Текст книги "Трактат о вдохновенье, рождающем великие изобретения"
Автор книги: Владимир Орлов
Жанры:
Технические науки
,сообщить о нарушении
Текущая страница: 24 (всего у книги 27 страниц)
1. Аналитическая. Выбор задачи и определение технического противоречия, которое мешает ее решению обычными, уже известными путями.
2. Оперативная. Устранение причины противоречия путем внесения изменений в одну из частей машины (или в одну из фаз процесса).
3. Синтетическая. Приведение других частей усовершенствуемой машины (или фазы процесса) в соответствии с измененной частью.
В свою очередь каждая стадия разделяется на более мелкие этапы и шаги.
В аналитической стадии пять этапов:
1. Постановка задачи.
2. Воображение идеального конечного результата.
3. Определение того, что мешает достижению этого результата (отыскание противоречия).
4. Определение, почему мешает (отыскание причины противоречия).
5. Определение, при каких условиях не мешало бы (отыскание условий, при которых противоречие снимается).
В оперативной стадии шагов множество. Они сведены автором в обширную таблицу.
«Первый шаг. Проверка возможных изменений в самом объекте (то есть данной машине, данном технологическом процессе).
1. Изменение размеров.
2. Изменение формы.
3. Изменение материала.
4. Изменение температуры.
5. Изменение давления.
6. Изменение скорости.
7. Изменение окраски.
8. Изменение взаимного расположения частей.
9. Изменение режима работы частей с целью максимальной их нагрузки.
Второй шаг. Проверка возможности разделения объекта на независимые части.
1. Выделение «слабой» части.
2. Выделение «необходимой и достаточной» части.
3. Разделение объекта на одинаковые части.
4. Разделение объекта на разные по функциям части.
Третий шаг. Проверка возможных изменений во внешней (для данного объекта) среде.
1. Изменение параметров среды.
2. Замена среды.
3. Разделение среды на несколько частичных сред.
4. Использование внешней среды для выполнения полезных функций.
Четвертый шаг. Проверка возможных изменений в соседних (то есть
работающих совместно с данным) объектах.
1. Установление взаимосвязи между ранее независимыми объектами, участвующими в выполнении одной работы.
2. Устранение одного объекта за счет передачи его функций другому объекту.
3. Увеличение числа объектов, одновременно действующих на ограниченной площади, за счет использования свободной обратной стороны этой площади.
Пятый шаг. Исследование прообразов из других отраслей техники (поставить вопрос: как данное противоречие устраняется в других отраслях техники?).
Шестой шаг. Исследование прообразов в природе (поставить вопрос: как данное противоречие устраняется в природе?)
Седьмой шаг. Возвращение (в случае непригодности всех рассмотренных приемов) к исходной задаче и расширение ее условий, то есть переход к другой, более общей задаче».
Я не принадлежу к иронически настроенным скептикам, считающим, что подобные таблицы столь же необходимы толковому изобретателю, как шпаргалка в жилетном кармане композитора, напоминающая ему о существовании контрабаса. Начинающему, за школьной партой изобретательства, подобные таблицы даже очень нужны. Они расшевеливают воображение, помогают собрать мысль, дают список дверей, куда стучать, куда толкаться. Автор справедливо оговаривается, что изобретатели сами должны дополнять ее новым материалом. И не взятым наобум, а включающим творческие обобщения – типовые способы разрешения типических противоречий развития техники, если можно подметить такие.
Синтетическая стадия менее разработана.
Ниже мы перепечатываем таблицу, где дается самим Г. С. Альтшуллером ход решения задачи получения предварительно напряженного бетона. Таблица объясняет, почему изобретатель столь уклончиво отвечал Р. Бахтамову на вопрос: молниеносно ли пришло ему в голову изобретение? В действительности, как свидетельствует сам Г. С. Альтшуллер, эта техническая идея не явилась молниеносно, а родилась в ходе последовательных логических построений. Вот они:
«Разумеется, это была лишь идея, – замечает Р. Бахтамов. – Потребовалось немало труда, прежде чем идея стала конструкцией и изобретатель получил авторское свидетельство с очень обычным, даже будничным номером 120909».
