355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Жан-Поль Эймишен » Электроника?.. Нет ничего проще! » Текст книги (страница 20)
Электроника?.. Нет ничего проще!
  • Текст добавлен: 10 мая 2017, 18:30

Текст книги "Электроника?.. Нет ничего проще!"


Автор книги: Жан-Поль Эймишен



сообщить о нарушении

Текущая страница: 20 (всего у книги 21 страниц)

Н. – Твоя схема очень хитрая. На мой взгляд, она несколько похожа на своеобразные весы. Если бы левое плечо коромысла состояло из трех реек равной длины и к каждой из них была подвешена чашка, то можно было бы сказать, что в висящие на тройном левом коромысле чашки мы положили равные гири Е1, Е2 и Е3 и что весы уравновешены лежащей в правой чашке гирей S, вес которой равен сумме весов гирь, лежащих в левых чашках.


Л. – Превосходная аналогия. Впрочем, можно сказать, что она применима и к схеме, изображенной на рис. 151. Потенциал точки А остается неизменным, потенциалы левого вывода резистора R1 и правого вывода резистора R2 изменяются пропорционально сопротивлениям этих резисторов. Это очень напоминает движение концов рычага, у которого точкой опоры служит точка А, а плечами которого соответственно служат сопротивления резисторов R1 и R2.

Н. – Ты дал мне способ, позволяющий сложить три напряжения…

Л. – Схемой с тремя входами я воспользовался лишь для примера. На практике же входов можно сделать столько, сколько их потребуется.

Н. – Ты меня неправильно понял. Я хотел сказать, что схема хорошо производит сложение, но меня интересует, как осуществить вычитание.

Л. – Очень просто. Для этого нужно воспользоваться схемой на рис. 151, подобрав резисторы R1 и R2 с одинаковым сопротивлением; в этих условиях положительному напряжению Е будет соответствовать равное ему по абсолютному значению отрицательное напряжение S. «Прибавление» этого напряжения S к другим напряжениям со схемы на рис. 152 соответствует его вычитанию из напряжения Е.


А теперь я хотел бы услышать, что ты думаешь о схеме, изображенной на рис. 153.


Рис. 153. Схема усилителя работающего как интегратор.


Интегратор

Н. – На вид она очень простая, но я не доверяю кажущейся простоте. Я полагаю, что, продолжая наши недавние рассуждения, можно считать потенциал точки А практически равным нулю. В этих условиях протекающий по резистору ток должен быть равен E/R. Однако это совершенно не соответствует действительности, так как ток не может идти на вход усилителя (входное сопротивление бесконечно велико). Ток должен идти через конденсатор, однако постоянный ток через конденсатор протекать не может.

Л. – В установившемся состоянии, разумеется, не может. Но я не вижу, что могло бы помешать в течение некоторого времени послать постоянный ток в конденсатор, чтобы его зарядить.

Н. – Верно, об этом я почему-то не подумал. Но твой конденсатор не может зарядиться: левая обкладка конденсатора имеет нулевой потенциал, а правая соединена с выходом усилителя!

Л. – Незнайкин, твоя форма явно ухудшилась – ведь выход усилителя не точка с постоянным потенциалом. По мере заряда конденсатора потенциал его правой обкладки будет снижаться. Как ты видишь, в каждый момент ток, заряжающий конденсатор, пропорционален напряжению Е, Какой вывод из этого можно сделать?

Н. – Я полагаю, что если напряжение Е поддерживать неизменным, конденсатор С будет заряжаться током постоянной величины, т. е. заряд конденсатора будет нарастать исключительно равномерно.

Л. – Я предпочитаю более точные выражения. Следует сказать, что конденсатор будет заряжаться по линейному закону. А что произойдет, если напряжение Е перестанет быть неизменным?

Н. – О, получится ужасная картина. Конденсатор станет накапливать полученный ток, сложит все это вместе и создаст страшную неразбериху.

Л. – Строго говоря, он не станет складываться, а сделает значительно лучше – он будет интегрировать. Полученное устройство представляет собой почти совершенную интегрирующую схему. Как ты помнишь, в свое время мы собрали интегрирующую схему всего лишь из одного резистора и из одного конденсатора (см. рис. 70). Ту схему можно использовать только в тех случаях, когда выходное напряжение S мало или даже ничтожно по сравнению с входным напряжением Е, чтобы напряжение на выводах резистора R можно было считать равным Е. В приведенной же на рис. 153 схеме напряжение на выводах резистора R всегда строго равно Е даже в тех случаях, когда выходное напряжение значительно. Следовательно, это совершенная интегрирующая схема.

