Текст книги "Рассказы о биоэнергетике"
Автор книги: Владимир Скулачев
Жанр:
Биология
сообщить о нарушении
Текущая страница: 2 (всего у книги 14 страниц)
На кафедре биохимии животных, куда я попал после экскурса в мирмикологию, опыт обычно начинали с того, что животному отрезали голову. Уже сам по себе этот акт, в научных протоколах обозначавшийся как «декапитация», символизировал биохимический подход к изучению жизненных явлений. Биохимик стремится анализировать их на более простых, чем организм, системах, таких, как органы, ткани, тканевые срезы, клетки, внутриклеточные частицы и, наконец, индивидуальные вещества биологического происхождения. Чем проще объект, тем вернее успех, и так вплоть до предела, за которым исчезает интересующее нас биологическое свойство.
Митохондрии производят АТФ в пробирке
В биоэнергетике середины 50-х годов «точка исчезновения интереса» лежала на уровне митохондрий. Опыт ставили следующим образом. У обезглавленной только что крысы (кролика, голубя и т. п.) извлекали печень, разрезали ножницами на кусочки размером 1—3 кубических миллиметра и смешивали с раствором специально подобранного состава, предотвращающим немедленное разрушение митохондрий и порчу их ферментов.
Затем смесь гомогенизировали, то есть измельчали до такого состояния, чтобы разрушить оболочки клеток. Для этой цели применяли несложный прибор, состоящий из мотора, тефлонового пестика и широкой стеклянной пробирки, диаметр которой чуть больше толщины пестика. Вращение пестика приводило к разрыву клеток, попавших в зазор между внутренней стенкой пробирки и пестиком. В результате клеточное содержимое смешивалось с добавленным раньше раствором, и подучался так называемый гомогенат.
Следующая стадия – выделение митохондрий из гомогената, в котором содержатся и другие компоненты– клеточные ядра, обломки оболочки и различных внутриклеточных мембран и, наконец клеточный сок – жидкая часть протоплазмы.
Каждый из этих компонентов имеет свой характерный удельный вес, что и используется для их разделения. В принципе разделение должно произойти само по себе, если просто оставить пробирку с гомогенатом стоять достаточно долгое время. Сначала на дно осядут самые тяжелые частицы – неразрушенные клетки и кусочки ткани, затем появится слой ядер и обломков клеточной оболочки. Потом настанет черед митохондрий и т. д. Кстати, именно так выделяют эритроциты из крови, оставляя кровь постоять в пробирке или капиллярной трубке. В этом суть РОЭ – реакции оседания эритроцитов – известного всем медицинского анализа крови.
Но эритроциты – это клетки, а интересующие нас митохондрии – внутриклеточные частицы и, стало быть, нечто более мелкое, чем клетки. Их диаметр всего несколько микрон; состоят митохондрии из белков и легких жироподобных веществ – фосфолипидов и поэтому оседают очень медленно. Чтобы ускорить этот процесс, применяют центрифугирование. Вращение пробирки, помещенной в центрифужный ротор, многократно увеличивает силу тяжести. Если задать такую скорость вращения, чтобы сила тяжести возросла в 10 тысяч раз, то нескольких минут оказывается достаточно, чтобы отбросить митохондрии на дно пробирки.
...Передо мной центрифужная пробирка, а в ней коричневый осадок, похожий на печеночный паштет. Здесь должны быть миллиарды отдельных митохондрий. Так ли это? Посмотрим в микроскоп. На пределе увеличения видны чуть вытянутые частицы. Они находятся в беспорядочном движении – броунируют. Добавляю каплю красителя «янус зеленый». Если частицы окрасятся в зеленый цвет, значит, это митохондрии. Частицы зеленеют. Пока все идет нормально. Но к чему еще способны эти митохондрии, безжалостно вырванные из привычной среды и лишенные своих партнеров по протоплазме?
В 1949 году американцы Э. Кеннеди и А. Ленинджер доказали, что изолированные митохондрии печени способны на главное – они окисляют вещества кислородом и за счет получаемой таким образом энергии синтезируют АТФ. Спустя шесть лет тот же опыт повторил на кафедре биохимии животных МГУ дипломник из ГДР Г. Шарфшверт. Мне, студенту-третьекурснику, надо овладеть его ремеслом, ведь через год он уедет в Берлин вместе со всеми секретами этого тонкого опыта.
