355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Жан-Поль Эймишен » Электроника?.. Нет ничего проще! » Текст книги (страница 10)
Электроника?.. Нет ничего проще!
  • Текст добавлен: 10 мая 2017, 18:30

Текст книги "Электроника?.. Нет ничего проще!"


Автор книги: Жан-Поль Эймишен



сообщить о нарушении

Текущая страница: 10 (всего у книги 21 страниц)

Н. – А я что говорил – вот тебе второе устойчивое состояние!

Л. – Нет, это состояние не может удерживаться бесконечно долго. Не забывай, что теперь потенциал базы Т1 отрицательный. Через резистор R5 пойдет ток, он будет стремиться повысить потенциал базы транзистора Т1 и одновременно разрядить конденсатор С. Как только потенциал базы транзистора Т1 станет слегка положительным, через транзистор Т1 потечет ток и потенциал его коллектора снизится, что приведет к уменьшению тока транзистора Т2, а это в свою очередь вызовет повышение потенциала на коллекторе транзистора Т2. Это повышение, переданное через конденсатор С на транзистор Т1, ускорит происходящую в схеме эволюцию, в результате чего транзистор Т1 вновь придет в состояние насыщения, а транзистор Т2 окажется запертым.

Н. – Это дьявольски сложно. Все явления происходят одновременно и к тому же воздействуют друг на друга, поэтому я с большим трудом проследил за ними.


Сигналы однотактного триггера

Л. – Для облегчения твоей задачи я вычертил на рис. 85 кривые, характеризующие изменения во времени потенциалов в различных элементах схемы. Как мы видим, в точку А в момент t0 подают отрицательный импульс. В этот момент потенциал коллектора транзистора Т1 стремится повыситься до . Это повышение через цепочку R3 – R4 передается на базу транзистора T2, которая сначала была заперта напряжением —U, а теперь ее потенциал поднимается до нуля. Как ты видишь, это вызывает отпирание транзистора Т2 и доводит потенциал его коллектора почти до нуля. Снижение потенциала коллектора Т2 через конденсатор С передается на базу Т1 (первоначально ее потенциал был почти равен нулю) и доводит потенциал базы до величины, близкой к —Е.



Рис. 85. Эпюры напряжений в схеме с одним устойчивым состоянием, изображенной на рис. 84.

Н. – Я хотел бы знать, откуда берется эта величина —Е?

Л. – Но, Незнайкин, разве ты забыл известный принцип, что напряжение на выводах конденсатора не может измениться на конечную величину за равное нулю время. Если ты об этом вспомнишь, то увидишь, что перед самым приходом отрицательного импульса в точку А потенциал коллектора Т2 был равен Е (транзистор Т2 был заперт). Потенциал базы транзистора Т1 был почти равен нулю, следовательно, конденсатор С был заряжен до напряжения, очень близкого к Е. Сразу же после опрокидывания схемы он еще был заряжен до напряжения Е. При этом потенциал на нижней (базовой) обкладке равен —Е относительно верхней. Затем потенциал его верхней обкладки стал близким нулю (транзистор Т2 в состоянии насыщения замкнул верхнюю обкладку на корпус) и, следовательно, потенциал базы Т1, равный потенциалу нижней обкладки относительно верхней, стал близким —Е.

Н. – Признаюсь, что я не подумал о твоем знаменитом принципе, так как забыл вырезать его золотыми буквами на своем камине, но поверь мне, теперь за этим дело не станет. По твоим кривым я вижу, что сразу же после опрокидывания схемы потенциал базы транзистора Т1 начинает повышаться. Я полагаю, что причиной послужил ток, протекающий по резистору R5.


Л. – И ты не ошибся. Когда транзистор Т1 находится в состоянии насыщения, проходящий по резистору R5 ток течет по направлению к базе этого транзистора. А теперь при запертом транзисторе Т1 добавляется ток разряда конденсатора С. Через время, определяемое величиной CR5, потенциал базы транзистора Т1 доходит почти до нуля – это происходит в момент t1. Как ты видишь, в этот момент транзистор Т1 вновь начинает пропускать ток; потенциал его коллектора падает до нуля, что приводит к запиранию транзистора Т2, потенциал коллектора которого повышается до + Е.