Н. – Когда начинают говорить об интеграторах и подобных им устройствах, меня охватывает довольно сильное чувство беспокойства. Я думаю, что эта схема никогда не ходит одна. Когда я слышу об интегрирующей схеме, я полагаю, что и дифференцирующая находится где-то недалеко.

Л. – И ты прав. Дифференцирующую схему можно получить, если в схеме на рис. 153 поменять местами резистор и конденсатор. Как ты видишь, с помощью операционных усилителей мы можем производить умножение на постоянную величину, сложение, вычитание, а также можем интегрировать и дифференцировать.


Аналоговый умножитель

Н. – Да, но мне еще кое-чего не хватает. Если ты намерен с качестве исходных данных всегда использовать напряжение, то я не представляю себе, как можно одно напряжение умножить на другое. В «схеме Незнайкина» (см. рис. 148) используются не напряжения, а положения осей потенциометров.

Л. – В случае надобности мы можем использовать схему, которую ты с присущей тебе скромностью называешь «схемой Незнайкина». Для этого потребуется установить два сервомеханизма и с их помощью заставить умножаемые напряжения управлять движками потенциометров. Но имеются и другие методы и, в частности, метод, основанный на использовании эффекта Холла.

Н. – Этим эффектом ты называешь эхо, которое мы слышим в больших холлах или на вокзалах?

Л. – Незнайкин, будь, пожалуйста, посерьезнее. Эффект Холла заключается в появлении разности потенциалов между точками пластины из полупроводника, через которую проходит ток перпендикулярно направлению магнитного поля, как это показано на рис. 154.


Рис. 154. Эффект Холла. В пластине из полупроводника, помещенной в магнитное поле Н, при прохождении по ней электрического тока I2 между точками А и В появляется разность потенциалов, пропорциональная I2 и Н.

Ток протекает по пластине направо, а магнитное поле Н направлено сверху вниз. В этих условиях между точками А и В появляется разность потенциалов, которая пропорциональна протекающему по пластине току и напряженности магнитного поля. Если магнитное поле создается катушкой, по которой протекает ток I1, а по пластине проходит ток I2, то разность потенциалов между точками А и В пропорциональна произведению I1I2. Таким образом можно создать аналоговый умножитель.


Область применения аналоговой вычислительной техники

Н. – Это представляется мне довольно ясным, но я плохо понимаю прилагательное «аналоговый», которое ты уже несколько раз произнес.

Л. – Этим эпитетом обозначают целый класс вычислительных машин, оперирующих с непрерывно изменяющимися электрическими величинами. Эти величины представляют собой электрическую аналогию используемых в расчетах самых различных по своей природе величин. Например, если на вход изображенной на рис. 153 интегрирующей схемы подать напряжение, отображающее скорость движущегося предмета, то выходное напряжение представит собой электрическую аналогию пройденного этим предметом пути. Как ты видишь, используемый здесь метод коренным образом отличается от метода, который мы использовали в расчете по двоичной системе счисления. Цифровые вычислительные машины используют числа и производят с ними арифметические операции: каждое из этих чисел может изменяться только скачкообразно и представляет собой не аналоговый эквивалент явления, а численное выражение этого явления.

Н. – Я хорошо понял различие. Аналоговые машины представляются мне значительно более простыми и более симпатичными, чем цифровые. Устройство аналоговых машин понять намного легче.

Л. – Отчасти это верно. Но необходимо отметить, что аналоговые машины значительно уступают цифровым по точности производимых вычислений: получить 1 % довольно легко, а перешагнуть 0,1 % очень сложно. Иначе говоря, аналоговую технику можно рекомендовать в тех случаях, когда особой точности не требуется.

Устройство аналоговых вычислительных машин внешне проще, но не забывай, что создать операционный усилитель довольно сложно, так как в дополнение к исключительно высокому коэффициенту усиления (часто выше 100 000) он должен обладать еще целым рядом качеств, которые я тебе уже назвал.


Создание операционных усилителей

Н. – А как достигают такого результата?

