Текст книги "Марсианский проект С. П. Королёва"
Автор книги: Владимир Бугров
Жанры:
Астрономия и Космос
,сообщить о нарушении
Текущая страница: 3 (всего у книги 16 страниц)
В 9-м отделе Тихонравова были спроектированы первые искусственные спутники Земли, автоматические межпланетные станции для изучения Марса и Венеры, лунные автоматические станции ( рис. 2.5.2 ). Там же разрабатывались пилотируемые космические корабли «Восток», «Восход», «Союз», на которых летали все наши легендарные космонавты, начиная с Ю. А. Гагарина ( рис. 2.5.3 ).
Творческий союз двух великих конструкторов – жесткого и волевого, не знающего преград бойца Королева и мягкого, интеллигентного, но не менее целеустремленного мыслителя Тихонравова – во многом предопределил успехи начального этапа нашей космонавтики. Теперь они объединились, чтобы воплотить в жизнь свои самые смелые замыслы.
2.6. Широта космических исследований – основа экспедиции на Марс
При создании космических объектов Королев стремится передать большинство своих разработок своим соратникам на другие предприятия, что способствовало закреплению за ними статуса головных структур в той или иной производственно-технической деятельности. Так, куйбышевскому филиалу ОКБ-1 под руководством Д. И. Козлова было поручено проектирование спутника-разведчика «Зенит», и с 1974 года этот филиал становится головным КБ по созданию ИСЗ для картографирования, фото и оптико-электронной разведки, изучения ресурсов Земли.
В 1965 году были запущены спутники «Молния» (руководитель проекта П. В. Цыбин), впервые обеспечившие дальнюю радиосвязь и телевидение для дальневосточных районов. Серийное изготовление и дальнейшие исследования по спутникам связи были переданы в ОКБ-10 в Красноярск, а вскоре это предприятие стало основным разработчиком систем связи и навигации в стране. Возглавил его бывший заместитель Королева М. Ф. Решетнев, ставший академиком, Героем Социалистического Труда.
Тернистый путь был пройден ОКБ-1 при создании автоматических станций для полетов на Луну, Марс и Венеру. После их длительной и незаметной, но изнурительной доводки, появились первые успехи. Впервые в мире были выполнены полет на Луну, фотографирование ее обратной стороны, мягкая посадка и передача панорамного изображения ее поверхности на Землю, полет на поверхность Венеры. По решению С. П. Королева работы по этим автоматическим аппаратам вместе с технической документацией были переданы в ОКБ им. С. А. Лавочкина, где они получили дальнейшие развитие: осуществлены мягкая посадка и доставка лунохода, исследование Луны с орбиты, доставка грунта с ее поверхности на Землю, исследование Марса и Венеры с орбиты спутников, посадка автоматических аппаратов на поверхности этих планет, проведены исследования Солнца. Руководил этими работами в ОКБ им. С. А. Лавочкина Г. Н. Бабакин, также бывший сотрудник НИИ-88, в дальнейшем член-корреспондент АН СССР, Герой Социалистического Труда.
В 1962 году в отделе Тихонравова изучался вопрос об использовании самоходного транспортного средства для передвижения по поверхности планет. Техническое задание на разработку марсохода выдается Ленинградскому институту транспортного машиностроения (ВНИИ-100). В мае 1963 года институт для ознакомления с ходом работ посетили Королев и Тихонравов. В 1965 году эта тема также была передана в ОКБ им. С. А. Лавочкина. Неизвестный марсоход превратился в знаменитый луноход и в ноябре 1970 года автоматическая станция «Луна-17» доставила его на поверхность Луны, где он проработал 300 суток, прошел 10 000 м лунных дорог и передал на Землю около 20 000 снимков лунной поверхности.
Забегая вперед, скажу, что Сергей Павлович в процессе реализации программы лунной экспедиции решил поручить ОКБ им. С. А. Лавочкина проектирование его «изюминки» – лунного посадочного корабля, и только после многочисленных просьб наших разработчиков согласился оставить эту интересную и престижную работу за своим коллективом.
Все эти примеры свидетельствуют о том, что при организации и распределении работ Королев всегда руководствовался принципами рациональности и целесообразности. Отдавая в другие руки заведомо привлекательные и выигрышные темы, он сохранял свободными мощности своего предприятия для решения главной задачи – создания межпланетного комплекса для полета человека на Марс. Вместе с тем, он всемерно помогал коллегам, считая их проекты будущими составными частями своего марсианского комплекса. Сергей Павлович не мог допустить, чтобы переданное в другие руки начинание не дало результата, поскольку это означало бы, что определенная проблема марсианской экспедиции не будет решена.