Н. – А почему ты, Любознайкин, на своем рисунке на кривой потенциала коллектора транзистора Т2 изобразил участок возрастания относительно пологим?

Л. – Не забывай, что для повышения потенциала коллектора транзистора Т2 протекающий по резистору R2 ток должен сначала зарядить конденсатор С. На нижней обкладке последнего переход база – эмиттер проводящего транзистора поддерживает потенциал, почти равный нулю. Следовательно, этот конденсатор заряжается постепенно и вслед за ним медленно повышается потенциал коллектора Т2.

Н. – Я начинаю понимать работу твоей занятной схемы. И все же она производит очень странное впечатление. Стоит только транзистору Т2 начать пропускать ток, как его опять очень быстро запирают. Он должно быть чувствует себя обманутым.

Л. – Отложи, пожалуйста, на более подходящее время анализ чувств транзисторов, а пока займись вопросом практического использования схемы, которая во многих случаях может оказаться очень полезной.


Использование однотактных триггеров

Н. – Но мы сейчас имеем дело не с мультивибратором, так как наша схема только один раз работает как мультивибратор.

Л. – И это очень хорошо. Первое опрокидывание схемы производится внешним импульсом, а второе происходит самопроизвольно, поэтому эту схему можно назвать одновибратором. Впрочем, иногда встречается и название «однотактный мультивибратор». Но это название бросает меня в дрожь, потому что содержит в себе противоречие. С таким же успехом можно говорить о темном свете или металлическом ксилофоне[13]13
  Название ударного музыкального инструмента ксилофона образовано из греческих слов «ксилон» – дерево и «фоне» – голос. (Прим. перев.)


[Закрыть]
. Эта схема интересна тем, что при любом пришедшем в точку А импульсе при условии, что он достаточен для срабатывания схемы, с коллектора транзистора Т1 получают единственный сигнал, всегда одинаковый по длительности и амплитуде. Следовательно, эта схема – прекрасный инструмент для преобразования импульсов с целью придания им единой формы. Ты, вероятно, помнишь, что счетчик Гейгера – Мюллера дает совершенно разные по форме импульсы. Подав такие импульсы на однотактный триггер, например, изображенный на рис. 84, мы можем сделать их совершенно идентичными, что, помимо других преимуществ, в частности, облегчает их счет.

Н. – На мой взгляд, проще пропустить их через амплитудный ограничитель.


Л. – Но полученный результат был бы существенно хуже. Ведь данный счетчиком Гейгера – Мюллера очень высокий импульс одновременно больше других и по продолжительности, потому что в этом случае деионизация трубки занимает больше времени. При использовании простого амплитудного ограничителя мы получили бы импульсы одинаковой высоты, но разной ширины. Впрочем, есть еще одна весьма интересная область применения для нашего однотактного триггера. Представь себе, что напряжение с коллектора транзистора Т1 подается на дифференцирующую схему, которая, например, приведена на рис. 64. Что случится, если конденсатор С и резистор R взять с довольно малыми номиналами?


Н. – Если я не забыл твоих объяснений, на выходе этой схемы мы получим положительный импульс в момент t0 (рис. 86), т. е. когда потенциал коллектор Т1 резко повышается, а затем отрицательный импульс в момент t1, когда транзистор Т1 вновь отпирается, и потенциал его коллектора резко падает.


Рис. 86. Подавая сигнал с коллектора транзистора Т1схемы с одним устойчивым состоянием на дифференцирующую схему, можно получить отрицательный импульс в момент t1 с некоторой задержкой по сравнению с пусковым импульсом.

