355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Вячеслав Воробьев » 12 тверских математиков » Текст книги (страница 10)
12 тверских математиков
  • Текст добавлен: 1 апреля 2017, 01:30

Текст книги "12 тверских математиков"


Автор книги: Вячеслав Воробьев


Жанры:

   

Математика

,

сообщить о нарушении

Текущая страница: 10 (всего у книги 14 страниц)

В работах указанного направления В.М. Брадис уделяет большое внимание вычислительной схеме. Так называется разметка приготовленного для записи листа бумаги, при которой каждое входящее в вычисление число записывается в особом, заранее для него отведённом месте. Выгода схемы заключается в механизации вычислительного процесса. Хорошо составив схему, вычислитель в дальнейшем освобождается от всякой работы по обдумыванию хода вычислений. Вторая выгода схемы – лёгкость контроля произведённого вычисления, как самим вычислителем, так и другими лицами.

Помимо механизации работы вычислителя путём составления схем В.М, Брадис рекомендует применять вспомогательные средства вычислений, что даёт экономию времени, снижает утомляемость человека, гарантирует уменьшение числа ошибок. Среди них особые приёмы устного и письменного выполнения действий, простейшие приборы и машины – счёты, арифмометр.

Особое место среди вспомогательных средств вычисления занимают математические таблицы, роль которых усиливается с переходом к политехническому обучению. Если в средней школе до недавнего времени широко использовались только таблицы логарифмические и логарифмо-тригонометрические, то теперь применяются таблицы квадратов, длины окружности, площади круга, которые используются в 6—8-х классах при решении задач на вычисление длины окружности и площади круга по его радиусу, на вычисление поверхности и объёма цилиндра и конуса. Основные сведения о математических таблицах рассмотрены В.М. Брадисом в книге «Средства и способы элементарных вычислений».

В широко известных четырёхзначных математических таблицах В.М. Брадиса содержится 22 таблицы и указания к пользованию ими. В.М. Брадис рекомендует пользоваться в школе именно четырёхзначными таблицами, вполне обеспечивающими нужную точность при решении жизненных задач. Трёхзначные таблицы мало удобны, так как они дают такую же точность, какую и логарифмическая линейка, на которой действия выполняются в несколько раз быстрее. Поэтому, если требуется точность до 3—4 значащих цифр, то предпочтительнее производить вычисления на линейке. Устройство и работа на логарифмической линейке рассмотрены в ряде работ В.М. Брадиса и в специальном пособии для учащихся 9-го класса. В.М. Брадис рекомендует начать применение счётной линейки до того, как будет дано теоретическое обоснование её устройства, а именно в 8-м классе. В.М. Брадис высоко оценивал умение производить численные расчёты при решении жизненных задач с помощью логарифмической линейки, так как она обеспечивает практически достаточную точность результатов и даёт огромную экономию времени.

В последние годы всё более широкое применение в технике находит номография. В.М. Брадис определяет минимум знаний, который должен иметь учитель математики о номографии, и включает их в учебник «Теория и практика вычислений» для студентов пединститутов. Он уверен, что в ближайшее время простейшие номограммы войдут в общеобразовательный курс математики. В четырёхзначных математических таблицах он помещает несколько номограмм, доступных учащимся.

Вот ряд работ В.М. Брадиса, отражающих его борьбу за повышение вычислительной культуры студентов физико-математических факультетов педагогических институтов и учащихся средних школ. Здесь помимо работ, посвящённых непосредственно теории приближенных вычислений, указываются работы, связанные с использованием вспомогательных средств вычисления: математических таблиц, счётной линейки и др.

1. Таблицы четырёхзначных логарифмов и натуральных тригонометрических величин (1921 г.).

2. Четырёхзначные математические таблицы (1925 г.).

3. Как вычисляют посредством таблиц логарифмов с 4 десятичными знаками? (1926 г.).

