355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Орлов » Трактат о вдохновенье, рождающем великие изобретения » Текст книги (страница 19)
Трактат о вдохновенье, рождающем великие изобретения
  • Текст добавлен: 6 октября 2016, 01:04

Текст книги "Трактат о вдохновенье, рождающем великие изобретения"


Автор книги: Владимир Орлов



сообщить о нарушении

Текущая страница: 19 (всего у книги 27 страниц)

Хитроумные приборы выставки, подступившие к океану, – это прототипы грядущих термоядерных реакторов. Одна из американских моделей называется «Перхэпсатрон», что в переводе значит «возможнотрон».

Можно сказать, что все экспонируемые приборы в какой-то мере «возможнотроны»; они с большей или меньшей убедительностью демонстрируют лишь принципиальную возможность построения в будущем термоядерного реактора. Они так же относятся к своему грядущему потомку, как старинный эолипил Герона к современной паровой турбине, как сегнерово колесо к современному гидравлическому двигателю, как магнитные подковки и катушки Фарадея к современному электрогенератору, как грозоотметчик Попова к современной радиостанции.

Поразительно принципиальное сходство приборов, построенных антиподами на разных концах земли, за семью замками лабораторий, в обстановке глубочайшей секретности. И наивно полагать, что ученым удалось разгадать секреты друг друга. Они просто пытались проникнуть в одну общую тайну – великую тайну природы. Они порознь вели единоборство с природой и держались единственно возможной тактики: разгадать законы природы, подчиниться этим законам и тем самым подчинить природу себе. Их конечные выводы получились едиными, как едины законы природы.

Теперь стало возможно проследить перипетии мировой изобретательской и исследовательской мысли по дороге на океан.

Грандиозные успехи атомной энергетики, опирающиеся на деление тяжелых ядер, стали возможны благодаря беззаветной работе ученых, бескорыстно изучающих сердце атома. И мы вправе сказать, что к первому этапу атомной энергетики человечество проникло через узкие дверцы микромира.

Ко второму этапу атомной энергетики, опирающемуся на слияние легких ядер, привели бескорыстные исследования звездного неба, отвлеченные достижения астрофизики, изучающей жизнь колоссальных космических тел Вселенной. Человечество идет к термоядерной энергетике сквозь широкие ворота макромира. В кулуарах конференции шутят, что идеи термоядерной энергетики буквально свалились с небес. И в этом еще одна разгадка их единства. Ведь над русскими, англичанами, американцами – одно и то же небо.

Термоядерные реакции потому и называются так, что происходят при очень высоких температурах. При таких температурах материя, вещество, образует первозданный хаос из мятущихся электронов и голых атомных ядер, с которых совлечены электронные оболочки. Из подобного материала построены солнце, звезды, туманности. Это состояние вещества называется плазмой.

Плазма очень подвижна и живет своей сложной, прихотливой жизнью. Электрические заряды привносят в ее движение свои склонности и антипатии, а течения, вихри и струи плазмы, обладают капризными свойствами намагниченных током проводников.

Поведением плазмы занимается теоретическая наука – магнитогидродинамика, младшая сестра аэрогидродинамики. Специалисты по магнитогидродинамике гордятся своей сложной наукой. Она шире объемлет мир, чем ее старшая сестра. Аэрогидродинамике подчиняются лишь нижняя часть атмосферы и четыре океана земного шара, а магнитогидродинамике– вся остальная Вселенная. Магнитогидродинамика это и есть тот теоретический мост, который объединяет Крабовидную туманность, затерянную в безднах неба, и прообраз термоядерного реактора на лабораторном стенде. Уравнения ее описывают анатомию мощного электрического разряда и кипение пламенного океана на поверхности солнца, «огненные валы» которого воспел еще Ломоносов. Она вооружает инженерную мысль возможностями небывалого величия и красоты. На протяжении многих тысячелетий истории материальной культуры люди строили свои орудия из организованной материи – камня, бронзы, железа, стекла. А теперь они могут создавать их и из первозданной материи – звездного хаоса, и человечество с надеждой взирает на этот гордый акт творения.

Магнитогидродинамика тренирует такую систему мышления, которая помогает искателям термоядерных реакторов преодолевать почти непостижимые трудности. Вот лишь одна из них.

