355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Скулачев » Рассказы о биоэнергетике » Текст книги (страница 5)
Рассказы о биоэнергетике
  • Текст добавлен: 4 октября 2016, 02:09

Текст книги "Рассказы о биоэнергетике"


Автор книги: Владимир Скулачев


Жанр:

   

Биология


сообщить о нарушении

Текущая страница: 5 (всего у книги 14 страниц)

Первая «Серая книга» Митчела

Вернувшись в тишину своего Глинн Хауза, повторил тот опыт, которым сокрушил eгo в Варшаве Чане. Напрасно Мойл вглядывалась в показания рH-метра: кислород не вызывал зачисления, если в среде было вещество, связывающее кальций. Так что же, Чане был прав там, в Варшаве? В этом конкретном опыте – да.

Первая 'Серая книга' Митчела

Такую гипотезу, как схема Митчела, нельзя доказать, имея в руках один только простейший рН-метр. Ни ее нельзя и опровергнуть столь простым способам!

А все-таки при чем тут кальций? Насколько велико в действительности должно быть закисление, если работает дыхательная цепь, закрепленная поперек митохондриальной мембраны?

Митчел садится за письменный стол, а опыты временно препоручает своей верной сотруднице Мойл и лаборанту.

Временно?

Нет, навсегда. Отныне Митчел уже, как правило, не участвует в опытах. Он пишет книгу. Свою первую книгу с подробным изложением хемиосмотическрй теории.

Собственно, книга была начата еще до Варшавы. Но в окончательном виде она была готова лишь к концу мая 1966 года. Не рассчитывая найти сколько-нибудь серьезное издательство, которое решилось бы на публикацию подробного описания только что публично отвергнутой гипотезы, Митчел напечатал книгу сам, на ротапринте.

Так появилась на свет брошюра в сером картонном переплете, на котором значилось: «Хемиосмотическое сопряжение в окислительном и фотосинтетическом фосфорилировании». Книга была разослана участникам варшавской дускуссии.

В конце того же 1966 года Митчела поддержала его Alma mater – Кембриджский университет, где согласились опубликовать сокращенный вариант «Серой книги» в «Байолоджикал ревьюз».

В своей книге, ныне одной из самых широко цитируемых работ по биоэнергетике, Митчел рассмотрел механизмы реакций, которые могли бы сопровождаться переносом протонов и электронов через мембраны. Там же содержался ответ на конкретный вопрос, в какой степени среда инкубации с митохондриями должна закисляться при добавлении кислорода. Расчет дал курьезный результат: оказалось, что Митчел и Мойл не могли увидеть закисления среды в своих опытах 1965 года, если бы это закиеление было обусловлено одним только разделением Н+ и ОН– в митохондриальной мембране.

Дело в том, что разделение противоионов должно создавать разность электрических потенциалов (ее обозначают Δψ) между двумя разграниченными мембраной отсеками. Если при дыхании ионы Н+ окажутся снаружи митохондрии, а ионы ОН– внутри, то внутренность митохондрии зарядится отрицательно, а внешний объем – положительно. Величина Для будет тем больше, чем больше противоионов будет разделено мембраной.

Но Δψ не может возрастать беспредельно. Чем выше величина отрицательного заряда внутри митохондрий, тем труднее дыханию поддерживать процесс разделения ионов Н+ и ОН-. В какой-то момент разделение зарядов прекратится. Это случится тогда, когда выигрыш в энергии при реакциях дыхания окажется недостаточным, чтобы покрыть энергетический дефицит, возникающий при разделении противоионов. Именно в этот момент дальнейшая зарядка электрической емкости мембраны станет невозможной.

Сопоставляя электрическую емкость мембраны и выделение энергии в процессе дыхания. Митчел заключил: мембрана зарядится так быстро, что кислотность снаружи митохондрий не успеет измениться сколько-нибудь заметным образом.

Не подрывает ли этот расчет хемиосмотическую гипотезу? Ведь мы говорили все время о нейтрализации кислоты и щелочи.

Оказывается, что нет.

Обратимся еще раз к схеме Митчела. Согласно гипотезе синтез АТФ рождает положительные заряды (Н+) во внутреннем пространстве митохондрий, то есть в отсеке, заряжающемся за счет дыхания отрицательно. Та же реакция синтеза АТФ приводит к уменьшению количества положительных зарядов (Н+) снаружи митохондрий, то есть там, где дыхание создает знак «плюс». Таким образом, синтез АТФ нейтрализует работу дыхательной системы, не только поставляя кислоту в защелачивающийся дыханием внутренний отсек митохондрии, но и образуя в этом отсеке положительные заряды. Тем самым дыхание может служить движущей силой для процесса фосфорилирования, даже не образуя сколько-нибудь заметной разности концентраций водородных ионов. Достаточно создания Δψ).