4. Четырёхзначные математические таблицы для средней школы. Ввиду исключительного значения таблиц остановимся на них подробнее. Впервые таблицы для средней школы были изданы в 1928 г. и далее переиздавались ежегодно. В 1961 г. вышло 32-е издание, отличающееся от предыдущих тем, что оно значительно дополнено. В книге помещены номограммы, важнейшие формулы, биномиальные коэффициенты, таблицы для решения задач с процентными вычислениями, включены правила подсчёта цифр, применяемые при решении задач с приближенными данными. В 1975 г. вышло 46-е издание таблиц при ежегодном миллионном тираже. Только на русском языке их издают ежегодно 700 тысяч экземпляров. Для учащихся Латвийской, Литовской, Казахской, Киргизской, Узбекской, Украинской, Белорусской и других советских республик их издают на родном языке. Четырёхзначные математические таблицы обладают рядом достоинств: они компактны, просты для пользования, обеспечивают разумную точность результата, полезны широкому кругу лиц. Ими пользуются в своей практической работе учащиеся средних общеобразовательных школ и специальных училищ, студенты вузов, техники и инженеры различных профилей, агрономы. Таблицы переведены на иностранные языки: болгарский, чешский, немецкий, японский, китайский и др. Они вытеснили применявшиеся ранее громоздкие таблицы Пржевальского, Глазенапа и другие, которыми пользовались до 1928 г.

5. Математические таблицы в школе (1929 г.).

6. Трёхзначные математические таблицы (1932 г.).

7. Приближенные вычисления в школьном курсе математики (1923, 1925, 1926, 1928 г.).

8. Вычислительная работа в курсе математики в школах II ступени (1928 г.).

9. Элементарные сведения по технике вычислений (1936 г.). Статья помещена в БСЭ, 1-е издание.

10. Приближенные вычисления в педагогическом вузе (1928, 1940 г.). В 1955 г. статья помещена в БСЭ, 2-е издание.

11. Арифметика приближенных вычислений: Учебник для институтов (1931, 1933, 1936 г.).

12. Средства и способы элементарных вычислений: Учебник для студентов пединститута (1948 г.). 3-е изд. – в 1954 г.

13. Теория и практика приближенных вычислений: Учебник для студентов педагогического института (1933, 1934, 1935, 1936, 1937 г.).

14. Умножение приближенных чисел (1926 г.).

15. Опыт обоснования некоторых правил действий над приближенными числами (1926 г.). Статья помещена в «Известиях Тверского педагогического института» в 3-м выпуске.

Последние две статьи являются важнейшими теоретическими работами, в которых изложено обоснование правил подсчёта цифр и рассмотрен способ границ, ранее не описанный в научной литературе.

16. О предельной погрешности произведения нескольких приближенных сомножителей (1928 г.).

17. Правила подсчёта цифр (1928 г.).

18. Округление. Ошибка округления (1954 г., БСЭ, 2-е изд.).

19. Погрешность. Приближенные формулы (1955 г., БСЭ, 2-е изд.).

20. Как надо вычислять? (1929, 1930, 1931, 1932, 1934 г.). В трёх выпусках.

21. Как надо вычислять?: Пособие для средней школы (1960, 1965 г.). В одном выпуске.

22. Устный и письменный счёт. Вспомогательные средства вычисления (1951 г., Энциклопедия элементарной математики).

23. То же на немецком и японском языках.

24. Извлечение квадратных и кубических корней из чисел (1961 г.).

25. Об изучении логарифмической линейки (1957 г.).

26. Счётная логарифмическая линейка: Пособие для учащихся 9 класса (1957 г.).

27. Вычислительная работа в курсе математики средней школы (1962 г.). Последняя крупная работа Владимира Модестовича.

Из этого перечня видно, что вопросом повышения вычислительной культуры учащихся В.М. Брадис занимался более 30 лет. Он нашёл способ вычисления с приближенными данными, приемлемый для школьников, обосновал его научность, сформулировал доступные учащимся правила действий, разработал методику введения правил действия.

Владимир Модестович добился осуществления многих своих идей: включения в программу математики средней школы с 1960 г. темы «Приближенные вычисления», изучения логарифмической линейки в 9-м классе и применения её при решении задач в 8-м классе, более широкого использования четырёхзначных математических таблиц.

Итоги огромной работы В.М. Брадиса в этой области были подведены им в докторской диссертации на тему «Вычислительная работа в курсе математики в средней школе». Исследования Владимира Модестовича в области совершенствования вычислительной культуры вызвали отклик со стороны специалистов разных профилей и имели массу последователей, в работах которых идеи учёного получили дальнейшее развитие. Среди них инженер И.Я. Байков из Мордовской ССР, В.П. Демкович – автор сборника задач по физике для средней школы, добившийся применения способа подсчёта цифр при решении задач по физике, доцент Томского института Л.Ф. Пичурин, С.М. Чуканцов – доцент Калужского педагогического института, много сил отдавший продвижению способа подсчёта цифр в школы, Н.Я. Прайсман – старший преподаватель Кировоградского пединститута, и другие ученые, осветившие в своих диссертациях разные стороны методики изучения способа подсчёта цифр.