Королев строил проект не на пустом месте. Многие из вышеперечисленных работ открыли целые направления в ракетной и космической технике. Все они, задуманные и организованные одним человеком, представляют собой тот мощный фундамент, который позволил Королеву без сомнений в успехе взяться за решение дерзновенной задачи полета человека на другую планету.
Глава 3
Проект Королева – экспедиция человека на Марс
«То, что казалось несбыточным на протяжении веков, что еще вчера было лишь дерзновенной мечтой, сегодня становится реальной задачей, а завтра – свершением. Нет преград человеческой мысли!»
С. П. Королев(газета «Правда» от 1 января 1966 года – за одиннадцать дней до кончины)
3.1. Марсианский пилотируемый ракетно-космический комплекс
Облик марсианского пилотируемого ракетно-космического комплекса (МПРКК) окончательно сформировался к 1964 году – лишь на четвертый год проектирования. Он состоял из двух основных частей: марсианского пилотируемого космического комплекса (МПКК) – для полета экипажа к красной планете, высадки на ее поверхность и возвращения на Землю (иногда тяжелый межпланетный комплекс называли ТМК) – и межпланетного ракетного комплекса (МРК), где в качестве основного элемента использовалась трехступенчатая ракета-носитель Н1, а также имелись технический, стартовый комплексы и другие наземные сооружения. МРК должен был обеспечивать подготовку, старт и выведение на околоземную монтажную орбиту семидесятипятитонных блоков, из которых предполагалось собрать марсианский комплекс.
Компоновка МПКК к тому времени уже приобрела определенный вид ( рис. 3.1.1 ). Для его сборки на орбите был предусмотрен монтажный отсек сферической формы с шестью или восемью стыковочными узлами. К нему с одной стороны стыковались марсианский орбитальный комплекс (МОК) и марсианский посадочный комплекс (МПК), с другой – разгонный ракетный комплекс в виде центрального и 4–6 боковых модулей, который обеспечивал старт МПКК с монтажной орбиты и выведение его на траекторию полета к Марсу.
В состав МОК входили тяжелый межпланетный корабль (ТМК) и разгонный ракетный блок (РРБ) для разгона ТМК с орбиты спутника Марса на траекторию полета к Земле, а посадочный комплекс состоял из тормозных и посадочных устройств, посадочной ракеты и марсианского корабля с двухступенчатой взлетной ракетой и капсулой возвращения.
Сборка на орбите комплекса массой в 400–500 тонн должна была обеспечиваться запусками 4–6 ракет-носителей Н1 и могла продолжаться в течение года. Все его составные части должны были проходить полный цикл проверок и испытаний, аналогичных заводским, выполняемых специальными бригадами космонавтов из числа опытных специалистов ОКБ-1, головного завода и космодрома. Бригады планировалось доставлять на орбиту на корабле типа «Союз» и размещать в специальном жилом блоке. После завершения предстартовой подготовки сборочные бригады возвращались на Землю.
Экипаж прибывал на ТМК заранее и лично проводил подготовку и запуск замкнутого биолого-технического комплекса, а также проверку всех систем корабля, а экипаж перед стартом занимал место в спускаемом аппарате, откуда мог управлять всеми динамическими операциями.
Экспедиция должна была проходить по следующей схеме ( рис. 3.1.2 ). Марсианский комплекс, после выведения с околоземной орбиты на траекторию полета к Марсу и отделения отработавшего разгонного блока, осуществлял автономный полет, постоянно поддерживая ориентацию на Солнце и связь с Землей. Блок, в котором размещался экипаж при полете к Марсу и обратно, представлял собой единую конструкцию и понимался как собственно ТМК. В его состав входили орбитальный модуль, корректирующая двигательная установка и возвращаемый на Землю спускаемый аппарат (СА) весом 2,1 тонны, т. е. около 0,5 % от начального веса комплекса на орбите искусственного спутника Земли. Для всех расчетов было принято, что экипаж экспедиции состоит из трех человек, двое из которых высаживаются на поверхность Марса.
При возникновении аварийной ситуации на любом этапе разгона с ОИСЗ к Марсу экипаж, находясь в спускаемом аппарате, имел возможность отделиться от комплекса вместе с корректирующей двигательной установкой и разгонным блоком и вернуться на Землю.
Переход с траектории полета к Марсу на орбиту его спутника в этом варианте проекта выполнялся за счет аэродинамического торможения комплекса в марсианской атмосфере, которое происходило при многократном погружении в нее на определенную высоту и время. На орбите, после необходимых проверок и подготовки, два члена экипажа перемещались в капсулу возвращения марсианского корабля. Посадочный комплекс отделялся от орбитального, осуществлял сход с орбиты, спуск в атмосфере, торможение и посадку.