Л. – Незнайкин, ты все меньше и меньше соответствуешь своему имени! Сказанное тобой абсолютно правильно. Предположим, что в этих условиях я с помощью диода уберу положительный импульс, останется только отрицательный импульс, появляющийся в момент t1. Такой импульс задержан относительно пускового импульса на время, которое зависит только от номиналов резисторов и конденсаторов схемы (рис. 84). Таким образом, мы сделали схему задержки импульсов: если подать импульс в точку А, то из нашего устройства импульс выйдет с хорошо известной задержкой, длительность которой можно изменять от долей микросекунды до нескольких секунд путем соответствующего подбора элементов схемы.

Н. – Ну, за это изобретение я тебя поздравлять не собираюсь! Мы постоянно слышим, что радиоэлектронике свойственна быстрота, а ты изобрел способ создавать опоздания – ты идешь против прогресса.



Применение устройств задержки

Л. – Незнайкин, не играй словами. При выполнении последовательного ряда операций довольно часто бывает необходимо содержать сигнал на регулируемый отрезок времени. К такому способу, в частности, прибегают, когда с помощью сигнала хотят иметь систему единого времени для включения изучаемого процесса и начала развертки осциллографа, предназначенного для наблюдения этого процесса. Сигнал включают с определенной задержкой, а осциллограф – без задержки. Благодаря этому мы можем превосходно следить за процессом по экрану осциллографа, так как его развертка включается до начала процесса.

Н. – Скажи, пожалуйста, Любознайкин, а не разумнее было бы включить осциллограф с некоторым опережением относительно явления, чем задерживать начало явления?

Л. – Тогда, Незнайкин, открой мне секрет «схемы опережения», где следствие появляется раньше причины, его породившей, т. е. способной давать импульс на выходе раньше, чем был подан импульс на ее вход, и я гарантирую тебе, во-первых, всемирную известность, а затем крупный успех в академических кругах!

Н. – Правильно, а я об этом не подумал. Значит, опережающему осциллографу предпочитают отстающее явление… положительно все относительно в подлунном мире.

Л. – Я позволю себе спуститься из высоких философских сфер на нашу бренную землю, чтобы напомнить тебе, что уже довольно поздно. Я не хотел бы стать причиной язвительного объяснения Поленьки с тобой…

Н. – Ты совершенно прав, и мы продолжим нашу беседу в следующий раз.


Беседа девятая
ВЫДЕЛЕНИЕ СИГНАЛОВ

Наш молодой друг желает все же навести порядок в сигналах (а также в своих идеях…). Поэтому он старается разобраться, как можно различать, т. е. разделять сигналы по частоте, амплитуде и длительности. Он убеждается, что история про кошку с котятами разъясняет проблему амплитудных селекторов.


Незнайкин – Подвергшиеся твоим изощренным пыткам сигналы отличаются исключительным разнообразием форм, и теперь, дорогой Любознайкин, нам, вероятно, будет довольно сложно среди них ориентироваться.

Любознайкин – Не очень, импульсы ты не спутаешь с синусоидами; достаточно взглянуть на экран осциллографа, чтобы установить, с какими сигналами мы имеем дело.

Н. – Согласен, но для этого всегда требуется человек, который смотрел бы на осциллограф. А нельзя ли для разделения сигналов устроить автоматическую сортировку?

Л. – Разумеется, можно. И я вижу, что пришло время поговорить о дискриминаторах.

Н. – Для чего нужны эти сооружения?

Л. – Речь идет всего-навсего об устройствах, способных обнаружить изменения той или иной характеристики сигнала. Так, например, частотный дискриминатор выдает на выходе положительное или отрицательное напряжение, если частота подаваемых на его вход сигналов оказывается выше или ниже заданной частоты, определяемой свойствами самого дискриминатора.


Дискриминатор

Н. – А, правильно, ведь я же должен был вспомнить. Дискриминатором называют узел, который в радиоприемниках с частотной модуляцией заменяет классические детекторы приемников с амплитудной модуляцией. Следовательно, это устройство я знаю.