Для того чтобы «второй огонь», принесенный современным Прометеем с небес на землю, смог охватить плазму, для того чтобы плазма загорелась негаснущим ядерным пламенем, необходимо достичь температуры в 50 миллионов градусов. (Заметим, что это минимальная цифра для смеси дейтерия с тритием, для чистого же дейтерия необходимы сотни миллионов градусов). Только при этих температурах ядра тяжелого водорода начнут метаться с такой бешеной скоростью, что смогут преодолеть могучие электрические силы взаимного отталкивания и будут во множестве сливаться в ядра гелия.

Перед создателями термоядерных реакторов возникает задача – построить топку, в которой могли бы протекать процессы при столь высокой температуре.

Как обезопасить стенки сосуда от жара плазмы? Но это не единственная забота. Оказывается, в довершение всего, стенки представляют для плазмы еще большую опасность, чем плазма для стенок. Вспомните, что вещество в сосуде очень разрежено. При таком разрежении даже при сверхвысоких температурах в плазме накапливается ничтожное количество тепла, немногим больше, чем нужно для того, чтобы вскипятить чашку чая. Если плазма чуть коснется стенок, она тут же охладится. Подсчитано, что достаточно одной булавочной головке металла испариться из стенки сосуда, чтобы охладить, загрязнить, «отравить» несколько железнодорожных цистерн плазмы. Мы уже знаем, что можно изолировать плазму от стенок. Магнитогидродинамика теоретически допускает, что с помощью электрических токов и магнитных полей можно в принципе построить из плазмы такое образование, которое повисло бы в центре сосуда хотя бы на некоторое время и за этот срок не касалось бы стенок. Роль термоизоляции в плазме могут играть незримые стены магнитного поля.

Если создать сильное магнитное поле, то оно способно удержать под высоким давлением плазму, как стальной баллон сдерживает сжатый газ. Поле, в десятки тысяч раз превышающее силы магнитного поля земли, ориентирующие компасную стрелку, способно противостоять давлению плазмы в сотни атмосфер.

Опыты по термоизоляции плазмы в импульсном электрическом разряде, производившиеся совсем недавно в обстановке секретности и лишь немногими людьми на земле, теперь может видеть каждый посетитель выставки.

Рассматривая множество макетов и действующих экспериментальных установок в советском, американском, английском разделах выставки, посетитель видит, как люди постепенно учатся повелевать плазмой. Посетитель старается вникнуть в сложные схемы устройств, позволяющих создавать всевозможные незримые магнитные трубки, «бутылки», резервуары в форме спасательных поясов. В них возникают на какой-то миг в большей или меньшей степени изолированные от стенок сгустки и кольца плазмы. Посетитель подолгу стоит у электрической пушки, стреляющей комочками плазмы, подгоняемыми электрической волной, и с удовлетворением наблюдает отклонение массивного маятника, отмечающего меткие попадания. Здесь демонстрируется действие на плазму электромагнитных волн, тех самых волн, которые развевают шлейфы комет в межпланетных просторах. Магнитные пробки – сгущения магнитных полей—ограничивают движение плазмы, и они же, став подвижными, теснят ее, подобно поршням дизеля, сжимающим горячую смесь. В свою очередь плазма расширяет, двигает незримые магнитные поршни и наталкивает их на неподвижные электрические проводники. В проводниках возникает ток по законам индукции, знакомым каждому школьнику. Другие приборы раскручивают плазму, как маховик, регистрируют импульсы тока при ее торможении. Так готовится чудо прямого превращения термоядерных реакций в электрический ток. Разнообразны способы нагрева плазмы до высоких температур. Здесь и мощные импульсные электрические разряды, и высокочастотное магнитное поле, и «магнитные насосы», о которых упоминалось выше.

Любопытно, что вокруг предтечей термоядерных реакторов собрались измерительные приборы, позаимствованные главным образом из арсенала астрофизики. Инструменты, позволившие человечеству заглянуть в пылающие бездны, переделываются теперь для изучения земных лабораторных объектов. Это оптические спектроскопы и специальные радиоприемники, улавливающие в плазме радиошум, подобные тем радиотелескопам, которые подслушивают радиоголоса космических туманностей.