Л. – Обычно используют один из модуляторов, отрезающих все или ничего, о которых я тебе уже говорил. Вместо механического модулятора чаще ставят модулятор на транзисторах или систему на фоторезисторах (резисторах, омическое сопротивление которых зависит от освещенности). Такие устройства могут иметь очень ограниченную полосу пропускания, что оказалось бы существенным препятствием для использования глубокой отрицательной обратной связи. Для предотвращения такой опасности используют довольно сложную схему, именуемую схемой Гольдберга, в которой переменную составляющую входного напряжения подают в заданную точку усилителя, а постоянную составляющую передают через предварительный усилитель, снабженный модулятором и детектором. Все это устройство достаточно сложно, но оно практически является наилучшим решением, способным обеспечить очень высокий коэффициент усиления, хорошую стабильность и дать возможность применять очень глубокую отрицательную обратную связь. Не забывай, что в приведенной на рис. 151 схеме при R1 = R2 я устанавливаю коэффициент отрицательной обратной связи, равный коэффициенту усиления усилителя, а я тебе уже говорил, что он может быть порядка 100 000.

Н. – Теперь я понял, почему ты всегда говорил, что потенциал входа А следует считать ничтожно малым. Но я также понял, что эти операционные усилители ужасно сложны и, по-видимому, очень дороги.

Л. – И ты не ошибся, Незнайкин. Эти усилители в самом деле очень дороги, а в большой аналоговой вычислительной машине их может быть очень много.


Использование аналоговых вычислительных машин

Н. – Я не очень хорошо понимаю, почему их столько нужно. Не можешь ли ты на примере объяснить мне возможности аналоговых вычислительных машин?

Л. – Как ты знаешь, в механике существуют качающиеся системы. Всякое обладающее массой тело, удерживаемое в каком-либо определенном положении пружиной, воздействующей на него с силой, пропорциональной расстоянию между положением тела и собственным положением покоя, начинает качаться, если его силой сдвинуть с занимаемого им положения. В одной машине может быть несколько таких систем. Так, например, когда ты одним колесом своей микролитражки въезжаешь на тротуар, смещение колеса вверх передает определенный импульс на колеса. На самом колесе имеется амортизированная качающаяся система, которую ты называешь барабаном. Колесо соединяется с корпусом автомобиля подвеской, которая служит второй качающейся системой. Толчок, вызываемый въездом на тротуар, смягчается эластичным устройством – шиной. С помощью схем, состоящих из конденсаторов и катушек, мы можем имитировать качающиеся системы, а их механические амортизаторы можно имитировать последовательно включенными резисторами; таким образом, мы создадим электрические аналоги наших механических систем. Для имитирования въезда на тротуар мы подадим соответствующий электрический импульс на всю совокупность используемых схем, которая представляет автомобиль (а вернее, его поведение).

Н. – Это в самом деле очень хорошо. Таким образом мы устраняем риск повреждения шины.


Вычисления в «нереальном времени»

Л. – Это не единственное положительное качество. При моделировании мы можем изменять масштаб времени. Электрическое явление в точности соответствует поведению механической системы (например, напряжение на определенном электроде воспроизводит движение автомобиля во времени), но происходит оно в другом масштабе времени. Или, как говорят кинорежиссеры, совсем не обязательно работать в «реальном времени». Поэтому мы, например, можем сделать так, что электрические процессы будут протекать медленнее воспроизводимого ими явления, что облегчит запись выходного напряжения. В других же случаях может понадобиться, наоборот, ускорить эволюцию электрического эквивалента изучаемого явления.

Н. – В этом я не вижу никакой пользы, ведь намного интереснее получить возможность внимательно, не торопясь проследить за ходом развития явления.

Л. – Да, если это очень быстрое явление. Но может понадобиться исследовать и какую-либо очень медленную эволюцию. Как, например, проследить за работой большого парового котла, питающего турбину. Изменение огня в топке из-за значительной тепловой инерции котла скажется на давлении пара только через значительное время. Поэтому очень интересно создать аналоговую модель котла и турбины, позволяющую в любой момент узнать, как будет реагировать вся установка на уменьшение или увеличение подачи угля на одну лопату. Проводя такой ускоренный предварительный анализ поведения установки, мы получаем возможность расходовать топливо с максимальной рентабельностью.

Н. – По сути дела, это современный вариант хрустального шара колдунов – с помощью своего метода ты прекрасно предсказываешь будущее!