12.8.
Нам понятно писательское увлечение Р. Бахтамова творчеством героя его занимательной книжки. Но, докапываясь до истины, нередко приходится преодолевать увлечения, чтобы более отчетливо осветить вопрос.
Конечно, выдача любого авторского свидетельства изобретателю нашей страны – это событие отрадное, праздничное. Но уж так ли был несправедлив Комитет по делам изобретений и открытий, когда не снабдил авторское свидетельство Г. С. Альтшуллера каким-нибудь необычным, особенным номером, окрашенным в небудничный, воскресный цвет? Нет, тут вряд ли была допущена несправедливость. Грамота с обычной печатью Комитета была выдана на довольно рядовое изобретение, не отмеченное яркой печатью новизны.
Заметьте очень важное обстоятельство. Сам Г. С. Альтшуллер подчеркивает, что он здесь повторил могучий изобретательский прием Дж. Уатта, его «мыслительную фигуру», приведшую к изобретению современной схемы паровой машины. Но результаты получились совершенно различные. Уатт разделил свой объект, свою машину на самостоятельные части и шагнул вперед – создал изобретение, устремленное в будущее, произведшее революцию в веках. Альтшуллер повторил прием Уатта, но лишь возвратился к хорошо известной идее полуторавековой давности.
Термодомкрат вещь очень не новая. Им сдвигались колонны, поднимались пошатнувшиеся стены дворцов еще в наполеоновские времена. Вот как описывается изобретение термодомкрата в одной исторической справке.
«Фундамент здания Музея Искусств и Ремесел в Париже был испорчен до такой степени, что стены главного зала постоянно оседали, выдавались наружу и даже угрожали падением. Наполеон I приказал произвести по этому предмету исследование и представить смету издержек на поправку здания. Комиссия, назначенная для этой цели, после тщательных изысканий решила, что необходимо сломать стены, заложить новый фундамент на 10 футов глубже настоящего и вывести на нем новые стены; расходы на все это должны были простираться на сумму около 10 миллионов франков. Наполеон I нашел, что такая сумма слишком велика, и дело так остановилось. Но когда по прошествии года опять заговорили о том же предмете и представили Наполеону всю опасность, какой могли подвергнуться и жители и посетители здания, если оставить его без исправлений, то Наполеон приказал собрать новую комиссию. Подобно первой, новая комиссия произвела обширные работы, исследовала грунт земли и пришла к заключению, что вовсе не было надобности ломать стены, а достаточно вырывать под каждой стеной 10 колодцев около 40 футов глубиной и, достигнув скалистого грунта, подвести под стены толстые гранитные столбы, на этих столбах утвердить винты, с помощью их поднять стены и таким образом сохранить все здание от разрушения. Что же касается до издержек, то, по мнению второй комиссии, поправка обойдется в 9850000 франков. Наполеон не удостоил внимания предложение второй комиссии: дело осталось по-прежнему нерешенным. Тогда приходит к Наполеону инженер Молар, способный и изобретательный молодой человек, и говорит, что он осматривал повреждения здания и полагает возможным произвести все поправки на десятую часть тех сумм, которые требовали две назначенные комиссии. Подобное предложение поразило всех. Назначенная Моларом сумма была выдана ему, и он немедленно приступил к работе.