И тот, кто осматривает эту выставку, с удовлетворением и гордостью замечает, как быстро растет свобода обращения человека со звездным веществом, с таинственной плазмой. Пройдет немного лет, и не будет казаться поэтической гиперболой стихотворение Маяковского о человеке, пригласившем на чашку чая солнце.

Три новейшие установки для исследований возможности управления термоядерными реакциями составляют центральные экспонаты выставки. Это английская «Зета», о которой подробно писала наша печать, это американский «Стелларатор» и модель советской «Огры». В «Стеллараторе», спроектированном американцем Спицером, плазменный шнур принимает форму как бы скрученного жгутом магнитного поля «Стелларатора», предназначенного для устойчивой термоизоляции плазмы. Установка снабжена своеобразным «магнитным насосом» для дополнительного подогрева плазмы и магнитным очистителем плазмы от загрязнения.

В Институте атомной энергии мы увидели магнитную ловушку «Огра» в натуре. Она поражает своими огромными размерами и по масштабам сравнима лишь с гигантскими цилиндрическими печами для обжига цемента. Незримый сосуд для плазмы, заключенный в ней, имеет вид обширного туннеля, закупоренного по концам магнитными пробками, представляющими собой уплотнения магнитного поля. Магнитные пробки называют образно магнитными зеркалами. Плазма в «Огре» помещается, как свеча между двух зеркал в знаменитой сцене гадания Светланы. Частицы вводятся в сосуд из специального ускорителя по точнейшим образом рассчитанным траекториям. Здесь они испытывают многократные отражения от магнитных зеркал и распадаются, чтобы превратиться в высокотемпературную плазму.

Шведский профессор Альфен восхищенно сказал, что создатели ее вдохновлялись, возможно, процессами, происходящими в Крабовидной туманности, или поэтической идеей северного сияния, которое вызывается в ионосфере прилетевшими из космоса быстрыми частицами, плененными магнитным полем Земли. Ионы дейтерия и трития, рожденные в мощном ионном источнике и ускоренные электрическими полями, впрыскиваются в обширную камеру «Огры» и полоняются здесь магнитным полем. Плазма термоизолируется здесь в незримом цилиндрическом магнитном сосуде, закупоренном по концам двумя магнитными пробками. В установке не производится постепенного нагрева холодного газа. В нее сразу впрыскиваются «горячие» частицы, ускоренные до необходимых скоростей электрическим полем, и вступают здесь в конце концов в хаотическое движение.

По простейшим примитивным расчетам, достаточно сильное магнитное поле способно образовывать незримую стенку необычайной прочности. Но из этой упрощенной картины вовсе не следует, что магнитный сосуд не дает утечек. В действительности плазма в магнитном поле может терять устойчивость. Плазма и магнитное поле могут постепенно перемешиваться, и в конце концов плазма истекает и охлаждается. Плазменный шнур сопротивляется плену, извивается, образует опасные перетяжки, выбрасывает коварные язычки и, кажется, делает все для того, чтобы коснуться стенок сосуда и каким-либо способом сбросить температуру. Поэтому нужны многочисленные упорные эксперименты, позволяющие досконально изучить капризы плазмы и найти такие конфигурации магнитных полей, при которых утечки из магнитных сосудов были бы минимальными.

Исследования на «Огре» ведутся последовательно, шаг за шагом. Пока подробно обследованы лишь простейшие конфигурации магнитных полей. Они, как и следовало ожидать, не обеспечивают достаточной устойчивости плазмы. Обнаружены новые, не известные ранее, крайне интересные свойства плазмы.

Сила «Огры» заключается, в частности, в том, что ее соленоиды секционированы и позволяют экспериментатору комбинировать магнитные поля различной формы, которые будут обследованы в последующих опытах.

Как и все атомные установки, «Огра» управляется дистанционно. Как всегда, с ошеломительно сложного пульта контролируются органы ускорителя-инжектора, траектория вспрыскиваемых частиц, работа насосов, откачивающих газ, конфигурация магнитных полей, действие высоковольтных установок, температурные режимы, давление и несметная рать измерительных приборов, наблюдающих за поведением плазмы.