Л. – Ты преувеличиваешь – я могу «предсказать будущее» лишь в той мере, в какой оно строго подчиняется простым математическим законам. Только в этом случае имеется возможность экстраполировать во времени последствия относительно ограниченного действия.

Н. – До того момента, когда все электронные автоматы восстанут против своих творцов.

Л. – Я попрошу тебя! Пожалуйста, не заимствуй дурной насыщенный стиль у бульварной прессы! Не забывай, что ни одна электронная машина не даст тебе того, что ты в нее не вводил. Она также не может восстать или попытаться проглотить своего конструктора, как автомобиль, в котором никого нет, не может сам броситься в погоню за своим водителем. Успокойся, Незнайкин, мы ознакомились со многими вопросами электроники, а в этой науке мне больше всего нравятся ее удивительные возможности помочь человеку. Электроника обеспечит прогресс техники, который сегодня нельзя даже представить себе, но который в значительной мере пойдет на благо человечеству,

Н. – Если ты перешел к таким большим обобщениям, я должен сделать вывод, что мы закончили нашу беседу.

Л. – Нам еще предстоит об очень многом поговорить. Я предлагаю тебе, Незнайкин, подумать пару недель, а затем вновь прийти ко мне, чтобы разом и в любом порядке задать мне вопросы по всем темам, которые кажутся тебе наиболее сложными. Я надеюсь, что таких вопросов окажется не очень много и мы быстро покончим со всем, что осталось неясным.

Беседа семнадцатая
ПУТЕШЕСТВИЕ ВОКРУГ РАДИОЛОКАТОРА

У Незнайкина масса вопросов. Почти все они возникли во время экскурсии на радиолокационную станцию и при чтении ее технического описания. С помощью Любознайкина он знакомится с техникой сверхвысоких частот: с магнетронами. клистронами, коаксиальным кабелем, радиолокационным антенным переключателем «передача – прием», стабилизаторами напряжения питания и системой передачи угла поворота с помощью сельсинов. Полностью отдавшись увлечению, Незнайкин строит грандиозные планы, показывая тем самым, что в электронике для него не осталось никаких секретов.


Любознайкин – Ну как, Незнайкин, много ли ты набрал вопросов, которые ты хочешь мне задать?

Незнайкин – Великое множество, но я думаю, что на многие из них я мог бы и сам найти ответ. Я отобрал лишь некоторые вопросы, которые возникли у меня на прошлой неделе, когда я совершил экскурсию на радиолокационную станцию. Для начала попрошу тебя объяснить мне, как работает магнетрон.


Двуханодный магнетрон

Л. – Хорошо, начнем с двуханодного магнетрона. Его аноды представляют собой половинки цилиндров, расположенные так, что образуют подобие трубки, внутри которой размещен подогревный катод. Вся эта конструкция находится в междуполюсном зазоре мощного магнита, силовые линии которого параллельны оси цилиндра. Схема включения двуханодного магнетрона изображена на рис. 155, аноды соединены с выводами колебательного контура.


Рис. 155. Первый тип магнетрона – двуханодный магнетрон, помещается в магнитное поле, параллельное оси его катода.

Положительный полюс источника высокого напряжения соединен со средней точкой контура, а отрицательный – с катодом магнетрона. Само собой разумеется, что все элементы магнетрона – его катод и аноды – помещены в колбу, из которой откачан воздух. Представь себе, что из-за небольшого рассогласования один из анодов в какой-то момент имеет потенциал чуть выше, чем другой.

Н. – Разве такое положение возможно? Ведь аноды соединены между собой колебательным контуром.

Л. – В контуре вполне возможно возникновение небольших колебаний, которые создадут на мгновение разность потенциалов между его выводами. Как поведут себя в этом случае выходящие с катода электроны?

Н. – О! Здесь нет никакой проблемы. Большинство электронов пойдет к тому из анодов, который имеет более высокий потенциал.

Л. – В этом-то напряжении электронов пойдет меньше, чем в другом. Не забывай о наличии магнитного поля – оно стремится закрутить траекторию движения электронов вокруг катода. Поэтому из-за отклонения траектории большое число электронов, двигавшихся в сторону более положительного анода, попадет на менее положительный анод.

Н. – Эти электроны ведут себя крайне нелепо!

Л. – Ничего подобного! Эти электроны стремятся усилить первоначальный разбаланс. Они повышают разность потенциалов между двумя анодами до тех пор, пока колебательный контур не начнет изменять эту разность в другую сторону. Следовательно, колебания будут поддерживаться действием электронов и магнитным полем.