Работы В.М. Брадиса нашли отклик и за рубежом. В ГДР появилась статья методиста-математика со ссылками на статью В.М. Брадиса «Устный и письменный счёт». Ряд откликов, связанных со школьными вычислениями, помещены в педагогической печати Болгарии, Чехословакии, Китая, Кореи, Японии.

II. Исследования в области геометрии

Вторым направлением в научной работе В.М. Брадиса является исследование в области геометрии. В течение многих лет В.М. Брадис читал студентам пединститута курс «Основания геометрии» и завершил его написанием работы «Евклидова геометрия в аксиоматическом изложении», напечатанной в «Трудах физико-математического факультета Калининского педагогического института» в 1949 г. Здесь автор даёт строго аксиоматическое изложение геометрии прямой линии. Система аксиом одномерной геометрии содержит 11 аксиом, объединённых в 4 группы. Доказано более 50 теорем, составляющих содержание этой теории. Строгое аксиоматическое изложение не утомляет читателя, а наоборот, увлекает безукоризненной строгостью и исчерпывающим характером каждого доказательства.

В итоге рассматривается непротиворечивость, независимость и полнота принятой системы аксиом. Эта работа представляет важный и интересный пример развёрнутого аксиоматического изложения одной из математических теорий. К работам в области геометрии относятся следующие:

1. Линейные многообразия четырёхмерной геометрии и их истолкование в системе «пространство – время». Написана работа в 1949 г.

2. Учебник аналитической геометрии для студентов пединститутов. Написан в 1934 г. и неоднократно переиздавался.

3. Героновы треугольники. Издана в 1959 г. на румынском языке.

4. Как найти площадь фигуры с произвольным контуром. Напечатана в 1923 г.

5. Разыскивание радиуса круга по сторонам вписанного в него неправильного многоугольника. Напечатана в 1931 г.

III. Исследования в области методики преподавания математики

Третьим направлением в творческой деятельности В.М. Брадиса было совершенствование методики преподавания математики в средней и высшей школе: подготовка программ, учебников и методических пособий для студентов педвузов и учителей; подготовка программ и учебников для средней школы; подготовка научных кадров через аспирантуру.

Методические идеи В.М. Брадиса сложились в результате огромного опыта преподавательской деятельности с различным контингентом учащихся в разнообразных учебных заведениях: в школах, в математических кружках, на учительских курсах, на рабфаке, в пединституте. Критическое отношение к своей работе и работе товарищей, глубокий анализ приемов обучения и их результатов способствовали тому, что у В.М. Брадиса к 1945 г. при 40-летнем педагогическом стаже выработался твёрдый взгляд на методику преподавания математики. В.М. Брадис считал, что, во-первых, совершенствование методики преподавания математики в средней школе и вузе должно идти по пути сближения школьной математики с математикой как наукой и, во-вторых, по пути сближения с требованиями жизни. Это означало повышение теоретического уровня преподавания математики и показ её практического применения. На всех ступенях изучения математики большое внимание должно уделяться роли индукции, что будет способствовать ясному пониманию и твёрдому усвоению математических фактов.

В годы войны В.М. Брадис впервые и единственный раз прочёл для студентов математического факультета курс «Методика преподавания математики». Результатом было написание книги с тем же названием. Это был первый в Советском Союзе учебник для студентов физмата по методике преподавания математики, в котором излагались идеи как общей методики преподавания, так и вопросы преподавания всех разделов математики, изучаемых в средней школе. До 1949 г. не существовало подобного учебника, были пособия по методике преподавания отдельных предметов и даже вопросов. Например, методика арифметики, алгебры, геометрии, методика обучения решению арифметических задач, решению задач с помощью составления уравнений, решению задач на доказательство, задач по стереометрии и т.д. Это создавало большие трудности при подготовке студентов к экзаменам по методике, так как требовалось найти целый ряд пособий, освещающих все вопросы программы, суммарный объём которых значительно превышал объём нового учебника. При этом некоторые вопросы, например учёт знаний, организация домашней работы, организация повторения и другие, рассматривались несколько раз, т.е. в разных пособиях, а часть вопросов оказывалась вне внимания авторов, например вопросы истории математики, воспитание чувства национальной гордости и др. С появлением учебника эти трудности исчезли.