Но что же в таком случае измеряли Митчел и Мойл в своих первых опытах? Откуда взялось закиеление и что за магический эффект вещества, связывающего кальций?

Если закисление действительно было связано с работой дыхательных ферментов, то в условиях опыта электрическая емкость мембраны не ограничивала процесса разделения противоионов при дыхании.

Что, если в отрицательно заряженную внутреннюю полость митохондрии проникал какой-нибудь катион, например, кальций?

В своих опытах Митчел и Мойл не добавляли ионов кальция, но специально и не освобождались от них. Источником кальция могли быть реактивы, да и сами митохондрии. Но если все обстоит именно так, то давайте добавим кальций, и закисление должно возрасти... Митчел попросил свою сотрудницу поставить этот опыт. Закиеление резко увеличилось!

Таков был ответ Чансу. Но еще не доказательство гипотезы; скорее свидетельство ее непотопляемости теми средствами, которые употребил в Варшаве знаменитый яхтсмен.

Протонофоры

«Серая книга» Митчела окончательно укрепила мое убеждение, что новая концепция достойна стать рабочей гипотезой биоэнергетики, заменив неудачную химическую схему. К тому времени мы уже были подготовлены к принятию хемиосмотической гипотезы всем предшествующим развитием своих работ: открытием эффекта двух путей окисления, а затем терморегуляторного разобщения в мышечных митохондриях и, наконец, отрицательным итогом опытов по проверке одного из вариантов химической схемы.

В частности, Митчел давал простой ответ на вопрос о том, как можно представить себе быстрое переключение дыхания на холостой путь, например, при охлаждении организма. Напомним, что, по Митчелу, дыхание образует избыток ионов водорода по одну сторону мембраны митохондрии, а при синтезе АТФ эти избыточные ионы водорода потребляются. Достаточно повысить проницаемость мембраны для протонов, как Δψ и разность рН исчезнут без всякого синтеза АТФ, дыхание пойдет без фосфорилирования, а вся энергия окислительных реакций превратится в тепло.

Впоследствии оказалось, что в разобщении на холоде участвуют свободные жирные кислоты, которые действительно повышают проницаемость мембран для водородных ионов. Но это уже следующая история.

В 1966 году сотрудник института биофизики Е. Либерман задался целью получить искусственные мембраны с такими же электрическими характеристиками, что и мембраны биологические. Он добавлял к фосфолипидам, из которых делали искусственные мембраны, различные вещества и смотрел, не снизится ли сопротивление до величин, характерных для внешней мембраны нейрона, популярного объекта электрофизиологических исследований. Одним из соединений, снижающих сопротивление, оказались жирные кислоты. Именно эти вещества, как мы думали, могут играть роль природных разобщителей.

В том же году А. Ленинджер, уже упоминавшийся нами известный биоэнергетик и автор самого знаменитого учебника по биохимии, поставил опыт по действию динитрофенола на искусственную мембрану. Как и у Е. Либермана, это была так называемая черная: мембрана из фосфолипидов (черная – значит, такая тонкая, меньше длины волны видимого света, что уже не преломляет световых лучей). Мембрана закрывала небольшое отверстие в тефлоновои перегородке, разделяющей кювету на два отсека. В, каждый, из отсеков погружено по электроду, между ними вольтметр. В этой простой системе легко измерить сопротивление черной мембраны. Так вот оказалось, что добавка дицитрофенола в оба отсека кюветы или даже в один из них заметно снижает сопротивление мембраны.

Сопоставив эти два наблюдения: одно, сделанное в Пущине, и другое – в Балтиморе, – с результатами Б. Чэпела на фосфолипидных мицеллах, я решил, что перед нами прекрасная модель для проверки одного из постулатов хемиосмотмческой теории, а именно концепции разобщителей как переносчиков водородных ионов.

Как-то поздно вечером, возвращаясь из МГУ с знаменитого биологического семинара И. Гельфанда вместе с Е. Либерманом, я предложил ему взять несколько разобщителей и проверить их действие на сопротивление черных мембран. Он немедленно согласился, заметив с воодушевлением, что это будет его первый опыт, где в равной степени окажется интересным как положительный, так и отрицательный результат.