Если магнитный сосуд изготовить в виде прямой трубы, возможны утечки плазмы через ее концы. Поэтому возникла идея перейти к трубе, вообще не имеющей концов. Так родилась схема тороидальных ловушек, где сосуд для плазмы выполняется в виде замкнутой полой баранки. Эта полая баранка из нержавеющей стали, гофрированная, как дирижабль Циолковского, охватывает железное ярмо трансформатора и служит в нем как бы вторичной обмоткой. Электрический ток, протекая через газ, заполняющий баранку, разогревает плазму и собственным магнитным полем стягивает ее в кольцо. К тороидальным камерам относятся новейшие машины под условным названием «Токамак». Они интересны тем, что на баранке имеется еще одна дополнительная обмотка, создающая в плазме продольное магнитное поле. Магнитные силовые линии армируют плазму, как стальные прутья бетон, придерживая плазменное кольцо.

Поиски наилучшей конфигурации магнитных ловушек продолжаются. Какие это захватывающие поиски! Ведь история физики показывает, что порой незначительные изменения формы вызывают появление почти волшебных свойств. Люди пускали воздушные змеи и не знали, что стоит лишь искривить их плоскость, чтобы получился профиль крыла, обладающего могучей подъемной силой. Форма – содержательна! Не удивительно, если гениально найденная конфигурация магнитного поля далеко продвинет вперед проблему управляемых термоядерных реакций.

Недавно стало известно о самом крупном достижении в этой области за последние годы.

В ловушке со сложным комбинированным магнитным полем советским ученым удалось удержать высокотемпературную плазму в течение одной десятой секунды.

Работу с плазмой справедливо называют «экспериментальной астрофизикой». Но земные условия опытов, к сожалению, отличаются от условий космических. Лишь одно из отличий заключается в том, что в космосе существует почти абсолютная пустота, глубокий космический вакуум. В земных условиях к такому глубокому вакууму удается приблизиться с большим трудом. Между тем любая посторонняя нейтральная частица охлаждает плазму, перегоняя ее энергию в свет, излучающийся в пространство.

Решение проблемы управляемых реакций отчасти зависит от успехов вакуумной техники. В последние годы советские ученые добились здесь решительных достижений. Мы имеем в виду создание азотита. Заключительный этап откачки камер осуществляется не с помощью обычных насосов, а физико-химическим способом, путем распыления металлического титана, обладающего способностью поглощать газы. Не так давно установлено, что титан, охлажденный до температуры жидкого азота, увеличивает поглощающую способность в десятки раз. Охлажденный титан получил название азотита. Азотит служит действенным средством повышения качества вакуума в установках по изучению плазмы.

На громадных этих установках работает главным образом молодежь – первооткрыватели новой целины, именуемой плазмой. Идут опыты, в которых все поучительно: и успехи и неудачи. Успехи продвигают исследователей вперед, неудачи предостерегают от ложных дорожек. В плазме много причин для неустойчивости, но фантазия человека безгранична, и поэтому все трудности будут преодолены.

«Вряд ли есть какие-либо сомнения в том, – пишет академик Л. А. Арцимович, – что проблема управляемого термоядерного синтеза будет решена. Природа может расположить на пути решения этой проблемы лишь ограниченное число трудностей, и после того, как человеку, благодаря непрерывному проявлению творческой активности, удастся их преодолеть, она уже не в состоянии будет изобрести новые. Неизвестно лишь, насколько затянется этот процесс».

8.10.

Когда проходишь по цехам Второго часового завода, кажется, что попал в страну лилипутов. Великанские руки работниц волшебствуют над станочками-карликами, миниатюрными автоматическими линийками, похожими на ожившие иллюстрации из технической книжки. Мы привыкли видеть технику, умножающую силы человека, наблюдать, как легкое прикосновение к рычагу преобразуется в мощный взмах стрелы подъемного крана. Здесь же все направлено к тому, чтобы нажим пальца превратился в еле ощутимое касание, чтобы силу человеческой руки довести до деликатности муравьиной лапки. Резцы и фрезы гложут металл, как челюсти древоточцев, сверлышки вонзаются в него, как комариные жальца.