Я взбалтываю осадок митохондрий, прилив к нему все тот же «щадящий» раствор, дополненный окисляемыми веществами и фосфатом, и помещаю суспензию в сосудик Варбурга – смешное создание фантазии стеклодувов, похожее на толстую бабу с ведрами на коромысле. Сосудик прикрепляется к манометру и помещается в водяную баню с температурой 37 градусов (пусть хоть температура будет как в организме!).
Теперь все внимание на уровень жидкости в манометре. Если в митохондриях протекают окислительные реакции, должен потребляться кислород и давление в сосудике будет падать. И действительно, манометр регистрирует падение давления. Митохондрии «дышат»!
Что же, полдела сделано. Остается посмотреть, не уменьшилось ли количество фосфата; ведь он один из субстратов реакции фосфорилирования, и его количество должно убывать, если дыхание сопряжено с синтезом АТФ. Вынимаю сосудик из бани, набираю в пипетку трихлоруксусную кислоту...
Вдруг вспоминаются лето, школьные каникулы. Я ловлю прыткого черного жука, перебегающего прогретую солнцем утоптанную дорожку. Опять жужелка – ничего интересного, только на руках остается резкий, необычный запах... Теперь я уже знаю, что это запах трихлоруксусной кислоты. Она денатурирует белки-ферменты, и жужелица использует ее как «химическое оружие» против своих врагов. А я сейчас убью этим оружием митохондрии, чтобы мгновенно остановить все протекающие в них ферментативные процессы.
Еще час работы, и проведена цветная реакция на неорганический фосфат. Он действительно убывал в сосудике с митохондриями. Биологические трансформаторы энергии действовали!
Глава 4. Два пути
Факт или артефакт?Профессор С. Северин, узнав, что вслед за Шарфшвертом я освоил заокеанскую методику, попросил применить ее к другому объекту: вместо печени крысы надо было взять грудную мышцу голубя. План моего руководителя состоял в том, чтобы воспроизвести на мышечных митохондриях окислительный синтез АТФ, уже описанный для печени, и посмотреть, не будет ли регулироваться этот процесс карнозином и ансерином – двумя специфичными для мышц веществами с неясной биологической функцией, открытыми его учителем В. Гулевичем в начале века.
Факт или артефакт?
Я выделил митохондрии из голубиных мышц и, поколдовав с растворами для сосудиков Варбурга, вскоре получил синтез АТФ, сопряженный с окислением одной из карбоновых кислот– пировиноградной. Тогда я взял аскорбиновую кислоту, которая в опытах на печеночных митохондриях тоже окислялась сопряженно с образованием АТФ. К моему удивлению, окисление этого второго вещества протекало без синтеза АТФ.
Я повторил опыт с митохондриями печени в условиях, идентичных тем, что были подобраны для мышц, и вновь получил убыль фосфата как с пировиноградной, так и с аскорбиновой кислотами. Новый опыт с мышцей, и опять тот же странный результат: с одной кислотой дыхание и фосфорилирование, а с другой – такое же (по скорости) дыхание, но никакой убыли фосфата.
Проще всего мое наблюдение было бы отнести в разряд артефактов, то есть всех тех многочисленных явлений, которые отсутствуют в живой природе и создаются искусственно в условиях биологического эксперимента. Как говорится, снявши голову, по волосам не плачут. Убили животное, искромсали, размозжили его ткани, так стоит ли удивляться, что один из механизмов жизнедеятельности работает теперь в каком-то неполноценном режиме, когда при сжигании пищи в митохондриях энергия еще освобождается, но уже не используется для производства АТФ.
Мне шел тогда двадцать второй год. Опыт с двумя кислотами, по-разному окислявшимися в митохондриях голубиных мышц, был первым моим новым наблюдением: ведь раньше таких экспериментов никто не ставил. В этом нетрудно было убедиться, так как работы по энергетике митохондрий в то время проводились всего в нескольких лабораториях и собрать литературу по исследуемому вопросу не составляло большого труда, И что же, мое первое наблюдение – артефакт?