Проведя необходимые работы на поверхности планеты, экипаж стартовал, выводился на исходную орбиту, капсула возвращения стыковалась с орбитальным комплексом, и космонавты возвращались на ТМК. При старте к Земле они занимали места в спускаемом аппарате, который при подлете к ней отделялся от ТМК и, осуществляя управляемый спуск в атмосфере, приземлялся.
Описанный облик и компоновка межпланетного комплекса были приняты за основу к середине 1962 года. В дальнейшем эти работы продолжались до середины 1964 года.
3.2. Начало работ над марсианским проектом
Данный марсианский комплекс представляет собой второе направление в проекте С. П. Королева. Его главными отличиями, как отмечалось выше, были разгон комплекса с околоземной орбиты к Марсу и возвращение на Землю с использованием жидкостных ракетных блоков, а торможение для перехода на орбиту спутника Марса – без использования тормозного ракетного блока, за счет многократных погружений в марсианскую атмосферу. Эта схема стала формироваться летом 1962 года.
Предварительный вариант, представленный Королеву, выглядел иначе. Для его разгона к Марсу с околоземной орбиты и последующих маневров планировалось использовать электрореактивную двигательную установку с ядерным реактором (ЯЭРДУ). В ней в результате ядерной реакции горючее (окислитель при этом не требуется) превращается в высокотемпературный газ, истечение которого из сопла с очень высокой скоростью создает тягу. ЭРДУ создает значительно меньшую по сравнению с ЖРД тягу, но за счет длительного включения, постепенно наращивая скорость и раскручивая комплекс в течение нескольких месяцев на околоземных орбитах, может обеспечить его разгон к Марсу. Таким же образом предполагалось выполнять операции при переходе на орбиту спутника Марса и при старте с нее.
Привлекательность ЭРДУ заключалась в том, что она обладает более высокими энергетическими характеристиками, чем ЖРД. Так, по удельному импульсу (параметр, определяющий количество топлива, необходимого для разгона объекта до определенной скорости) ЭРДУ превосходит ЖРД в 200–300 раз и потому не требует гигантских запасов топлива.
Королев на начальных этапах работы не сдерживал инженерной фантазии и творческих поисков, в результате чего у наших разработчиков, не обремененных нудными весовыми расчетами, на поверхности красной планеты появлялись эскадры стотонных сооружений с шестиметровыми колесами. Они разъезжали по планете на тысячи километров и перевозили ракеты возвращения. Ответ на вопрос, как они попадают на Марс, был прост – с помощью ЭРДУ. Возможность не придерживаться жестких весовых ограничений и в дальнейшем соблазняла многих специалистов, поэтому вариант с ЭРДУ служил мифической палочкой-выручалочкой всех марсианских проектов прошлого века.
Однако инъекции фантастики принесли свои плоды. Они побудили энтузиазм и понимание, что прежде чем говорить о многотонных марсианских внедорожниках, нужно спроектировать средства доставки к Марсу их экипажей.
В девятом проектном отделе ОКБ-1, которым руководил Михаил Клавдиевич Тихонравов, решение этой задачи с июля 1960 года было поручено сектору Г. Ю. Максимова, группе В. К. Алгунова, куда я пришел из КБ С. А. Лавочкина. Основной костяк группы – молодые специалисты: Николай Протасов, Виолетта Губанова, Лидия Крупенская, Лев Петров, Рева Кангильдиев, Владимир Ходаков, Вячеслав Никитин. Позднее присоединились Бирюкова, Кирсанов, Буданов, Роксанов, Стаськова. Более опытный Н. Протасов занимался проблемами жизнеобеспечения, остальные – текущими вопросами по мере их появления. Привлекались сотрудники и из других групп нашего сектора: Лидия Солдатова, Александр Луговой, Олег Тихонов, Владислав Борзенко, Иван Трофимкин, а также специалисты из других подразделений: баллистики Валерий Кубасов и Георгий Гречко (будущие космонавты), аэродинамик Виктор Миненко, материаловед Владимир Никитский, а по системам жизнеобеспечения Евгений Церерин, Юрий Жук и Петр Васильевич Флеров – друг Королева со времен их общего увлечения планеризмом.