Работу свою он начал с того, что в стенах строения, на довольно значительной высоте, приказал просверлить одно над другим два ряда отверстий, величиной в руку. Все с любопытством ожидали, что из этого будет; но когда, спустя несколько недель, из отверстий показались концы толстых железных болтов с весьма крупной винтовой нарезкой, то все, кто ждал от работы Молара хотя какого-нибудь успеха, потеряли всякую надежду, а члены комиссий, которые начинали было сомневаться в правильности своих решений, ободрились. Стянуть дом винтами казалось слишком безрассудно. Откуда взять такую силу, чтобы навинтить гайки, когда этому будет противодействовать тяжесть всего здания? Члены комиссии подсмеивались над Моларом, но он не обращал на это внимания и спокойно продолжал свою работу. К каждому болту был прикреплен якорь о четырех лапах; средина якоря была очень толста, к концам же он становился тоньше; эти якоря были в состоянии выдержать значительное давление. Под нижним рядом болтов, проходивших через все здание, были устроены большие четыреугольные очаги из листового железа, которые привешивались к болтам на крючках. Назначение очагов было непонятно для всех; между тем на правильную их установку Молар обращал большое внимание.
Однажды утром толпа любопытных заметила рабочих, которые, стоя на легких подмостках, привешенных к выдающимся концам болтов, были заняты завинчиванием гаек. Через несколько времени работа прекратилась; рабочие увидели, что невозможно более завинтить гаек, а зрители разошлись с убеждением, что все предприятие имело еще менее прочное основание, нежели исправляемый дом. На следующее утро с удивлением заметили, что гайки всего нижнего ряда болтов ослабели и отстали от стен на целый дюйм; рабочие опять занимались завинчиванием гаек. Это обстоятельство возбудило всеобщее любопытство. На третье утро ослабели все гайки верхнего ряда болтов, и во время их завинчивания можно было видеть, как ослабевали гайки нижнего ряда. Подобная работа продолжалась около 14 дней; по истечении их стены исправляемого здания сравнялись со стенами других строений, и все убедились, что они уже не косы. В самое короткое время стены приняли совершенно вертикальное направление, и улыбавшиеся физиономии членов комиссий сделались очень серьезны, когда они узнали, что посредством неизвестного, но, по-видимому, чрезвычайно простого средства достигнуто было то, что они считали почти совершенно невозможным.
Молар пропустил через стены два ряда болтов, а снаружи прижал к стенам якоря, посредством весьма прочных плоских винтов. Когда это было исполнено, то на очагах, под нижним рядом болтов, был разведен огонь, вследствие чего болты нагрелись и сделались длиннее. В этом положении болты выдались из стен наружу более, чем прежде, а следовательно, гайки могли быть снова навинчены. Это довинчивание гаек и составило работу первого утра. Когда затушили огонь, болты охладились и укоротились именно на столько, на сколько они расширились при нагревании; а так как это движение преодолевает большие препятствия, то стены строения сблизились на столько же, на сколько сжались болты. Если бы подобное действие было невозможно, то болты должны были бы разорваться, потому что при охлаждении они не могут оставаться в расширенном состоянии, в которое приведены были нагреванием. Обратно, если защемить железный болт между двумя стенами или скалами и в этом положении нагреть его, то он или двинет скалы и опрокинет стены, или же согнется сам.
Железные болты, употребленные Моларом, были достаточно прочны; они не разорвались, но подняли стены… По этой-то причине верхний ряд болтов выдался из стен; гайки уже неплотно прилегали к ним, и работа второго утра состояла в том, чтобы снова довинтить их. После этого нижний ряд болтов был нагрет вторично. Во время его расширения верхний ряд удерживал стены (иначе они пришли бы в свое первоначальное положение), нижние же болты, сделавшись через нагревание длиннее, дали возможность навинтить гайки еще более. При остывании они постепенно сблизили стены еще на один дюйм, и через это опять ослабили верхний ряд болтов.
Такого рода работа продолжалась часа два каждое утро до тех пор, пока цель была достигнута, – стены подняты, а потом исправлен и самый фундамент. На всю работу употреблено было менее половины выданной Молару суммы. Остальные полмиллиона Наполеон подарил этому искусному инженеру и, кроме того, наградил орденом Почетного Легиона.
Один ряд болтов был оставлен в стенах – может быть, вследствие ненадежности фундамента или же для воспоминания о способе поправки здания. Этот ряд существует и теперь и служит доказательством того, каких счастливых результатов можно ожидать от разумного применения законов природы».