Н. – Очень ловко! Но по сути дела твой магнетрон не что иное, как. диод с двумя анодами.


Многоанодный магнетрон

Л. – Совершенно верно. Но обычно магнетроны делают не с двумя, а с большим количеством анодов, например с восемью или десятью. Их можно расположить по схеме, приведенной на рис. 156.


Рис. 156. Многорезонаторный магнетрон с восемью анодами, соединенными колебательными контурами.

Колебания создаются точно так, как показано на рис. 155; разница заключается лишь в том, что в этом случае делают восемь одновременно работающих связанных колебательных контуров. В какой-то определенный момент четные аноды положительны относительно нечетных, а в следующий полупериод – наоборот.

Н. – Я понимаю принцип работы, но, на мой взгляд, сделать такую восьмианодную систему с восемью колебательными контурами дьявольски сложно!

Л. – Намного проще, чем ты думаешь, Незнайкин. Все эти колебательные контуры и аноды сделаны из одного куска меди, которому придана форма, показанная на рис. 157. Весь этот медный блок соединяется с положительным полюсом источника высокого напряжения. Как ты видишь, чтобы пройти от одного анода к другому, ток должен обогнуть полости, что дает нам эквивалент одновитковой катушки.



Рис. 157. Реальная конструкция восьмикамерного магнетрона; колебательными контурами являются объемные резонаторы, полученные фрезерованием анодного блока. В одном из объемных резонаторов находится петля – виток связи, предназначенный для вывода энергии.

Н. – С катушкой все ясно, но я совсем не вижу конденсатора.

Л. – Но в этом повинны твои глаза; между двумя поверхностями щели, соединяющей околокатодное пространство с одной из полостей, имеется некоторая емкость.

Н. – Ты прав. Принимая во внимание очень малую индуктивность и очень малую емкость, я полагаю, что система должна создавать колебания очень высокой частоты.

Л. – Такие магнетроны легко позволяют получить колебания с частотой выше 30 000 Мгц, иначе говоря, выше 30 миллиардов периодов в секунду. Такая частота соответствует длине волны меньше одного сантиметра. Но в современных радиолокаторах магнетроны чаще используют для получения колебаний с частотой 3 Ггц (т. е. 3000 Мгц), что соответствует длине волны 10 см или же 10 Ггц (длина волны 3 см). Обычно в радиолокаторах питание от источника довольно высокого напряжения подается на магнетроны на очень короткое время (одна микросекунда или еще меньше), что позволяет получить очень высокую мгновенную мощность.

Н. – А как выводят эту мощность из магнетрона?

Л. – Очень просто. В одну из полостей помещают петлю связи, которая служит вторичной обмоткой трансформатора, к ней подключают коаксиальный кабель, через который и отводят энергию.


Коаксиальный кабель с медной «изоляцией»

Н. – Ты упомянул о коаксиальном кабеле, а у меня как раз заготовлен один вопрос на эту тему. У меня сложилось впечатление, что в радиолокаторах не очень часто применяют этот кабель. Чем это объяснить?

Л. – Дело в том, что в радиолокаторах нужно передавать на высоких частотах большую мощность с минимальными потерями. В коаксиальном кабеле сложность возникает из-за необходимости крепления внутреннего проводника строго в середине внешнего. Использование для этой цели какого-либо изоляционного материала вызывает значительные потери энергии.

Н. – Какой же тогда изоляционный материал лучше всего поставить в коаксиальный кабель?

Л. – В этом случае я рекомендую тебе воспользоваться медью.

Н. – Ты что, смеешься надо мною? Я хотел бы знать, кого из нас двоих здорово стукнули коаксиальным кабелем по голове!


Л. – Я прекрасно понимаю твое удивление. Но не забывай, что здесь нам приходится иметь дело с очень высокими частотами. В коаксиальном кабеле можно сделать для внутреннего проводника медную опору, длина которой равна четверти длины волны колебания, передаваемого по кабелю (см. схематическое изображение на рис. 158).


Рис. 158. Четвертьволновая опора для внутреннего проводника коаксиального кабеля.

Конец этого четвертьволнового стержня замыкается накоротко с внешним проводником, и поэтому отраженная им волна возвращается в исходную точку в фазе с проходящей там прямой волной. Все происходит так, как если бы этот стержень-опора был разрезан в месте своего соединения с внутренним проводником.