Годовой запас готовых деталей шуршит в спичечном коробке и походит на горстку семян растений, непростое и строгое строение которых познается лишь в поле зрения микроскопа. Девушки в халатах и с повадками микробиологов пинцетами собирают из этих деталей часовые механизмы – маленькие инфузории из бронзы и стали, пульсирующие и мерцающие под лупой часовщика.

С конвейера сходят совсем крохотные женские часики и новинка часовой техники – наручные часы «Электрические». Древней часовой пружины в них нет. Вместо нее поставлена электрическая батарейка размером в копейку. Толчки тока оживляют катушку из паутинной проволочки, приклеенную к колесику баланса, колеблющемуся между полюсов магнита. Баланс раскачивается электричеством. Энергоемкость батарейки много больше энергоемкости пружины. Поэтому часы «Электрические» без завода работают год и дольше.

Еще больше «мыслеемкость» часовой продукции. Никогда, быть может, не концентрировалось в столь малом объеме металла такое количество изобретательной мысли, творческого труда! Но не только это превращает часы в драгоценность ювелирной витрины. Маленький щебечущий механизм, на всю жизнь прикованный к вам цепочкой или браслетом, становится распорядителем самого ценного в жизни – времени. На XIV съезде комсомола Никита Сергеевич Хрущев сказал: «Все мы, и молодые, и люди постарше, должны считаться с фактором времени. Ведь двадцать лет складывается из дней, а дни – из часов и минут. Для того чтобы выполнить и перевыполнить великие задания, намеченные Программой, нельзя терять из двадцати лет ни одного дня, ни часа, ни минуты».

Шаг секундной стрелки, словно взмах дирижерской палочки, управляет грандиозным хором всей страны. Экономисты подсчитывают материальное выражение ежегодно возрастающей ценности ее шага. Цена советской секунды – это горы угля, озера нефти, сонмища машин. Но главнейшая ценность шага секундной стрелки не только в том, что она регистрирует время, отмеряя и рассчитывая течение производственного процесса. Ее взмах помогает безмерно умножить его мощь, внося в него дружбу и согласие. Так унисон рождает громогласье хора.

Гордые обязательства бригад сборщиков часового завода выполнить и перевыполнить план свидетельствуют, что в этой мастерской времени умеют ценить время, что в коллективе живут и развиваются славные традиции отечественного часового искусства. Перед взором мерцают «часы яичной фигуры» – старинное творение великого русского механика Кулибина, золотое яйцо на витрине Эрмитажа. Бегут стрелки, самозвонные колокольчики наигрывают мелодии. Вдруг распахиваются золоченые дверцы, и взору открывается чертог, где ангелы, воины и «жены-мироносицы» разыгрывают старинную мистерию. Трудно упустить публицистический ход, не сказать, что из этого яйца появились на свет современные часовые механизмы.


Но заметить только это – значит упростить проблему. Карл Маркс в часах видел материальную основу, на которой строилась внутри мануфактуры подготовительная работа для машинной индустрии, крупной промышленности. Он подчеркивал, что часы являются первым автоматом, созданным для практических целей. «Не подлежит также ни малейшему сомнению, – писал Маркс, – что в XVIII веке часы впервые подали мысль применить автоматы… к производству».

Мы глядели на стрелки, Маркс же вглядывался глубже – в то, что было за стрелками. В часовом механизме, как в зародыше, содержались многие принципы и элементы современной автоматики: аккумулятор энергии – пружина; преобразователь скорости и силы – набор шестерен; принцип «обратной связи»– один из китов кибернетики; генератор колебаний… А в часах Кулибина, дающих концерты и спектакли, содержится и то, что сегодня называется программирующим устройством.

Не подлежит сомнению, что не только часовые механизмы, но и все станки-автоматы, стрекочущие в цехе, – все они вылупились из не простого, но золотого волшебного яйца. Правда, не игрушечные ангелы, воины и «жены-мироносицы» продолжают разыгрывать здесь старинные мистерии, а десятки механических ручонок в причудливом действии передают друг другу кусочки сырья, продвигают их под другие трудовые стальные ручонки, вооруженные сверлами, фрезами, резцами. И рождение готовой детали, наконец, завершает спектакль.