С этим унизительным, как мне казалось, выводом я никак не мог примириться. Не торопил меня подписаться под таким заключением и профессор Северин. Он снисходительно наблюдал мой энтузиазм, сопутствовавший началу работы, а потом разочарование нелепым результатом.
– Корень ученья горек, а плод, Володя, поверьте мне, кислый! – сказал руководитель однажды, когда я вновь пришел к нему с очередным вариантом опыта, принесшим все тот же неутешительный итог.
Вскоре я прекратил опыты и засел за литературу, чтобы посмотреть, не видел ли кто-нибудь нечто столь же странное пусть не в моей системе, а в аналогичной. Ведь если даже мой результат и смахивал на артефакт, то артефакт этот был какой-то необычный, не поддающийся простому объяснению.
Допустим, что митохондрии как-то «сломались» при их выделении из мышц, но почему эта поломка сказалась только на судьбе одного из двух окисляемых веществ? Ведь окисляются они через общий путь, так называемую дыхательную цепь ферментов, и именно в дыхательной цепи происходит таинство превращения энергии дыхания в энергию АТФ.
Я допоздна засиживался в библиотеке, конспектируя статьи по митохондриям, и в конце концов обнаружил одно наблюдение, сделанное А. Ленинджером в опыте с митохондриями печени, когда два вещества, причем вовсе не те, что выбрал я, тоже окислялись в двух различных режимах: одно с фосфорилированием, а другое без.
Ну что же, теперь я не одинок! Пусть знаменитый Ленинджер оставил без внимания обнаруженный им парадокс – для него ведь это далеко не первая тайна, которую посчастливилось подсмотреть у природы. А я еще подожду выбрасывать свое наблюдение в мусорную корзину для артефактов.
Итак, два вещества окисляются одним и тем же путем, но с разным результатом. Бред!
А что, если биохимики, изучая митохондрии, недосчитались еще одного окислительного пути? Если дыхательных цепей не одна, а две? Или цепь одна, но работать она может в двух режимах, из которых только один сопряжен с синтезом АТФ?
Так возникла мысль, которую я впоследствии назвал гипотезой о двух путях окисления.
Если бы в те дни мне сказали, что идея такого рода уже высказана год назад, и не кем-нибудь, а все тем же Ленинджером, я бы, конечно, очень огорчился. Но, к счастью, редкий источник – Гарвеевская лекция, где Ленинджер говорил о двух путях, дошел до Москвы с большим опозданием, когда работа по проверке гипотезы уже шла полным ходом. Я говорю «к счастью», потому что сознание первооткрывателя было движущей силой тогдашней моей работы. Лишь с годами возник бескорыстный интерес к тому, как же все-таки объясняются все эти чудеса, и пришло понимание того, что главное – быть на верной дороге, пусть даже указанной другими.
Стриженные голубиБудь я физиком или химиком, я заинтересовался бы прежде всего, как устроены два пути окисления. Но я биолог, и потому моей первой заботой было удостовериться, что два пути реально существуют и действуют в организме. Меня не отпускал прежний страх: а вдруг артефакт? Как же решить эту проблему?
Призовем на помощь логику. Два пути, два режима. Один дает накопление энергии (образуется АТФ), другой ведет к рассеянию энергии (образуется тепло). Простейшая мысль – первый путь полезен, второй бесполезен, если не вреден: ведь это растрата топлива.
Стриженные голуби
Но не будем спешить с выводами, иначе мы рискуем попасть в положение профана, утверждающего, что автомобиль сломан, на том основании, что при отключенном сцеплении двигатель работает вхолостую.
Итак, один режим – выделение энергии и ее использование, другой – выделение без использования, то есть вся энергия идет в тепло. Но справедливо ли то, что полезность дыхания мы видим только в его способности поставлять АТФ? Ведь бывает же и противоположная ситуация, пусть необычная, но все же реальная, когда не АТФ, а тепло оказывается необходимым в первую очередь. Именно так обстоит дело с теплокровными животными при резком понижении температуры.