Н. – Очень интересное решение. Я полагаю, что таким образом можно решить все проблемы передачи колебаний сверхвысокой частоты.

Л. – Увы, далеко не так! Описанную систему можно успешно применять только для передачи колебаний строго определенной частоты. А в радиолокаторах часто бывает полезно изменять частоту. Коаксиальный же кабель даже с четвертьволновыми опорами-изоляторами далек от совершенства, и поэтому предпочтение отдают трубе обычно прямоугольного сечения, по которой волна проходит в результате многократных непрерывных отражений от стенок. Такое устройство называют волноводом.



Многорезонаторный клистрон

Н. – А теперь я хотел бы спросить тебя, что такое клистрон и как он работает.

Л. – Давай для начала рассмотрим усилительный клистрон с двумя резонаторами. Для этого тебе предварительно нужно познакомиться с объемным резонатором типа румбатрон (так называются резонаторы клистрона). Посмотри на рис. 159 и ты легко поймешь, как он устроен, ты видишь две параллельно расположенные круглые пластины, образующие конденсатор. Пластины соединены между собой множеством проволочных петель, которые образуют параллельно соединенные катушки.


Рис. 159. Две круглые пластинки, соединенные некоторым количеством петель, образуют объемный резонатор.

Бесконечно увеличивая число проволочных петель, мы получим объемный резонатор, сечение которого я изобразил для тебя на рис. 160. По внешнему виду он напоминает покрышку автомобильной шины, между бортами которой натянули круглые куски ткани.


Рис. 160. Разрез румбатрона (объемного резонатора клистрона) по его оси.

Н. – Положительно необходимо привыкнуть к совершенно необычному виду этих колебательных контуров, используемых в технике сверхвысоких частот. И внутри этих резонаторов электроны танцуют свою румбу?

Л. – Да, если тебе нравится такое сравнение. Но правильнее было бы сказать, что электромагнитные поля заставляют электроны исполнять свой танец. Посмотри на рис. 161, чтобы понять, как это происходит.


Рис. 161. Схема двухрезонаторного клистрона. Первый резонатор модулирует электроны по скорости. В пространстве между двумя резонаторами электроны группируются в пакеты и затем возбуждают второй резонатор; на анод поступает лишь постоянный ток.

Катод испускает электроны, а анод их собирает. Между этими электродами я поместил два объемных резонатора. Плоские стенки этих резонаторов сделаны из сетки, чтобы электроны могли проходить сквозь них.

Предположим, что с помощью петли связи я возбуждаю первый резонатор небольшим напряжением сверхвысокой частоты, которое порождает в резонаторе колебания на его резонансной частоте. При прохождении электронов через две сетки резонатора они ускоряются (когда вторая сетка положительна относительно первой) или замедляются (при обратном соотношении потенциалов сеток).


Н. – Это должно породить невообразимую неразбериху. Электроны то ускоряются, то замедляются и в конечном итоге они все должны перепутаться!

Л. – Ты не так далек от истины. Если оставить достаточное расстояние, чтобы быстро летящие электроны смогли догнать двигающиеся медленно, то электроны сгруппируются в пакеты. При расчете клистрона стараются создать такие условия, чтобы наилучшая группировка электронов приходилась на момент их подхода к сеткам второго объемного резонатора. Проходя через второй резонатор, пакеты электронов отдают ему свою энергию и порождают в нем колебания значительно более мощные, чем те, которые использовались для возбуждения первого резонатора.


Н. – Так, значит, клистрон представляет собой усилительную лампу?

Л. – Да, есть клистроны-усилители. Такие лампы позволяют получить наибольшие мощности в импульсе на сверхвысоких частотах. В настоящее время на частоте 3 Ггц удается получить 30 000 квт в импульсе. Но клистрон можно использовать и как генератор. Если выходной резонатор синфазно (без сдвига фазы) соединить с входным, то устройство начинает генерировать.

Н. – Но в этой лампе довольно трудно изменить частоту, так как для этого пришлось бы одновременно изменять настройку обоих резонаторов.