Начальник группы Вячеслав Алгунов был отцом троих маленьких детей. Его жена Галина Алгунова также работала в нашей группе. Будучи скульптором по образованию, она проектировала интерьеры жилых отсеков, а также изготавливала все памятные медали и вымпелы, доставлявшиеся на Луну, Марс и Венеру первыми автоматическими космическими аппаратами. Жили они без родителей, поэтому при всей своей добросовестности и желании, Алгунову трудно было справляться с обязанностями руководителя, и мое появление в группе он воспринял с удовлетворением. В силу сложившихся обстоятельств, я оказался основным исполнителем по проекту: разрабатывал компоновку, состав и весовую сводку по кораблю и экспедиции. Прежде чем появиться на кульмане или в отчете, черновые технические проработки появлялись в моей совершенно секретной рабочей тетради. В ходе их анализа выявлялся перечень новых работ, которые фиксировались в другой, несекретной рабочей тетради с предложениями по срокам. Алгунов определял исполнителей, согласовывал с ними сроки, записывал эти работы в ежемесячные планы отдела и контролировал их выполнение. Такая организация была эффективной в течение всех четырех лет.
Отличались продуктивностью и совещания у Глеба Юрьевича Максимова. К сожалению, они проходили не часто – в тот период в группах Льва Дульнева и Николая Береснева нашего сектора были сосредоточены все основные проектные работы по нашим первым автоматическим аппаратам. Королев придавал им большое значение – они позволяли «прощупать» проблемы реального межпланетного полета. При полетах автоматов к Марсу, Венере и Луне практически отрабатывались элементы будущей межпланетной экспедиции. Неудачные запуски давали бесценный опыт, а удачные – еще и большой политический эффект.
Из-за постоянной занятости Максимова автоматами мне приходилось часто обсуждать многие вопросы с М. К. Тихонравовым, который регулярно встречался с Королевым и обсуждал с ним детали проекта. Иногда после таких бесед Михаил Клавдиевич приглашал меня и, прохаживаясь вокруг большого круглого стола, начинал увлеченно фантазировать, видимо, под впечатлением от недавней встречи. Чувствовалось, что и для Сергея Павловича обсуждение наших проработок по марсианскому проекту было своеобразной отдушиной в череде бесконечных повседневных проблем по ракете Н1, по «Востокам» и автоматам.
Постоянное взаимодействие с Тихонравовым служило большим стимулом в нашей работе. Было ясно, что главный конструктор, несмотря на свою занятость, внимательно следит за ней, и мы не варимся в собственном соку, а движемся в нужном направлении под его неусыпным контролем и руководством. Меня эти беседы с Михаилом Клавдиевичем очень вдохновляли. Занимаясь проектом практически круглые сутки и уходя домой в 10–11 часов вечера (полтора часа дороги в один конец из Подлипок до дома в Москве), я просыпался утром и хватал карандаш, чтобы успеть записать свежую мысль, пока она не исчезла безвозвратно.
Дело даже не в том, что я осознавал значимость выполняемой мной работы. В то время я об этом даже не думал. Это сейчас осознавая грандиозность замыслов Королева на фоне всего последующего в нашей космонавтике, я иногда пытаюсь осмыслить интересное стечение обстоятельств. В 1933 году двадцатишестилетний Сергей Королев – руководитель ГИРДа, расположенного у Красных ворот, запуская вместе с Михаилом Тихонравовым первые советские жидкостные ракеты, мечтал о межпланетном полете. В этом же году в пятистах метрах от ГИРДа, на Покровке, родился мальчик. Через три десятка лет он оказался за кульманом, на котором мечта Королева и Тихонравова обретала реальные черты межпланетного корабля. Удивительно и то, что обе тетради – совершенно секретную, содержащую черновые расчеты по всем принципиальным техническим вопросам проекта, и несекретную, с ежемесячными планами всех исполнителей за весь период работы, мне удалось сохранить. Они являются единственным неопровержимым документальным доказательством того, что именно экспедиция на Марс, а не «лунная гонка» была главной целью всего творчества Королева. Далее мы проследим за ходом реализации марсианского проекта, листая эти тетради…
3.3. Первые проработки тяжелого межпланетного корабля
Разработку марсианского проекта в варианте с применением ЯЭРДУ на раннем этапе проектирования Королев поручил Борису Андреевичу Адамовичу. Не являясь сторонником подобной схемы, Адамович все же выполнил задание и подготовил первый вариант марсианской экспедиции с ЯЭРДУ, хотя заниматься его совершенствованием ему уже не пришлось. Королев предпочел и утвердил летом 1962 года вариант с ЖРД. В 1963 году по инициативе Королева для решения проблем по данному проекту был образован Институт медико-биологических проблем, куда и был направлен Борис Андреевич в качестве заместителя директора и главного конструктора комплекса систем жизнеобеспечения для марсианского корабля. Дальнейшая разработка собственно электрореактивного двигателя была поручена Королевым его заместителю – Михаилу Васильевичу Мельникову.