Нашумевшие болты инженера Молара и были первым термодомкратом. Он был применен впервые для поднятия, выпрямления каменных стен. За него в то время справедливо была выплачена премия, а изобретатель представлен к ордену. Но сегодня не нужно быть большим изобретателем для того, чтобы, имея домкрат в руках, сообразить «подставить» его в любое место, где требуются большие усилия.
Тяговые стержни – болты – термодомкрата Молара нагревались очагом; тяговые стержни термодомкрата Альтшуллера – электричеством. Но сегодня не нужно большого хитроумия, чтобы догадаться заменить очаг электроплиткой.
Электротермический домкрат можно спокойно отнести к изобретениям, пришедшим из прошлого почти в первозданном виде, не обогащенным опытом последующего развития. Обязательны ли были сложные логические построения? Может, следовало бы лучше немного подчитать, заглянуть в научно-популярные книжки, поинтересоваться тем, какие домкраты существовали до тебя. Не пришлось бы даже тревожить запыленные фолианты, переплетенные в свиную кожу. Историческая справка о термическом домкрате взята из «Физической хрестоматии» для школьников под редакцией Я. И. Перельмана.
Вероятно, в заявке Г. С. Альтшуллера имелись детали, позволившие выдать авторское свидетельство, но решение этого вопроса велось, как говорится, «на тонкой юридической грани».
Возникает сомнение, можно ли всерьез рассуждать об универсальной практической творческой методике там, где одна и та же мыслительная фигура в одни руки дает ключи к воротам грядущего, а в другие – ключик к сундучку с сувенирами наполеоновских времен? Приходится, видимо, признать, что пока в изобретательской области творческая личность гораздо важнее любой существующей методики.
Опыт бакинских изобретателей, освещенный в реферируемых книжках, выразительно подтверждает это.
Талантливый изобретатель Д. Д. Кабанов – известный нам автор ловушки морской нефти, интересно работавший до рождения методики, продолжает оригинально творить и после ее появления.
Настойчивому инженеру Г. С. Альтшуллеру, обладавшему, по собственному признанию, меньшими изобретательскими возможностями, и при помощи методики не удается прийти к действительно оригинальным решениям.
В конечном счете ценность любой изобретательской методики проверяется качеством рожденных ею изобретений. Но – увы! – и некоторые другие изобретения, сделанные по схемам этой методики и описанные в книжках, не отмечены яркой печатью оригинальности.
Вот оптическая схема, позволяющая сравнивать показания стрелочных приборов. В ней нет ничего существенного. Здесь еще раз использован азбучный принцип совмещения оптических полей, применяющийся в дальномерах, стереокомпараторах, фотометрах, уровнемерах, прицелах, микрометрах, тысячах подобных приборов.
Вот башенные часы, где маленький циферблат широко проектируется на стену башни, как «в дневном кино». Г. С. Альтшуллер почему-то называет это решение «почти безупречным». Очевидно, однако, что часы работать не будут. При наибольших достижимых сегодня яркостях световой проекции мутный циферблат потеряется в солнечный день на фоне слепящего неба.
Да и принцип, уже бывший в употреблении. Самодельный эпидиаскоп для проекции ручных часов на потолок в ночное время был описан мною в журнале «Знание – сила» тридцать лет назад. Я заимствовал его идею из какой-то книжки, выпущенной еще в прошлом веке.
Эти факты ложатся на чашку весов, говорящую не в пользу методики бакинских изобретателей.
12.9.
Выходит, что методика есть, а изобретений пока не видно. В чем тут заковыка?
Оговоримся решительно и сразу же. Не какой-нибудь особенный критический пыл толкает нас. Повторяем, что на данном этапе пропаганда различных, даже самых несовершенных методов пробуждения изобретательской мысли представляется нам гораздо более нужным делом, чем придирчивая их критика. Так строится эта глава. Если мы и стремимся разобраться в затруднениях авторов «изобретательской методики», то нами движет то же безотчетное чувство, которое испытывает прохожий, заметив буксующий грузовик.