Век стремительных скоростей, век космоса потребовал небывало точного времени. Механические часы оказались недостаточно верным инструментом. Мы имеем в виду не только изделие рук человеческих – часы-хронометры, но и механику неба – этот, казалось бы, «непогрешимый часовой механизм, сотворенный божественным часовщиком», как воскликнул когда-то, расчувствовавшись, один философ-идеалист. Земной шар при точнейшем рассмотрении оказался не столь простым, как часовое колесико, он жил сложной, исполненной капризов и прихотей жизнью. Притяжение Солнца и Луны перемещало массы, перекачивало воду в его океанах, прихотливо вихрилась его воздушная оболочка, что-то тяжкое незримо ворочалось в его недрах, зимою тяжелела ледяная шапка на его полюсах. Вот лишь часть причин, объяснявших неожиданный факт, – вращение Земли неравномерно, и поэтому «небесные часы», связанные с вращением земного шара, то спешат, то отстают. Точнейшая проверка углубила сомнение в непогрешимости «небесных часов» и сильнее укрепила неверие в существование «божественного часовщика».

В поисках верных часов физики применили в роли маятника тончайший механизм, созданный самой природой, – атомную решетку кристалла горного хрусталя. Толчки электричества оживляли кристалл, его решетку, заставляли его колебаться в такт переменному электрическому напряжению. Получились точнейшие «кварцевые» часы. Но со временем что-то портилось в этом кристалле. Маятник-кристалл начинал пошаливать по причинам, недоступным даже рентгеноструктурному анализу – этой «лупе современного часовщика».

Тогда фантазия изобретателей обратилась к частичкам столь крохотным, что деталь обыкновенных часов перед ними все равно, что высотное здание по сравнению с песчинкой. В роли «маятника» использовали механизм молекулы, атома.

Когда входишь в лабораторию колебаний Физического института имени П. Н. Лебедева, в помещение, где отрабатывают современные маятники, замечаешь, что оно не походит на старинную церковь, где по тихому колыханию люстры изучал качания маятника молодой Галилей. Молодые люди трудятся у лабораторных макетов, напоминающих усложненное содержимое телевизионных трубок. На таких установках работают с пучками летящих атомов и молекул.

Возбужденная молекула или атом испускают при известных условиях электромагнитные колебания строжайшей частоты. Это – идеальный маятник. Но один-единственный атом, одна-единственная молекула слишком слабый и кратковременный источник колебаний, чтобы регулировать ход даже самых чувствительных часов. В 1952 году молодым советским физикам, ныне видным ученым, лауреатам Ленинской премии, членам-корреспондентам Академии наук СССР Н. Г. Басову и А. М. Прохорову пришла в голову счастливая идея построить систему, в которой одинаково возбужденные атомы соединяли бы свои усилия, подобно хору, звучащему в унисон. Еще раньше, в 1940–1941 годах, основополагающие идеи в этой области высказывал профессор В. А. Фабрикант.

Это была трудная задача. Даже самые простые молекулы или атом представляют собой сложную колебательную систему, излучающую электромагнитные колебания с целым набором частоты. Это как бы скрипка со многими струнами. Надо было научиться отбирать из множества атомов или молекул только те, которые готовы излучить электромагнитные колебания строго определенной частоты, одинаково возбужденные частицы – «скрипки», готовые «прозвучать» на одной и той же струне. Для этого пучок летящих молекул или атомов пропускают через квадрупольный конденсатор или шестиполюсный магнит. Впрочем, сложные названия деталей ничего не скажут читателям. Приведем не очень точное сельскохозяйственное сравнение, – когда пишешь о мире атомов, все сравнения грубы. Пучок летящих молекул или атомов пропускают через что-то вроде триера, сортирующего частицы, как семена. Одинаковые во всех отношениях частицы соберутся в некоем электрическом резонаторе. Здесь-то и организуется «унисон» атомов или молекул. Тут, как во флейте Пана, звучащей от дуновения, возникают сравнительно мощные электромагнитные колебания строжайшей частоты. Эти колебания через сложную «замедляющую» передачу можно применить для приведения в действие часов. Не ищите в передаче набора шестеренок. Роли их исполняют электронные устройства, напоминающие с виду шкафы быстродействующих счетных машин.