Давайте поставим животное на грань замерзания и посмотрим, не переключит ли оно свое дыхание на холостой ход? Если даже в таких крайних условиях ничего подобного не случится, то животное не умеет отключать дыхание от фосфорилирования, а два пути окисления – артефакт.
...Однажды к моему другу зоологу С. Маслову зашел Д. Афанасьев, аспирант кафедры высшей нервной деятельности. Он собирался заниматься гипотермией у птиц и искал подходящую модель.
– Чепуха, понимаешь ли, какая-то получается, – жаловался Дима. – Держу стриженого голубя в холодильнике при минус 20 градусах с вентилятором. Через 15 минут измеряю его температуру: на пять-шесть градусов снижена. Вот, думаю, и модель гипотермии! Так нет же, на другой день охлаждаю того же голубя еще раз, а он там битый час сидит – и хоть бы что, никакой гипотермии нет и в помине!
Чепуха. А может быть, это вовсе не Димина модель, а наша? Ведь если уж кому нужны кратчайшие пути теплопродукции, так это как раз такому животному, которое лишено систем так называемой физической терморегуляции (у птиц – оперения). Оно может поддерживать постоянство своей температуры при охлаждении исключительно за счет увеличения выработки тепла в тканях.
Мне не приходилось видеть ничего более жалкого, чем голубь без перьев. Дрожащий иссиня-красный комочек, стыдливо переминающийся с ноги на ногу и посматривающий с укоризной на своих мучителей. Нет, такой не вынесет двадцатиградусного мороза с ветром!
Спустя полчаса после начала опыта мы вынули из холодильника полумертвую птицу с температурой тела около 30 градусов вместо нормальной для голубя 41,5. Измерили дыхание и синтез АТФ в мышечных митохондриях. Оба показателя были близки к норме. Дыхание по-прежнему сопровождалось синтезом АТФ. Да, видно, не умеет голубь разобщать дыхание и фосфорилирование...
А может быть, умеет, да не успевает за те полчаса, которые длится наш жестокий опыт? Продлить его невозможно, несчастное животное просто умрет. Единственный выход– повторить охлаждение, дав голубю какое-то время на передышку.
На следующий день поведение голубя разительно отличалось от той трагической картины, что мы видели накануне. Снизив температуру на два-три градуса, голубь умудрился каким-то образом остановить дальнейшее остывание тела. Через три часа после начала охлаждения, заглянув в очередной раз в холодильник, мы обнаружили, что голубь ведет себя вполне бодро и как-то даже агрессивно посматривает на нас из своего ледяного плена. Ну а как там его митохондрии?
Есть разобщение! Дыхание отключилось от синтеза АТФ. Энергия больше не накапливалась, а тотчас превращалась в тепло.
Потом такой же опыт был проделан на мышах, и вновь при повторном охлаждении наблюдалось разобщение дыхания и фосфорилирования. Охлаждаясь впервые, мыши, как и голуби, не успевали (в наших суровых условиях опыта) отключить синтез АТФ и гибли, если охлаждение не прекращалось. С. Маслову удалось продлить им жизнь инъекцией искусственного разобщителя динитрофенола, вещества, о котором было известно, что оно нарушает сопряжение дыхания и фосфорилирования при добавлении к митохондриям.
Совсем недавно, спустя двадцать лет после этих опытов, нашу работу повторили молодые биоэнергетики, норвежец Г. Грав и американец с Аляски А. Блике, использовав мышечные митохондрии совсем другого животного – детенышей северных морских котиков. Оказалось, что в естественных условиях, плавая в холодных, около шести градусов, водах Берингова моря, котики имеют высокую скорость дыхания, которое не зависит от того, синтезируется АТФ или нет. Сопряжение дыхания с фосфорилированием можно было упрочить, выдерживая котиков на воздухе при плюс 20 градусах.
Любопытно, что Г. Грав и А. Блике впали, по-видимому, в ту же ошибку, как когда-то и я с Гарвеевской лекцией А. Ленинджера. Они вели свою работу, не зная о наших опытах двадцатилетней давности, и свою публикацию в журнале «Сайенс» представили как открытие новой, термогенной функции нефосфорилирующего дыхания в мышцах. Что же», их заблуждение (если оно было невольным) наверняка помогло преодолеть необычайные трудности работы с митохондриями на острове Св. Павла, где им пришлось ставить эти опыты.