Л. – В самом деле, названные тобой дискриминаторы широко используют в радиоприемниках. В радиоэлектронной аппаратуре промышленного назначения частотные дискриминаторы обычно используют для обнаружения изменения частоты с совершенно иной, чем в радиоприемнике ЧМ сигналов, целью. Так, например, щуп измерителя толщины заставляют воздействовать на подвижную обкладку конденсатора, включенного в колебательный контур. Об использовании такого преобразователя, как ты, вероятно, помнишь, мы уже говорили. Колебательный контур является частью генератора, вырабатывающего сигнал, частота которого изменяется в зависимости от перемещения подвижной обкладки конденсатора. Переменное напряжение с изменяющейся частотой подается на вход дискриминатора, напряжение на выходе которого изменяется в соответствии с положением подвижной обкладки.

Н. – Значит, такая система всегда дает большее или меньшее напряжение в зависимости от входной частоты?

Л. – Возможны и устройства другого типа. Например, у тебя может возникнуть потребность в системе, которая получила бы на общем входе сигналы разной частоты и распределяла бы эти сигналы по различным каналам… в зависимости от того, какой частоты сигналы для какого канала требуются.


Н. – Должно быть такую систему дьявольски сложно сделать!

Л. – Совсем нет, наоборот, очень даже просто. Достаточно сделать несколько избирательных усилителей (рис. 87), снабдить каждый из них соответствующим фильтром, настроенным на определенную полосу частот, и одновременно на все подать общий входной сигнал. Полосы пропускания фильтров не перекрывают друг друга, а размещаются рядом, поэтому входной сигнал будет направлен в соответствующие частотные каналы; таким образом, можно рассортировать сигналы по частоте.


Рис. 87. В зависимости от частоты входного сигнала фильтры направляют его на различные усилители. Так происходит разделение сигналов по частоте.


Амплитудная селекция

Н. – А можно ли сделать устройство для сортировки сигналов по амплитуде?

Л. – Это совсем не сложно, можно воспользоваться схемами амплитудных ограничителей, которые я нарисовал для тебя на рис. 53, 54 и 55; потребуется лишь внести некоторые изменения. Рассмотрим в качестве примера изображенную на рис. 88 схему. Она даст выходное напряжение лишь в том случае, если входное напряжение Uвх превышает величину + Uпор. До тех пор, пока Uвх меньше + Uпор, диод заперт.


Рис. 88. На выход схемы импульс Uвых проходит только в том случае, если на вход ее подают импульс Uвх с пиковым напряжением, большим + Uпор.

Н. – А для чего понадобились конденсатор С и резистор R2?

Л. – Они служат для устранения постоянной составляющей, появляющейся на катоде диода в результате подачи порогового напряжения + Uпор.

Н. – Тогда очень легко разослать по разным направлениям сигналы с разной амплитудой. Достаточно сделать несколько устройств по твоей схеме (рис. 88) на возрастающие ступеньками значения + Uпор и в каждом канале получим строго заданные напряжения.

Л. – В самом деле разделение сигналов по амплитуде производится таким способом, но задача несколько сложнее, чем ты думаешь. Представь себе, что мы сделали пять устройств по приведенной на рис. 88 схеме, рассчитанные на пороговые напряжения + Uпор соответственно 2, 4, 6, 8 и 10 в. Входной сигнал мы одновременно подадим на все соединенные между собой аноды диодов. Само собой разумеется, что катод диода с порогом + 10 в пропустит сигнал на вход лишь в том случае, когда входное напряжение превышает 10 в. Точно так же и катод диода с порогом 4–6 в пропустит лишь сигналы с амплитудой больше 6 в. Но может случиться так, что нам понадобится направить в канал сигнал лишь тогда, когда напряжение на входе, например, находится в пределах от +6 до +8 в.

Н. – Но я не вижу никакой проблемы. Этот сигнал мы получим на катоде диода с порогом +6 в.