Сначала Е. Либерман испытал два вещества, в сто раз отличавшиеся по разобщающей активности: слабый разобщитель динитрофенол и сильный с длинным названием тетрахлортрифторметилбензимидазол (ТТФБ). Добавление динитрофенола снижало сопротивление мембраны, что уже не было новостью после опытов Ленинджера. А как поведет себя мембрана после добавления ТТФБ? Первое впечатление – от капли этого вещества она просто лопнула. Но нет, мембрана-то есть, а вот ее сопротивление – оно катастрофически снизилось.

Измерение показало, что ТТФБ снижает сопротивление черной мембраны примерно в сто раз сильнее, чем динитрофенол.

Из 18 атомов, образующих молекулу ТТФБ, только один – атом водорода. Если ТТФБ – переносчик водородных ионов, то можно было бы думать, что замещение этого единственного водорода (кстати, легкоотщепляющегося) должно лишить вещество его способности разобщать дыхание и фосфорилирование и понижать сопротивление черной мембраны. Опыт подтвердил и это предположение.

Затем был взят еще десяток разобщителей, и всегда вещества, более активные в опытах с митохондриями, были более активны и на искусственных мембранах. Кроме того, удалось предсказать разобщающее действие веществ, ранее не подозревавшихся в этом качестве. Если выяснялось, что определенное химическое соединение создает протонную проводимость в черных мембранах, то можно было не сомневаться: оно разобщит дыхание и фосфорилирование в последующем опыте с митохондриями. Это правило не знало исключений.

Так был сделан вывод о справедливости предположения Митчела, касающегося природы феномена разобщения.

Вещества, повышающие протонную проводимость искусственных и биологических мембран, я окрестил «протонофорами».


Красные флажки на карте

Работа по протонофорам вызвала ожесточенные споры, которые теперь, спустя 15 лет, кажутся уже не слишком интересными. Важно, что опыты оказались достаточно простыми, чтобы их воспроизвел любой биофизик, способный «повесить» черную мембрану на отверстие в тефлоновой перегородке. Вскоре термин «протонофор» замелькал на страницах научных статей, и изучение протонофоров стало новым направлением науки о мембранах.

Митчел воспринял приятную для себя весть по-своему. Он завел большую географическую карту мира и воткнул в Москву красный флажок.

Когда в 1975 году молодой сотрудник нашей лаборатории И. Козлов посетил Тлинн Хауз, он обнаружил, что карта усеяна красными флажками: так Митчел отмечал места, откуда приходили вести о подтверждении хемиосмотической теории.

Красные флажки на карте

Но в 60-е годы, о которых сейчас у нас идет речь, до победы было еще далеко. Не утихали схоластические споры вокруг бесчисленных гипотез энергетического сопряжения, причем каждый из авторов тщился защитить свое детище от нападок, забывая о том, что в науке важно не кто первый, а кто прав. Если автор получал результат, противоречащий его предположениям, но подтверждающий гипотезу Митчела, то он принимался перекраивать свою концепцию вместо того, чтобы идти вперед, следуя за опытом, а не за мертвой схемой «бумажной биохимии».

Еще в 1964 году американцы С. Мур и Б. Прессман описали интереснейшее явление: повышение калиевой проводимости мембраны митохондрий под действием валиномицина. Оказалось, что в присутствии этого антибиотика митохондрии начинают жадно поглощать калий в ответ на включение дыхания. Такой факт хорошо согласовывался с идеями Митчела. Ведь если дыхание создает разность потенциалов со знаком «минус» внутри митохондрий, то ион К+ должен идти внутрь, к минусу, как только повысится калиевая проводимость митохондриальных мембран.

Однако сами авторы вместо этого естественного (теперь!) объяснения придумали сложнейшую схему, чтобы как-то увязать свои результаты с химической гипотезой. Они еще долго потом держались за свою точку зрения, хотя уже в 1967 году А. Лев в СССР и независимо П. Мюллер в США показали, что валиномицин создает специфическую калиевую проводимость в черных мембранах. В том же 1967 году Митчел и Мойл использовали открытия Мура, Прессмана, Льва и Мюллера, добавив валиномицин вместо кальция в своих опытах с митохондриями на рН-метре. Предсказание гипотезы состояло в том, что ионы калия в этих условиях будут способствовать закислению среды при добавке кислорода подобно тому, как это делают ионы кальция. Опыты полностью подтвердили такое предположение.