Опыты на котиках подтвердили, что в естественных условиях действует механизм, который был обнаружен нами в лабораторном эксперименте и назван термо-регуляторным разобщением дыхания и фосфорилирования.
Бурый жирТеплопродукция – дополнительная функция мышечной ткани. Мышца выполняет роль грелки, так сказать, по совместительству с механической работой. Но есть ткань, которая, как оказалось, специализирована на образовании тепла. Это бурый жир.
В верхней части спины теплокровных зоологи давно уже обнаружили островки жировой ткани необычного для жира коричневого цвета. Они облегают крупные кровеносные сосуды, идущие к головному мозгу. Особенно много этой ткани у новорожденных. С возрастом ее количество уменьшается, и только у впадающих в зимнюю спячку животных бурый жир сохраняется в значительном количестве на протяжении всей жизни.
Бурый жир
Так вот, выяснилось, что коричневый цвет необычной жировой ткани обусловлен митохондриями, которыми буквально забиты ее клетки. Физиологи давно уже подозревали участие бурого жира в терморегуляции. Когда же стало ясно, что он богат митохондриями, а митохондрии такой ткани, как мышца, способны при охлаждении переводить свое дыхание на холостой ход, возникла мысль посмотреть, как там у бурого жира с энергетикой. Работы велись в основном в трех лабораториях: Р. Смитом в США, О. Линдбергом в Швеции и 3. Драхотой в Чехословакии. И вот что обнаружилось.
Митохондрии бурого жира содержат почти в 10 раз меньше синтезирующего АТФ фермента по сравнению с митохондриями других тканей. В то же время количество ферментов дыхания находится на обычном уровне. Тем самым система, ответственная за освобождение энергии, оказывается в огромном избытке по сравнению с системой запасания энергии. Уже сам по себе этот факт свидетельствует, что не синтез АТФ, а образование тепла – главная функция митохондрий бурого жира. Такое предположение было подтверждено прямыми опытами, когда исследовали животных, подвергнутых охлаждению. В митохондриях бурого жира наблюдалось сильное разобщение дыхания и фоефорилиро вания.
В этой связи стала понятной своеобразная локализация бурого жира в организме: он согревает кровь, притекающую к мозгу. Благодаря открытию эффекта разобщения в митохондриях бурого жира удалось заполнить недостающее звено в цепи событий, совершающихся при пробуждении животного от спячки.
...Задолго до холодов хомяк оборудует себе зимнюю квартиру. Это глубокая нора, в которую ведет узкий вход. С наступлением морозов хомяк заделывает вход соломой, чтобы нору не продувало студеными ветрами. Теперь можно и соснуть до весны. Хомяк уютно устраивается в гнезде из сена, что припасено в дальнем конце норы, и засыпает. Но сон этот необычный. Постепенно тело хомяка остывает, все жизненные процессы замирают, вернее, замедляются, и не как-нибудь, а в такой степени, чтобы поддерживать температуру на минимальном уровне, чуть-чуть выше нуля.
Давайте проведем теперь такой опыт. Разворошим соломенную заглушку у входа в нору. Если в степи мороз, то холод быстро проникнет внутрь норы. И что же хомяк? Замерзнет? Ведь просыпаться ему еще рано, до весны далеко!
Не беспокойтесь, ничего страшного не произойдет. Хомяк вскоре пробудится от холода, как просыпаемся и мы с вами, если мороз заползет в спальный мешок. Проснется, заделает как следует вход и заляжет снова досматривать многосерийный сон про жаркое лето...
– Все это, конечно, забавно, но при чем тут биоэнергетика? – спросите вы.
А дело было так.
Снижение температуры в норе немедленно зарегистрировали холодовые рецепторы кожи, которые бодрствуют даже при зимней спячке, когда все прочие органы чувств отключены. Нервы доставили сигнал бедствия по точному адресу – в мозг, в терморегуляторный центр гипоталамуса. Оттуда, из центра, понеслись ответные сигналы – приказы органам и тканям. Но как их выполнить, ведь температура органов слишком низка, чтобы ответить активными действиями на пришедший приказ?