Л. – Незнайкин, ты сейчас напомнил мне одного моего друга. У него была кошка, которую он очень любил и для удобства которой устроил в нижней части двери кошачий лаз, т. е. достаточно большое отверстие, чтобы кошка могла свободно пройти через него. Но однажды его любимица окотилась, и мой друг, желая дать возможность котятам также легко выходить из квартиры, решил сделать рядом с основным лазом несколько других меньшего размера…


Н. – Я не вижу, какое отношение эта история имеет к теме нашей беседы, но уж раз мы начали говорить о твоем приятеле, должен заметить, что маленькие лазы совершенно не нужны, так как котята могут пройти через уже имеющийся вслед за своей матерью…

Л. – Ты это сам сказал, Незнайкин. Катод диода с порогом +6 в пропустил сигнал, когда входное напряжение превысит 6 в, но он не задержит сигнал, когда входное напряжение превысит и 8 в.

Н. – Ах! Как я об этом не подумал! Но тогда я совсем не вижу выхода.


Многоканальный селектор

Л. – Успокойся, положение не безвыходное. Выделить сигналы с амплитудой от 6 до 8 в можно с помощью схем, носящих название схем несовпадения, которые приводятся в действие сигналами с катода с порогом +6 в и запираются сигналами с катода с порогом +8 в.

Н. – Согласен, но ты решил проблему, как по мановению волшебной палочки. Что это за схемы несовпадения, о которых я никогда ничего не слышал?

Л. – Такие схемы отличаются исключительным разнообразием. Например, систему для получения нужных сигналов можно установить на выходе диода с порогом 4–8 в. Такой системой, в частности, может послужить одновибратор (устройство с одним устойчивым состоянием), срабатывающий, когда сигнал превышает 8 в. Сигнал этого одновибратора будет запирать усилитель, на вход которого обычно подается сигнал с катода диода с порогом +6 в. Таким образом, этот усилитель будет работать только тогда, когда входной сигнал превышает 6 в (на его вход может пройти лишь сигнал с амплитудой больше 6 в, но менее 8 в). Сигналы более 8 в вызывают срабатывание однотактного триггера, который запирает усилитель.

Н. – Я начинаю понимать, но я бы хотел, чтобы ты внес ясность по двум возникшим у меня вопросам. Во-первых, почему ты поставил однотактный триггер на выходе диода с порогом 4–8 в; во-вторых, как делают такой запираемый усилитель?

Л. – Этот одновибратор я использовал только для того, чтобы получить напряжение, изменяющееся от «ничего» до «всего», когда диод с порогом 4–8 в начинает пропускать ток. Если для запирания усилителя я воспользовался бы непосредственно сигналом с катода этого диода, то запирание происходило бы более или менее энергично в зависимости от того, насколько входное напряжение превышает 8 в. Одновибратор здесь используется для придания запирающему сигналу соответствующей формы и величины, так сказать, для стандартизации импульсов. Уже при малейшем превышении входным напряжением 8 в одновибратор дает сигнал заданной формы и величины.

Запираемый усилитель можно сделать по схеме, которую я начертил на рис. 89.


Рис. 89. Поданный на вход диода импульс с напряжением выше 6 в отпирает транзистор Т2, если только поступающий в точку А импульс не запрет транзистор Т1.

Как ты видишь, транзистор Т1 обычно находится в состоянии насыщения. В самом деле, его база через резистор R2соединена с , и он накоротко замыкает цепь эмиттера Т2 на корпус. Все происходит, как если бы эмиттер транзистора Т2был заземлен. В это время транзистор Т2 заперт, напряжение смещения на его базе равно нулю. Этот транзистор отпирается напряжением, поступающим с катода диода с порогом +6 в. Если в точке А нет никакого сигнала, то приходящий на базу Т2 сигнал создаст отрицательный сигнал на его коллекторе. И наоборот, если в точку А с однотактного триггера под воздействием сигнала с катода диода с порогом +8 в придет отрицательный импульс, транзистор Т1 запрется на все время его длительности и изменений на выходе (на коллекторе Т2) никаких не будет даже при отпертом транзисторе Т2.

Н. – Но признайся, Любознайкин, что твоя схема эффективна только для сигналов, которые могут прийти на базу Т2во время выдаваемого однотактным триггером сигнала. Если же приходящие на базу транзистора Т2 сигналы окажутся более продолжительными, то вся система не сработает.