Ионы калия оказались удобнее, чем ионы кальция.

В отличие от кальция они не связываются с содержимым митохондрий и не повреждают их структуры, даже если накапливаются там в достаточно больших количествах. Именно это обстоятельство позволило Митчелу и Мойл определить величину разности потенциалов (Δψ) на мембране дышащих митохондрий. Удалось измерить также и разность концентраций ионов Н+ между митохондриями и средой (сокращенно ДрН).

Зная Δψ и ΔрН, Митчел подсчитал общую величину протондвижущей силы, то есть потенциальной энергии ионов Н+ (протонов), выделяющихся из митохондрий при дыхании и «стремящихся» вернуться назад, внутрь митохондрий, туда, где создалась нехватка положительных зарядов и более щелочная среда. Протондвижущая сила, или протонный потенциал, оказалась порядка четверти вольта. Эта величина соответствовала энергетическому дефициту, который необходимо было покрыть при синтезе АТФ из АДФ и фосфата, если принять, что на каждую синтезированную молекулу АТФ внутрь митохондрий возвращаются два иона Н+.

Вряд ли такое количественное соответствие могло быть простой случайностью. Это наблюдение явилось еще одним доводом в пользу хемиосмотической гипотезы.

Однако оппоненты Митчела поставили под сомнение правомочность исходной предпосылки всей этой серии опытов. Где гарантия, говорили они, что валиномицин прошивает мембрану митохондрий насквозь, а не открывает ионам калия доступ к некой калиевой АТФазе, ферменту, который мог бы транспортировать калий внутрь митохондрий? К тому времени уже был описан во внешней мембране животных клеток фермент, переносящий калий за счет энергии гидролиза АТФ.

Митчелу нечего было возразить, но в душе он уже уверовал в свою правоту. Я помню его доклад в 1968 году на очередном европейском биохимическом съезде в Праге. Ученый вышел на трибуну в помятом дорожном пиджаке и принялся расхаживать, мягко ступая по сцене, победоносно поглядывая поверх стекол очков своими желтыми, немного кошачьими глазами. Время от времени он подходил к доске и, склонив набок крупную голову, рисовал по памяти графики опытов. Ему не смогла испортить настроение даже пропажа чемодана со всеми слайдами и парадным костюмом.

В кулуарах следом за Митчелом ходил пожилой, небольшого роста англичанин и поспешно записывал все его высказывания в дискуссиях, которые немедленно вспыхивали в компании биоэнергетиков, как только среди них появлялся вчерашний затворник из Бодмина. Меня заинтриговала эта фигура, слишком уж не соответствовавшая своей, по-видимому, секретарской роли.

– Кто это преследует Митчела? – спросил я у одного из своих английских коллег.

– Да это Гревил. Ему заказали обзор о гипотезе Митчела для одного из журналов, вот он и собирает материал!

А что же Чане? Чане, считавший своим долгом задать вопрос любому докладчику, чье выступление он удостоил своим присутствием, на сей раз хранил необычное молчание, как будто все происходящее его вовсе не касалось. Может быть, капитан спустил паруса, заметив неблагоприятное для себя направление ветра?

Тем временем Митчел пишет вторую «Серую книгу» и вновь издает ее на свой страх и риск. Потом ее публикуют полностью в международном журнале по биофизике в виде одной огромной статьи. Молодой американский биоэнергетик П. Хинкль, вскоре после этого приехавший к Митчелу поработать, говорил мне, что он никогда не видел такого счастливого человека, как Митчел, и такой счастливой семьи, как обитатели Глинн Хауза.

Конформационная гипотеза

Тем не менее борьба еще не окончена, и не только из-за калиевой АТФазы. Появляется на свет божий новая, так называемая конформационная гипотеза сопряжения. Она пытается избавиться от наиболее вопиющих недостатков химической схемы, не прибегая к протонному потенциалу. Автор конформационной концепции, американский биохимик П. Бойер, сразу же отказался от аналогий с брожением. Он не признавал мифических промежуточных продуктов вроде фосфорилированных ферментов дыхания. Предполагалось вместо этого, что перенос электронов дыхательным ферментом создает некую «напряженную конформацию», то есть сжимает молекулу фермента как пружину. Затем «конформационная энергия» передается АТФ-синтетазе, образующей прочный комплекс с дыхательным ферментом. Релаксация (расслабление) напряженной АТФ-синтетазы ведет к синтезу АТФ.