Преподаватели методики математики приветствовали появление учебника и отмечали ряд преимуществ:

1) обеспечивался единый подход к изложению отдельных разделов курса;

2) исчезла необходимость многократного рассмотрения одних и тех же вопросов методики: планирования, организации учёта знаний, повторения и т.д.;

3) учебник широко охватывал все стороны работы учителя и давал сжатые, конкретные, обоснованные методические рекомендации. Особое внимание уделялось решению вопросов, возникающих у начинающих учителей. Например, молодых учителей затрудняет необходимость правильно оценить работу учащихся. «Методика» даёт исчерпывающее указание на то, какие требования должны быть предъявлены к устным и письменным ответам учащихся, какие из них являются обязательными, какие желательными, невыполнение каких требований обесценивает работу учащихся, и выполнение каких повышает её оценку;

4) «Методика...» написана с далёкой перспективой. В ней кратко и чётко изложено много интересных передовых педагогических и методических идей, некоторые из них стали осуществляться 15 лет спустя, когда были внесены изменения в программу математики средней школы. Например, «Методика» содержит рекомендации по теме «Приближенные вычисления», которые стали изучаться в школах с 1960 г. После этих работ в школьных сборниках задач появились задачи не с искусственно подобранными числовыми данными, против которых так энергично выступал В.М. Брадис, а жизненные задачи, для решения которых необходимо знание правил действий с приближенными данными. В связи с этим в «Методике...» имеются указания по проведению практических работ на местности, измерению отдельных элементов фигур и вычислению других, что впоследствии стало предусматриваться программой математики. В ряде мест рекомендуется найти рациональные и быстрые приёмы вычислений, используя арифмометр, конторские счёты, таблицы и счётную линейку, составление схемы вычислений и др.;

5) в «Методике...» рекомендуется чаще прибегать к индукции (на любом этапе изучения математики), с помощью которой можно помочь ученику обнаружить и сформулировать сложные зависимости. Например, с помощью переливания жидкости из пирамиды в параллелепипед с таким же основанием и высотой установить формулу объёма пирамиды, с помощью сравнения расхода шнура на покрытие поверхности полушара и площади его большого круга установить формулу поверхности шара.

В младших классах средней школы (6—7-х) рекомендуется привлекать учащихся к изготовлению наглядных пособий из бумаги, применять вырезание, перегибание, вращение, что помогает установить зависимости между элементами фигуры и формулировать их. (Чтобы обеспечить соответствующую подготовку учителей, в учебный план физмата в 50—60-х гг. вводятся практикумы по моделированию, т.е. изготовлению наглядных пособий, и измерению на местности);

6) если существуют различные методические приёмы изучения какого-либо вопроса, то в «Методике...» все они рассматриваются, указываются преимущества и недостатки каждого, обосновывается, почему одному из них следует отдать предпочтение;

7) показывается применение теорем к решению математических задач и задач с практическим содержанием;

8) многие вопросы рассматриваются на двух уровнях: для неполной средней школы и для средней школы. Например, тригонометрические функции, развитие понятия числа, построение курса геометрии;

9) «Методика...» содержит рассмотрение вопросов, не включённых в программу средней школы, они напечатаны мелким шрифтом и предназначены для желающих углубить свои знания;

10) в «Методике...» рассматриваются этапы развития математики, приводятся биографии выдающихся математиков Советского Союза и других стран. Сообщение этих сведений на уроках математики развивает интерес к предмету. Знакомство с достижениями русских математиков – Лобачевского, Чебышёва и других – способствует воспитанию чувства национальной гордости и патриотизма;

11) после каждой главы учебника – методика арифметики, методика алгебры и т.д. – даётся исчерпывающая библиография, соответствующая периоду издания книги и рекомендуемая учителям и студентам для углубления изучения вопроса;

12) учителя отмечают, что во всех сомнительных случаях, обратившись к «Методике...», можно найти исчерпывающий ответ и разрешить вопрос;

13) без преувеличения можно сказать, что книга В.М. Брадиса явилась своего рода энциклопедией методики преподавания математики и сделалась настольной книгой каждого учителя математики. Она переиздавалась три раза (в 1949, 1951, 1954 г.) и до сих пор популярна.