Л. – Ты прав, в принципе эта система рассчитана только на относительно короткие импульсы. При желании сделать ее пригодной для любых сигналов следовало бы заменить одновибратор своего рода триггером Шмитта и непосредственно связать выход этого триггера с базой транзистора Т1.

Н. – Тогда твой амплитудный селектор превратится в относительно сложное устройство; к счастью, у него всего лишь пять каналов.

Л. – Не успокаивайся так легко, Незнайкин. Существуют амплитудные селекторы с числом каналов до 100 и даже до 200. Просто нужно достаточное количество раз повторить описанную схему. Такие селекторы, в частности, применяются для селекции импульсов, поступающих со счетчика Гейгера – Мюллера или со сцинтилляционного счетчика. Они позволяют раздельно подсчитывать импульсы с амплитудой меньше 1 в, от 1 до 2 в, от 2 до 3 в и т. д. Такой раздельный подсчет импульсов определенного уровня позволяет получить представление об энергетическом спектре обнаруженных названными датчиками частиц.



Селекция сигналов по их длительности

Н. – А как следует поступить, если потребуется разделить сигналы не по амплитуде, а по длительности?

Л. – Возможно несколько решений. Для начала нам, естественно, следует сделать все эти импульсы одинаковыми по амплитуде, т. е. подрезать их сверху до одного уровня. После такой предварительной обработки можно воспользоваться простой дифференцирующей схемой, например изображенной на рис. 64.

Н. – Тогда я больше ничего не понимаю. Ведь такая схема превратит каждый прямоугольный сигнал в два импульса, первый положительный и второй отрицательный.

Л. – Это может произойти только с очень широкими импульсами. Вспомни, что мы говорили о возможности создания схемы произведением RC достаточно большой величины по сравнению с продолжительностью импульса. Если на такую схему подать длинный импульс (рис. 90, а), выходное напряжение получится действительно такое, как показано на рис. 90, б: в начале положительный импульс, а за ним отрицательный.


Рис. 90. Прямоугольный импульс (а), поданный на схему с RC, меньше его длительности, очень сильно деформируется, у него появляется значительный отрицательный выброс (б).

Как ты видишь, продолжительность входного сигнала настолько велика, что конденсатор за время сигнала успевает полностью зарядиться. Если же я пошлю более короткий импульс (рис. 91, а), то при прохождении сигнала конденсатору не хватит времени зарядиться (вернее, он зарядится очень немного). И на выходе схемы мы получим сигнал, близкий к изображенному на рис. 91, б, который практически не содержит отрицательного импульса.


Рис. 91. Прямоугольный импульс (а), поданный на схему с RC, много больше его длительности, деформируется мало, его отрицательный выброс невелик (б).

С помощью системы, срезающей положительные импульсы и обнаруживающей отрицательные, превышающие заданный порог, можно создать схему, способную разделить импульсы на короткие (которые не дадут выходного сигнала) и длинные (которые дадут на выходе сигналы по окончании длинного импульса).


Н. – Не могу сказать, что это удачно. Почему не создать систему, которая давала бы сигнал в самом начале длинного импульса?

Л. – Скажи, пожалуйста, Незнайкин, неужели ты думаешь, что система способна превратиться в гадалку; ведь короткий и длинный импульсы начинаются совершенно одинаково. Лишь добравшись до конца, можно определить, имеем мы дело с коротким или с длинным импульсом.

Н. – Согласен… Признаюсь, что об этом я не подумал.



Дискриминатор формы

Л. – Это доказывает, что всегда, прежде чем говорить, полезно немного подумать. Теперь нам может понадобиться различать сигналы по их форме. Мы, например, можем сделать систему, выявляющую только короткие импульсы и не реагирующую на медленные изменения сигнала. Для этого достаточно использовать нашу дифференцирующую схему на рис. 64. Если на вход этой схемы подать медленно изменяющееся напряжение, то на выходе практически ничего не получим, так как пока напряжение медленно изменяется, конденсатор успеет зарядиться или разрядиться при минимальном зарядном или разрядном токе, который создаст лишь очень небольшое напряжение на резисторе, в то время как резкое изменение напряжения на входе будет полностью передано конденсатором и, следовательно, мы его получим на выходе.