Получились часы, идущие с точностью до одной стомиллиардной доли секунды. Они и позволяют изучать неравномерность вращения Земли. По подобным хронометрам будут следовать звездолеты. В «Успехах физических наук» опубликованы замыслы помещения подобных часов на спутнике для опытов, приоткроющих, возможно, завесу над загадками всемирного тяготения. Разрабатываются в сотни раз более точные часы.

Но мы, кажется, снова безотрывно следим за стрелками часов… Вспомним же, что Маркс, проницательно видевший вещи в развитии, советовал взглянуть острей, попытаться проникнуть в то, что находится глубже стрелок. И опять-таки за стрелками атомных часов проступит материальная основа, на которой сегодня строится подготовительная работа для грядущей техники небывалой мощи. Мы найдем здесь в зародыше систему, где впервые достигнуто согласованное совместное действие одинаковых испускающих энергию атомов. Хор атомов, излучающих «в унисон»! Исключительное явление, не существовавшее в природе! Современная квантовая физика рисует более наглядный и точный образ – это залп атомов, «стреляющих» одинаковыми квантами – порциями излучений равных энергий. Лавина квантов! Электроника имела дело с лавинами электронов, ядерная энергетика – с лавинами нейтронов, некая техника, уже брезжущая в грядущем, будет обращаться с лавинами квантов излучения – лавинами фотонов.

Наукой уже открыта эта возможность. В ряду твердых веществ, где можно накопить запас одинаково возбужденных атомов, находится старый знакомый человека – кристалл рубина. Надо только подсветить похожей на «фотовспышку» лампой правильно отшлифованный и посеребренный рубин. Тогда кванты равных энергий, фотоны равных частот будут «выстрелены» залпом. Из кристалла, как рубиновая молния, брызнет почти не расходящийся луч ошеломительной силы. Мне запомнилось по цветным фотографиям из журнальных научных отчетов это алое лучевое копье, на пути пронзившее какой-то светлый кристалл. Над кристаллом вьется голубоватый дымок. Красный слаборасходящийся луч, вырвавшийся из рубина, испарил алмаз. Подобное устройство называют квантовым генератором или «лазером».

«Первый удар луча гиперболоида пришелся по заводской трубе – она заколебалась, надломилась посередине и упала… Был виден весь завод, раскинувшийся на много километров. Половина зданий его пылала, как картонные домики. Луч бешено плясал среди этого разрушения…» Этих строчек пока еще нет в журнальных отчетах, они взяты из фантастического романа А. Толстого «Гиперболоид инженера Гарина».


Но все чаще мелькают в американской бульварной прессе призывы к «лазерному вооружению», к построению реального «гиперболоида Гарина», чтобы разить лучом космонавтов.

Мы уверены, убеждены, что советская наука отличится достижениями в мирном применении «лазеров». Рубиновый луч испаряет алмаз, значит, можно будет обрабатывать этим лучом самые твердые, самые жаростойкие материалы. Тут рождается острейший микронной точности инструмент: ведь давление света, испускаемого «лазером», сфокусированного на микронной площади, может быть доведено до миллионов атмосфер. В воображении физиков возникают идеи использования «лазера» для получения управляемых термоядерных реакций.

Рубиновым «лазером»: помещенным в фокусе большого крымского телескопа, как прожектором, освещена Луна, и луч, отраженный ее поверхностью, был замечен с Земли. На таких лучах уже сейчас можно осуществить связь с ближайшими звездами. Рассуждения, которые завели бы нас далеко, показывают, что лучи эти – русла информации такой ширины, которых еще не знала природа. По ним можно вести одновременную трансляцию десятка тысяч телевизионных программ. Есть предложения использовать «лазер» в роли двигателя фотонных космических кораблей.

За стрелками старых механических часов Карл Маркс различил основу современной техники – автоматизации производства. За стрелками новейших атомных часов брезжит свет совершенно небывалой, почти фантастической техники будущего, для которой еще нет названия. Она даст человеку диковинное, необыкновенное – цехи всемогущие, как кузница Гефеста, межпланетные телевизоры, звездолеты. Эта техника еще и еще увеличит растущую ценность минут, из которых слагаются двадцать лет нашей великой Программы. Эта техника рождается.

Мерный ход стрелок часов приближает ее реальное становление.


    Ваша оценка произведения:

Популярные книги за неделю