Методическая работа В.М. Брадиса не ограничилась написанием «Методики...». Ясно представляя себе, какими знаниями и умениями должен обладать выпускник пединститута – будущий учитель математики средней школы, В.М. Брадис принимает активное участие в работе Министерства просвещения и Академии педагогических наук по разработке программ математических дисциплин физико-математических факультетов пединститутов. Одновременно участвует в написании методических указаний к изучению этих курсов для преподавателей педвузов. Разрабатывает темы курсовых работ, содержание которых раскрывает в специальных указаниях к ним, рекомендует соответствующую литературу к каждой курсовой работе. Для учёта знаний студентов-заочников пединститутов составляет контрольные работы. Кроме того, на протяжении всей своей деятельности В.М. Брадис пишет учебники для студентов по различным математическим дисциплинам. Среди них:

1. Арифметика приближенных вычислений (1930, 1931, 1951 г.).

2. Аналитическая геометрия (1934, 1935, 1936, 1937 г.).

3. Теория и практика вычислений (3-е изд. – 1933 г., 5-е изд. – 1937 г.).

4. Элементы теории чисел (1934 г.).

5. Средства и способы элементарных вычислений (1946, 1951, 1954 г.). Евклидова геометрия в аксиоматическом изложении (1949 г.).

6. Теоретическая арифметика (1954 г.).

7. Методика преподавания математики (1949, 1951, 1954 г.).

8. Элементы прикладного анализа (1937 г.).

В.М. Брадис принимал участие в совещаниях Наркомата просвещения и Академии педнаук по совершенствованию программ по математике для средних школ. По его инициативе в программу математики 5-го класса средней школы включена тема «Приближенные вычисления», в программу 7—8-х классов – тема «Логарифмическая линейка», в программу 5—9-х классов – «Измерительные работы на местности» и др.

Большое место в творческой деятельности В.М. Брадиса занимает написание учебников и учебных пособий для учащихся средних школ. Главные из них:

1. Четырёхзначные математические таблицы (издаются ежегодно с 1928 г.).

2. Как надо вычислять? Приближенные вычисления на 5-м году обучения (1929, 1930, 1965 г.).

3. Как надо вычислять? Приближенные вычисления на 6—7-м годах обучения (1931, 1932 г.).

4. Как надо вычислять? Вычисление посредством таблиц логарифмов и счётной логарифмической линейки (1934 г.).

5. Арифметика: Учебник для 5 и 6 классов (1957, 1962 г.).

6. Алгебра: Учебник для 8—10 классов средней школы (1957, 1960 г.).

7. Счётная логарифмическая линейка: Пособие для учащихся 9 класса (1957 г.).

8. Вычислительная работа в курсе математики в средней школе (1962 г.).

Владимиром Модестовичем написаны статьи и книга, которые могут быть использованы учащимися средней школы для домашнего чтения, изучения их в математических кружках, проведения математических вечеров. Особенно полезны и интересны следующие.

1. Как найти площадь фигуры с произвольным контуром? Статья напечатана в 1923 г. в журнале «Знамя рабфаковца» (№ 3—5. С. 61—68). Способ сводится к тому, что сравнивается вес фигуры с произвольным контуром с весом квадрата из такой же бумаги площадью 10 см2. Этот способ В.М. Брадис показал рабфаковцам в связи с тем, что они обратились к нему с просьбой познакомить с каким-либо методом вычисления площади географического района, озера и т.д.

2. Разыскивание наивыгоднейших значений. Статья помещена в кн.: Математика в школе / под ред. И.И. Грацианского. М., 1926. Кн. 2. С. 3—20.

3. Ошибки в математических рассуждениях (1938, 1959 г.). Эта книга содержит задачи и их решения, приводящие к нелепым результатам, например 2=3, сумма длин катетов равна длине гипотенузы, площадь равностороннего треугольника равна нулю, 64 см = 65 см и др. Можно предложить участникам математического вечера или математического кружка найти ошибку в рассуждении, что всегда вызывает большой интерес у присутствующих.