В чем же все-таки заковыка?
Г. С. Альтшуллер правильно понял, что противоречия – движущая сила всякого развития. Но неправильно то, что из всех противоречий он выделил только внутренние противоречия и, что самое главное, пытается снять их в самой машине. Так, конечно, никогда не придешь к революционным сдвигам. Это легче всего понять на соседнем примере, из общественных наук. Капитализм не исправишь примирением внутренних его противоречий, путем реформ, – надо сдать на слом всю капиталистическую машину, заменить ее социалистическим строем. Бесполезно копаться в стропах и гайдропах, приспосабливая воздушный шар к нуждам пассажирского транспорта, примиряя и снимая противоречия внутри его конструкции. Аэростат не исправишь никакими техническими реформами. Надо крест поставить на воздушном шаре и придумать летательный аппарат тяжелее воздуха. Тут-то и начинается революционное, истинно изобретательское творчество. Но методика бакинских авторов не расчищает путь к таким революционным преобразованиям. Она тянет мысль по пологим дорожкам простых усовершенствований, и причина бескрылости ее объясняется, по-видимому, тем, что, по сути дела, это, если можно так выразиться, «технический реформизм».
Противоречия, существующие внутри машин, не единственные пружины технического прогресса, а всего лишь одни из бесчисленных пружин, двигающих технику в человеческом обществе. Это можно легко увидеть, если полностью и внимательно прочитать труды тех мыслителей, ученых, изобретателей, из которых вырван подбор цитат о противоречиях в машинах. Изобретения рождаются противоречиями всего производства в целом. И поэтому анализ всех технических, экономических, исторических, общественных противоречий, вызывающих рождение новой машины, вырастает в безмерно трудную задачу.
Напрасно думать, что заменой слова «изобрести» на слова «преодолеть противоречие» облегчаются или снимаются творческие трудности.
Наоборот, тут-то и разгорается творчество. Ведь борьба за снятие всех и всяких противоречий, непрерывно возникающих в жизни, это и есть процесс живого вдохновенного исторического творчества. И пытаться издать универсальную инструкцию по преодолению всевозможных противоречий жизни, вероятно, такая же наивная попытка, как издание карманной брошюры «Как научиться жить».
Обложка с заголовком «Как научиться изобретать» напоминает что-то… Да, старинную книжку, озаглавленную «Как научиться писать стихи»! Одно время выпускали такие книжки. Я не отношусь к сварливым литературоведам, находящим в них одно смешное. Здесь подобран кое-какой материал. Например, типовые словарики рифм: роза любовь
мороза кровь
поучительные формулы чередования рифм в строфе:
abab аbba
и полезные схемки ритмов, поясняющие все эти «ямбы» и «хореи»: – / – / – / – /, / – / – / – / -
Новичок, вероятно, почерпнет начальные представления о конструкции стиха, а читатель прилежный, основательно попотев, даже выдаст в альбом что-нибудь стихотворное, какой-нибудь триолет – черт его подери! Но боюсь, что в нем не окажется ни грана поэзии…
Что греха таить, и в горах описаний изобретений, хранящихся в патентных библиотеках, есть немало нежизненных, вымученных, мертворожденных, утомительно перепевающих друг друга технических выдумок – вот таких, как этот дубоватый, вписанный в альбом триолет! Книжки типа «Как научиться изобретать» несомненно чем-то помогут неподготовленному читателю, но, конечно, не сделают из него настоящего изобретателя.
Никакие инструкции по поэтическому творчеству никогда не родят пушкинского «Пророка», глаголом жгущего сердца людей; никакие наставления по изобретательскому творчеству никогда не родят идею, несущую в мир прометеев пламень. Великие изобретения рождаются не из схем, а в могучем течении и кипении жизни. Признаемся откровенно, не мороча читателям голову, еще нет в природе методики изобретательства.