Отражательный клистрон

Л. – Чтобы избавиться от этого недостатка, создали так называемый отражательный клистрон. Эта лампа имеет только один резонатор, на котором создается высокий положительный потенциал, а анод заменен электродом с большим отрицательным потенциалом. Электроны, вылетающие с катода, проходят через резонатор и приближаются к отрицательному электроду, тормозятся им и возвращаются к резонатору. В результате электроны второй раз проходят через резонатор, который, таким образом, выполняет роль и первого и второго резонаторов; при обеспечении необходимой связи лампа начинает генерировать. Отражательные клистроны используются преимущественно в качестве гетеродинов радиолокационных приемников супергетеродинного типа. В этом случае гетеродин создает колебания небольшой мощности, необходимые для возникновения биений с принимаемым колебанием.

Н. – И для этого полученные с клистрона колебания подают на сетку лампы, а на ее другую сетку подают колебания, принятые антенной?

Л. – На таких высоких частотах не рекомендуется пользоваться этим методом. Обычно колебания клистрона-гетеродина направляют в объемный резонатор (кусок волновода), куда вводят также и волновод, идущий от приемной антенны. В том месте, где эти две волны сходятся, помещают крохотный кристаллический детектор, представляющий собой нелинейный элемент, необходимый для выделения биений этих двух волн. В цепи кристалла получают колебания промежуточной частоты (равной разности частот колебаний гетеродина и принимаемого сигнала). Полученные колебания промежуточной частоты усиливают высокочастотным транзисторным или ламповым усилителем.


Переключение «передача – прием»

Н. – Ты только что говорил о приемной антенне. А почему радиолокаторы имеют всего лишь одну антенну?

Л. – Правильно, антенна одна; сначала она используется для передачи, а затем для приема. Такое использование антенны приводит к весьма сложным проблемам: мощность излучаемых колебаний может превысить тысячу киловатт, тогда как приемник способен обнаружить миллионную долю микроватта. Для защиты приемника от разрушения излучаемым колебанием создали очень остроумную систему из газоразрядных ламп, заполненных газом под низким давлением, которые размещены в волноводах на пути прохождения волны или в стенке волновода. Во время передачи, когда по волноводам проходит очень большая мощность, газ в лампе ионизируется. В этих условиях он уподобляется очень хорошему проводнику – закрывает волновод, соединяющий антенну с приемником, и в последний практически ничего не попадает. При приеме отраженного сигнала его мощность настолько мала, что газ больше не ионизируется, волновод открыт и принимаемая волна свободно проходит в приемник. Другая газоразрядная лампа находится на стенке волновода между магнетроном и разветвлением волновода; она не пропускает к магнетрону принимаемую волну. Эта лампа размещена сбоку от пути следования волны, и поэтому в отличие от лампы, находящейся в ответвлении волновода к приемнику, не пропускает волну, если находящийся в ней газ не ионизирован.


Н. – Зачем понадобилось не пропускать принимаемую волну к магнетрону? Ведь она не может его разрушить.

Л. – Разумеется, нет. Но, если не сделать такого запора, часть принимаемой волны оказалась бы потерянной для приемника, а энергии поступает так мало, что напрасно транжирить ее просто глупо. Благодаря размещению газоразрядных ламп непосредственно в волноводе или на его стенке вся принимаемая энергия отраженного сигнала поступаёт в приемник.

Н. – В самом деле, система автоматического разделения сигналов сделана исключительно интересно. Но теперь я хотел бы спросить тебя, как в радиолокаторе стабилизируют напряжение питания. В блок-схеме радиолокатора, которую я смотрел, имеется несколько блоков питания, но я не понял, как они устроены.


Стабилизация напряжения с помощью стабилитрона

Л. – Ты, Незнайкин, уже немного знаешь об устройстве блоков стабилизации напряжения; вспомни, в частности, что мы с тобой говорили о стабилитронах.

Н. – Наш разговор об этих диодах я помню, но я не вижу, как их можно использовать для стабилизации напряжения.

Л. – Их просто-напросто нужно включить параллельно питаемой схеме, как я показал на рис. 162.



Рис. 162. Стабилизация напряжения с помощью диода Зенера.

Как ты видишь, стабилитрон потребляет ток, который питаемая схема не потребляет. Когда потребление этой схемы изменяется, протекающий по стабилитрону ток изменяется в противоположном направлении. Напряжение питания U устанавливают несколько выше требующегося напряжения, и избыточная мощность рассеивается на резисторе R. Внутреннее сопротивление стабилитрона значительно меньше сопротивления R, и поэтому значительно уменьшает изменения напряжения на выводах диода и питаемой схемы.


    Ваша оценка произведения:

Популярные книги за неделю