Напряженная конформация, расслабление... Это все было взято из энергетики мышечного сокращения. Если химическая схема уподобляла систему дыхательного фосфорилирования брожению, то конформационная брала в основу биохимию белков мышц, которыми долгие годы занимался Бойер.

Две концепции – калиевой АТФазы и конформационного сопряжения – были противопоставлены хемиосмотической гипотезе на рубеже 60—70-х годов. Вокруг этих концепций дружно сплотились бывшие сторонники химической схемы, чтобы противостоять протондвижущей силе. Тогда их было еще большинство. Но с каждым годом увеличивалось число сторонников Митчела, множились красные флажки на карте в Глинн Хаузе.

Ягендорф, Витт, Булычев и другие

Корнелльский университет в Итаке (штат Нью-Йорк), как мне объяснили по приезде в этот симпатичный городок на севере США, специализируется в подготовке ветеринаров и управляющих отелями. Не знаю уж, кому из них более интересен фотосинтез: ветеринарам, чьи подопечные нагуливают вес, поедая продукты фотосинтеза, или управляющим отелями, которым приходится следить, помимо прочего, за пальмами в гостиничных холлах.

Так или иначе в Корнелльском университете работал А. Ягендорф, специалист по фотофосфорилированию, то есть синтезу АТФ за счет энергии света в хлоропластах. До этого он провел некоторое время в лаборатории Митчела и, вернувшись в Итаку, решил проверить предсказательную силу новой гипотезы. Ягендорф поместил хлоропласты сначала в кислую, а потом в щелочную среду, измеряя при этом количество АТФ. Все манипуляции производились в темноте. Оказалось, что такая процедура ведет к образованию АТФ, как если бы мы на минутку выключили свет.

Система фотофосфорилирования работает без света. Удивительно?

А почему бы и нет, если, по Митчелу, свет нужен для синтеза АТФ только затем, чтобы разделить Н+ и ОН– и образовать разность электрических потенциалов между внутренним пространством хлоропласта и окружающим раствором. Перенеся хлоропласты из кислой среды в щелочную, мы, так сказать, своими руками создаем необходимую разность концентраций водородных ионов, которая будет поддерживать какое-то время синтез АТФ без всякого света.

Городу Итаке красный флажок!

Университет в Западном Берлине. Лаборатория профессора X. Витта. Исследуется электрохромный эффект Штарка: способность некоторых красителей менять свой спектр при помещении в сильное электрическое поле. Оказывается, пленки, приготовленные из смеси пигментов, содержащихся в хлоропластах, демонстрируют этот эффект. Интересно, конечно, но какое он имеет отношение к делу?

Самое прямое. Освещение хлоропластов вызывает спектральный сдвиг, подобный эффекту Штарка. Так, может быть, свет создает электрическое поле на хлоро-пластной мембране, где как раз и находятся исследованные Виттом пигменты? Тщательный анализ свидетельствует в пользу этого предположения.

Еще один флажок на карте...

А. Булычев, В. Андрианов, Г. Курелла и Ф. Литвин, сотрудники биофака МГУ, ставят опыты на растениях с очень крупными хлоропластами. В один из хлоропластов удается ввести микроэлектрод. Выясняется, что освещение вызывает образование разности потенциалов между хлоропластом и цитоплазмой клетки, куда введен другой электрод.

Рука Митчела тянется к красному флажку. Напрасно. Над Москвой красный флажок уже есть.

Но не думайте, что в Москве все шло так уж гладко. Когда я впервые рассказывал о хемиосмотической гипотезе на одной из всесоюзных конференций, то председательствующий быстро погасил мой пыл. Гипотеза, как было сказано, напомнила ему 20-е годы, когда все химические события в организме объясняли изменением баланса «кислых и щелочных едкостей». Шутка имела большой успех у аудитории.

На Международном ботаническом конгрессе, проходившем в нашей стране, физик Д. Чернавский выступил с заявлением о совершенной невозможности существования хемиосмотического механизма из сугубо теоретических соображений. Он говорил по-русски, а переводчика не было, так что один мой знакомый англичанин из всего выступления Чернавского понял только одно слово «Митчел», повторявшееся множество раз.

– Как все же у вас поддерживают Митчела! – сказал мне потом англичанин.


    Ваша оценка произведения:

Популярные книги за неделю