Ток фото у множителя складывается из серии импульсов, средний ритм следования которых и замеряется. Этот метод настолько чувствителен, что он позволяет обнаруживать радиоактивные руды с движущегося автомобиля или с самолета, пролетающего над обследуемой местностью. Кроме того, сцинтилляционный счетчик на каждую частицу вырабатывает импульс, пропорциональный ее энергии, тогда как у счетчика Гейгера все импульсы одинаковые. Это свойство позволяет производить измерение энергетического спектра изучаемых частиц.