Р. Бахтамов, пожалуй, излишне жестоко обошелся с пушкинским серафимом, полагая, что выпотрошил по винтикам все, что скрывалось под туманным понятием «вдохновенье».
Вдохновенье – полезное слово. В нем зов родины, зов века, и подсказки природы, голоса истории, трудный опыт изобретателя, его жизнь. В нем вся сложность нерасшифрованных еще движений мысли, высший пилотаж фантазии, сложность, от которой отмахнуться невозможно.
Много лет назад, еще в прошлом веке, на открытии Киевского политехнического института знаменитый русский механик и педагог В. Л. Кирпичев прочел лекцию «Значение фантазии для инженеров». В заключение он сказал:
«Если вы, милостивые государи, убедились из моих слов в важном значении фантазии для технической деятельности, то, может быть, потребуете, как от педагога, указаний, как можно развивать в детях это драгоценное качество. Можно ли подготовить изобретателя?
Я в этом сильно сомневаюсь. В Америке была издана книга под заглавием «Как делать изобретения». Путеводитель для изобретателей. Это очень интересное сочинение. Но я не думаю, чтобы оно достигло своей цели. Путеводитель для фантастической неведомой страны труднее написать, чем для Франции и Швейцарии. Изобретатели никогда не дождутся своего Бедекера».
Еще более категорически высказывается такой вдумчивый исследователь изобретательского творчества, как Н. Середа:
«Есть ли, – спрашивает он, – незыблемые способы, позволяющие сделать открытие и изобретение?
Если вы станете утверждать, что они есть, стоит только их узнать, выучить и применить, то вы можете сослужить плохую службу молодому поколению, привить легкое отношение к нелегкому изобретательскому труду, демобилизовать волю к овладению многообразным изобретательским мастерством, представить сложный творческий путь, как путь сплошных побед, по которому новичок, вооруженный вашими рецептами изобретательства, «придет, увидит, победит».
Когда думаешь о «методиках изобретательства», вспоминается «методика ваянья», которой поделился с назойливыми современниками великий французский скульптор Роден. Когда к скульптору пристали с расспросами, как он создает свои статуи, он ответил: «Беру глыбу мрамора и отсекаю все лишнее».
Следуя Родену, творческий процесс ваяния можно разбить на следующие стадии:
1. Определение идеи скульптуры.
2. Выбор глыбы мрамора.
3. Определение всего лишнего.
4. Удаление всего лишнего.
5. Полировка или золочение шедевра и т. п.
Я попробовал взять кусок пластилина и последовательно применил все стадии методики Родена. Получилось вроде ничего себе. Вроде человеческой фигуры. Но у Родена выходили гениальные скульптуры. Впрочем, это и понятно. Ведь их делал сам автор методики!
12.10.
Но один бесспорный и немаловажный факт все-таки остался не объясненным. Как же получилось, что Г. С. Альтшуллер, ранее терпевший одни отказы, после разработки изобретательской методики начал получать авторские свидетельства?
В его книжке, быть может, помимо воли автора, дан еще один ответ на этот вопрос.
«Работа над созданием методики, – пишет автор, – была начата мною в 1946 году. Потребовалось самым детальным образом изучить историю многих областей техники, чтобы понять, как возникает потребность в изобретениях и как эти изобретения делаются. Уже в первые три года работы было проанализировано 4000 описаний различных изобретений…» и дальше «…мне пришлось беседовать, консультироваться, дискутировать с очень многими новаторами. Это были разные люди: по изобретательскому стажу, техническому кругозору, специальностям и склонностям. Их объединяло одно: стремление создавать новое».
Хороший путь в изобретательство.
Уверены, что если кипящий в котле производства и способный к техническому творчеству человек проведет хотя бы четверть этой огромной работы, скажем, проанализирует лишь 1000 описаний различных изобретений, побеседует с очень многими новаторами, то он отшлифует свой изобретательский ум и, возможно, станет предлагать толковые изобретения. Можно ли сомневаться, что изобретателем легче сделается тот, кто умеет развивать свою творческую личность?!