Работы В.М. Брадиса известны далеко за пределами Родины. Его «Методика»...», «Четырёхзначные математические таблицы», «Ошибки в математических рассуждениях», «Устный и письменный счёт, вспомогательные вычисления», «Как надо вычислять?» переведены на болгарский, чешский, румынский, немецкий, английский, японский, китайский языки. «Методика...» переведена на корейский язык.

В.М. Брадис хорошо знал иностранные языки, особенно латинский, немецкий, французский, английский и шведский. Это облегчало чтение литературы на других языках: итальянском, испанском, датском, норвежском. Им сделаны переводы двух книг с немецкого языка и одной книги с английского. Он написал реферативные статьи на 77 работ, поступивших к нему на различных иностранных языках. Эти статьи опубликованы в специальном «Реферативном журнале» (выпуск «Математика») в 1953—1955 гг.

Большой опыт научной и педагогической работы, широкое знание советской и зарубежной методической и математической литературы обеспечивали В.М. Брадису успех в работе по подготовке научных кадров. Этому он посвятил более 20 лет, уделяя много сил и внимания каждому аспиранту. Все они работали по личным планам, за выполнением которых строго следил руководитель. На еженедельных консультациях строго спрашивалась и оценивалась проделанная работа: что прочитано, изучено, по какому разделу готов отчёт, что написано, какие лекции преподавателей института прослушаны. При малейшем отступлении от плана требовалось объяснение. Однако не было мелочности и придирчивости. Помимо еженедельных индивидуальных консультаций два раза в месяц проводились семинары, на которых обсуждались итоги проделанной аспирантами работы, рецензии на новые книги, прочитанная лекция или проведённое практическое занятие, решение задач повышенной трудности, представленная глава диссертации и др. В семинаре принимали участие сотрудники математических кафедр, учителя города, приезжали аспиранты-заочники.

Аспиранты В.М. Брадиса, а их было свыше 45, закончив срок обучения, разъезжались в разные утолки Советского Союза. 22 аспиранта успешно защитили диссертации на соискание ученой степени кандидата педагогических наук и один – на степень кандидата физико-математических наук. Многие из них теперь доценты, заведуют кафедрами, работают в университетах, в педагогических институтах, в технических вузах, ведут преподавание высшей и элементарной математики, методики математики, некоторые готовят докторские диссертации.

Всегда отзывчивый и доброжелательный, В.М. Брадис охотно консультировал соискателей учёных степеней, приезжавших к нему из различных городов нашей страны, делился своим опытом, давал ценные советы начинающим авторам и преподавателям других институтов, добросовестно рецензировал их работы.

В.М. Брадис заслуженно пользовался авторитетом, симпатией и уважением со стороны студентов, учителей и научных работников. Видный учёный И.Я. Депман, профессор Ленинградского пединститута имени Герцена, на своей книге, которую он послал В.М. Брадису, написал: «Мастеру от подмастерья».

Со своими товарищами по работе, с бывшими аспирантами и подопечными В.М. Брадис поддерживал постоянную связь. Он вёл переписку с 200 лицами, регистрируя поступавшую корреспонденцию, и со свойственной ему аккуратностью отвечал на все деловые письма. Среди его постоянных корреспондентов были и учащиеся школ. Он ревниво следил за ростом своих друзей и воспитанников, радуясь их успехам. Они платили ему тем же. Он был первым, кто узнавал о творческих успехах своих учеников. Вся переписка-архив В.М. Брадиса передана на вечное хранение в Псковский историко-архитектурный музей. (Туда же были переданы личные вещи, орден Ленина, медали, дипломы и свидетельства о присвоении учёных степеней и почётных званий, приветственные адреса, которые он получал к своим юбилеям. – Е.Д). В этом архиве свыше 100 папок переписки с издательствами, с АПН, с его большими друзьями: профессорами И.И. Андроновым, Р.С. Черкасовым, Б.В. Болгарским, В.В. Репьевым, А.И. Маркушевичем, с сотрудником АПН А.И. Фетисовым, с преподавателями пединститутов С.М. Чуканцевым, Л.Ф. Пичуриным и др.