Н. – Твое объяснение я понял, но совершенно не вижу, какую пользу может принести умение отделять быстро изменяющиеся сигналы от медленно изменяющихся.

Л. – У тебя просто короткая память. Вспомни то знаменитое устройство охраны от воров, с которым у тебя были некоторые неприятности…

Н. – О, не говори мне больше об этом ужасе, о нем я буду помнить всю жизнь!


Л. – Ты, вероятно, тем не менее помнишь, что я рекомендовал тебе использовать фотоэлектрический элемент. В этом случае было бы целесообразно поставить после фотоэлемента схему, чувствительную только к таким резким изменениям освещенности, какие может вызвать человек, проходящий между лампой и фотоэлементом. Таким образом, удастся устранить воздействие медленных изменений освещенности фотоэлемента, например при восходе солнца или при наступлении темноты.

Н. – А что нужно сделать, если бы потребовалось прямо обратное, т. е. система, чувствительная только к медленным изменениям освещенности и не реагирующая на резкие изменения?

Л. – В таком случае можно просто-напросто воспользоваться интегрирующей схемой на рис. 70. Если схема (см. рис. 64) представляет собой фильтр верхних частот, то схема (см. рис. 70) работает как фильтр нижних частот. Она устраняет высокочастотные составляющие или быстрые изменения и сохраняет постоянную и низкочастотные составляющие.

Одну аналогичную систему я установил на своем автомобиле. В передней части капота я поместил маленький фотоэлемент, который, приводя в действие триггер Шмитта, зажигает лампу на приборной доске, когда становится довольно темно, но пока я еще не включил фары. А так как я не хотел, чтобы эта лампа сигналила каждый раз, когда я проезжаю под тенистыми деревьями, я поставил фильтр, схема которого изображена на рис. 70, и снабдил его постоянной времени на добрый десяток секунд. Все происходит так, как если бы мой фотоэлемент срабатывал очень медленно и реагировал только на среднюю яркость неба, на которое он направлен.



Постоянная времени

Н. – Очень остроумная идея. Однако я хотел бы точно знать, что ты подразумеваешь под постоянной времени.

Л. – Речь идет о совершенно классической величине, которую используют во всех схемах, построенных на резисторе и конденсаторе. Видишь ли, Незнайкин, при умножении емкости конденсатора С, стоящего, например, в интегрирующей схеме, на сопротивление резистора R получают величину, которая имеет размерность времени и может быть выражена в секундах (при условии, что С выражено в фарадах, a R – в омах). Это время, необходимое для заряда или разряда конденсатора через резистор на 63 % относительно установившегося значения. Не проси меня обосновать это число, ибо это вынудило бы нас заняться дифференциальными уравнениями.

Н. – Все, что хочешь, но только не это!

Л. – Успокойся, в этом нет необходимости. По прошествии времени, равного постоянной времени RC, конденсатор зарядится или разрядится на 63 % относительно установившегося значения. По истечении удвоенной постоянной времени он зарядится или разрядится на 86 %. И, наконец, по прошествии утроенной постоянной времени его заряд (или разряд) достигнет 95 %. Иначе говоря, на характеристиках каждой конкретной дифференцирующей или интегрирующей схемы сказываются не индивидуальные значения R или С, а их произведение, выражаемое в секундах (или микросекундах) и именуемое постоянной времени.

Н. – Так, значит, если я правильно понял, когда потребовалось разделить сигналы по их длительности, ты выбрал малую постоянную времени по сравнению с длительностью сигнала на рис. 90, а и большую по сравнению с длительностью сигнала на рис. 91, а?

Л. – Ты совершенно прав, именно так выбирают постоянную времени. Впрочем, именно по этой причине дискриминатор по длительности сигналов работает тем эффективнее, чем выше отношение менаду длительностью длинного и короткого сигналов.



    Ваша оценка произведения:

Популярные книги за неделю