Есть ткань, способная к самосогреванию, – это бурый жир. В ответ на сигнал из гипоталамуса нервные окончания в буром жире начали выделять гормон, норадреналин. Он был заготовлен впрок в специальных пузырьках, которыми нафаршированы нервные окончания. Вся нехитрая задача на этом этапе, чтобы пузырьки полопались. Ломать – не строить, и вот уже содержимое пузырьков выплеснулось в узкую щель между мембраной нервного окончания и клеткой бурого жира,
На поверхности клетки 6ypprq жира особые белки (рецепторы) связали норадреналин. Белки эти, пронизывающие насквозь внешнюю мембрану клетки, активировали внутри клетки фермент аденилатциклазу, та сделала из АТФ циклический АМФ – особое вещество – регулятор ферментов, а этот последний присоединился к ферменту протеинкиназе. Протеинкиназа фосфорилировала следующий фермент – липазу. В результате липаза перешла в активное состояние и расщепила жир на глицерин и жирные кислоты.
Жирные кислоты – наиболее калорийное топливо для митохондрий и одновременно активатор для особого белка, переключающего дыхание на холостой ход. Активировалось холостое дыхание митохондрий, повысилась температура ткани.
С повышением температуры быстрее заработали дыхательные ферменты, значит, увеличилось образование тепла. Налицо автокатализ. За топливом (жирными кислотами) дело не стало. Ведь в клетках бурого жира, кроме митохондрий, есть еще и жировые кайли (на то он и жир!).
Разогрелся бурый жир, повысилась температура крови в сосудах, окруженных бурым жиром, теплая кровь поступила в мозг, а затем и в другие органы. Температура тела поднялась, зверек проснулся!
Вы спросите, зачем такая сложная, многоступенчатая система сигналов? Так ведь это же каскад усиления! Одна молекула гормона активирует одну молекулу аденилатциклазы, которая производит уже не одну, а множество молекул циклического АМФ. Каждая молекула циклического АМФ может активировать одну молекулу протеинкиназы, которая, в свою очередь, фосфорилирует множество липаз, и т. д. А на выходе повышение температуры, которое активирует все без исключения звенья каскада. Ответ такой системы на воздействие нарастает лавинообразно. Ну как тут хомяку не проснуться?
Образование тепла бурым жиром лишь частный случай из удивительной области регуляции биохимических процессов. О каждом из таких механизмов можно написать отдельную книгу. Однако наш главный интерес лежит сейчас в иной плоскости. Рассказ о хомяке и буром жире я здесь привел главным образом для того, чтобы показать существование специального биологического устройства, переводящего дыхание на холостой ход.
Итак, дыхание может быть отключено от фосфорилирования. Этого можно достичь искусственно, добавив динитрофенол или какое-либо другое вещество-разобщитель. Подобный эффект возникает и естественным путем в живом организме при воздействии холода. Таков феномен терморегуляторного разобщения окисления и фосфорилирования, открытый сначала в мышцах, а затем в ткани бурого жира.
Стало быть, окисление без фосфорилирования не артефакт, а реально существующий биохимический процесс. Именно этим свойством: способностью разобщать механизм освобождения энергии от механизма ее последующего накопления дыхание отличается от гликолиз – процесса, который наряду с дыханием призван обеспечивать клетку необходимой энергией.
В предыдущей главе мы уже говорили, что синтез АТФ, сопряженный с дыханием, первоначально пытались уподобить описанной ранее реакции образования АТФ при гликолизе. Это был в общем-то естественный этап познания, когда неизвестное явление стремятся свести к комбинации уже известных фактов. Однако гликолиз – процесс, неразрывно связанный с фосфорилированием. Поэтому никакие аналогии с гликолизом не в состоянии помочь нам разобраться в механизме термо-регуляторного разобщения дыхания и фосфорилирования.
Так как же должно быть устроено сопряжение двух процессов, чтобы была возможность их разобщения? Я вновь и вновь задавал себе этот вопрос и не находил разумного ответа.