В.М. Брадис имел богатую библиотеку, насчитывающую свыше 4000 книг, которую он собирал в течение всей своей жизни. Ею пользовались аспиранты. Ещё при жизни В.М. Брадиса часть книг была подарена преподавателям Калининского пединститута, аспирантам и студентам. Около 2000 книг было передано библиотеке Калининского государственного университета, а после смерти В.М. Брадиса свыше 2000 книг, представляющих исключительную ценность по полноте собрания сочинений по методике преподавания математики, по истории математики, по теории вероятностей и другим предметам физико-математического цикла, были переданы в Псковский историко-архитектурный музей. Среди подаренных книг сочинения Евклида, Декарта, Ньютона, Эйлера, Лобачевского, Клейна, Войля, журналы, энциклопедии и др. На родине В.М. Брадиса открыт мемориальный кабинет.


Общественная и просветительская деятельность В.М. Брадиса

В.М. Брадис – не только видный учёный и замечательный педагог. Он всегда принимал большое участие в общественной работе, с присущей ему добросовестностью выполняя все поручения. В.М. Брадис неоднократно избирался на руководящую работу в профорганизации института, много раз избирался членом и председателем ревизионных комиссий профсоюза, был членом бюро Калининского отделения Союза научных работников, председателем производственной комиссии обкома Союза. В 1935 г. В.М. Брадис был избран делегатом I съезда Советов Калининской области, в 1938 г. являлся членом избирательной комиссии по выборам в Верховный Совет РСФСР, в 1939 г. был заместителем председателя окружной комиссии по выборам в местные Советы, в 1940 г. – председателем ревизионной комиссии обкома Союза работников высшей школы и научных учреждений. В 1941 г. В.М. Брадис состоял в народном ополчении, в 1942 г. участвовал в Комиссии по расследованию зверств фашистов, временно оккупировавших некоторые районы Калининской области.

Владимир Модестович не по обязанности, а добровольно занимался просветительской деятельностью, используя для этого подходящую ситуацию. Например, летом, живя на даче, он обязательно находил ученика или ученицу, у которых неблагополучно с математикой. Подбирая оригинальные задачи, он возбуждал у учащихся интерес к математике и достигал желательных результатов. Были случаи, когда соседом являлся инженер, не владеющий логарифмической линейкой. За несколько занятий усваивались основные правила выполнения действий, и инженер не раз в своей жизни вспоминал эти уроки. В городе в разное время он оказывал помощь в подготовке к очередным, выпускным и вступительным экзаменам подругам и товарищам своих детей и внучек.


Связь с учительством, учащимися и органами народного образования

В течение всего времени работы в пединституте В.М. Брадис был тесно связан с учительством и органами народного образования. Он выступал с лекциями на методических объединениях учителей математики города и в Институте усовершенствования учителей в связи с изменениями в программе математики, введением новых учебников. В своих сообщениях он стремился освежить в памяти учителей используемый материал, высказывал соображения о методике его изучения, об особенностях новой программы, о построении нового учебника, его достоинствах и недостатках. Выступления В.М. Брадиса пользовались неизменным успехом. Он неоднократно руководил педагогическими чтениями, подводил итоги, делал общие выводы о проделанной работе. В течение нескольких лет перед войной 1941—1945 гг. В.М. Брадис руководил городским математическим кружком учащихся 9—10-х классов. В переполненном зале он выступал с интересными сообщениями, выбирая вопросы математики, не предусмотренные школьной программой. Члены кружка получали задания по решению задач. Те учащиеся, которые удачно справлялись с очередными заданиями, премировались математическими книгами. Многие из членов кружка в дальнейшем поступали в пединститут, заканчивали аспирантуру. В послевоенные годы в каждой школе города стали работать математические кружки. Тем не менее, связь В.М. Брадиса с учащимися не прекратилась. Он охотно выступал в школах города перед учащимися старших классов с докладами по теории вероятностей, демонстрируя силу математического предвидения на этом же занятии, решал увлекательные задачи на разыскание наивыгоднейших условий, применяя методы элементарной математики.


Признание

В.М. Брадис был видным учёным-математиком и крупным методистом, глубоко осведомлённым в самых разнообразных областях методики преподавания математики. Его имя внесено в книги «Математика в Советском Союзе за 30 лет», «Математика в Советском Союзе за 40 лет», «Педагогическая энциклопедия», «Педагогический словарь».


    Ваша оценка произведения:

Популярные книги за неделю