Учитывая, что перспектива создания такой двигательной установки в обозримом будущем неясна, сектор Максимова, перед которым была поставлена эта задача, начал с облетного варианта тяжелого межпланетного корабля. ТМК создавался как комплекс средств, обеспечивающих многолетний межпланетный полет экипажа из трех человек в условиях замкнутого изолированного пространства. Выводить его на околоземную орбиту предполагалось одной ракетой Н1 вместе с разгонным блоком на жидкостных двигателях.
После разгона с ОИСЗ и полета к Марсу, войдя в его гравитационное поле, ТМК изменял свою траекторию для возвращения на Землю. Большого научного и технического смысла в этой баллистической эквилибристике не было. Но связка ТМК с разгонным блоком позволяла выполнить полет в околосолнечном пространстве и без посещения Марса, по траектории облета Луны или на орбите ее спутника без создания специальных дорогостоящих облетных программ.
Основное наше внимание было направлено, в первую очередь, на поиск оптимальной компоновки ТМК ( рис. 3.3.1 ). Главным фактором, определявшим облик и конструкцию, являлась длительная невесомость. Бороться с ней пытались путем создания искусственной тяжести за счет вращения корабля вокруг центра масс. Жилые и часто посещаемые отсеки старались разместить на максимальном удалении от центра вращения. Разумным тогда представлялось расстояние в 10–12 метров.
Следующим важным фактором была необходимость обеспечения экипажа пищей, водой и воздухом, запасы которых для трех человек на 2–3 года полета имели неприемлемые весовые характеристики. Снизить их можно было только за счет воспроизводства на борту. Для этого разрабатывался специальный замкнутый биолого-технический комплекс (ЗБТК), призванный обеспечить круговорот веществ, потребляемых и выделяемых экипажем, по существующей в наших земных условиях схеме. Немало разделов в моей тетради посвящено именно ЗБТК.
Основой процесса круговорота веществ в ЗБТК являлся фотосинтез, поэтому была спроектирована оранжерея, где предполагалось выращивать картофель, сахарную свеклу, рис, бобовые, капусту, морковь, салат и другие культуры. Растения планировалось размещать на компактных стеллажах, разумеется, не в земле, а на гидропонике, корни же помещать в специальные капсулы, к которым подводится питательный раствор. Проводились многочисленные расчеты по определению оптимальной площади оранжереи. Она выбиралась из условия получения наилучших весовых характеристик самой оранжереи и элементов корабля, вес которых зависел от ее площади. На каком-то этапе проектирования она достигала 60 м 2. В состав ЗБТК также входили хлорельный реактор, ферма с животными – кроликами или курами, от которых впоследствии отказались, и система утилизации отходов с запасами реактивов. По вопросам растениеводства проводились консультации с ведущими сельскохозяйственными специалистами страны, в частности, с ленинградским профессором Мошковым, который выращивал до 400 кг помидоров в год на одном м 2огорода. Сергей Павлович придавал большое значение разработке оранжерее, видя в ней главную возможность для снижения веса корабля и увеличения за счет этого числа членов экипажа. Наши сельскохозяйственные академики охотно обсуждали возникающие проблемы с Николаем Протасовым.
Для освещения растений использовали естественное солнечное излучение. От искусственного отказались из-за низких весовых характеристик элементов солнечных батарей. В условиях пониженной освещенности у Марса необходимая для освещения растений площадь солнечного потока достигала сотен метров. Ввести такой поток внутрь корабля через прозрачные стенки его корпуса, как в обычной огородной теплице, не представлялось возможным, прежде всего, по тем же весовым соображениям. Поэтому была придумана весьма сложная система питания оптическим излучением Солнца (ПОИС), основными элементами которой являлись концентраторы цилиндрической формы, расположенные вдоль корпуса корабля с двух сторон под определенным углом. При ориентации их на Солнце отраженный и сжатый ими солнечный поток в концентрированном виде вводился через щелевые иллюминаторы, расположенные вдоль корпуса, внутрь корабля, где распределялся между потребителями.
Совместить вращение корабля с его постоянной солнечной ориентацией во время полета также оказалось непросто. Конкретные решения по этим двум проблемам порождали третью – весовую. Вращение корабля, необходимое для создания искусственной тяжести, нужно было организовать в плоскости расположения концентраторов солнечной энергии, которые должны были сохранить постоянную ориентацию на Солнце. При полете ось вращения корабля будет сохранять свое положение в пространстве и постепенно отклоняться от направления на Солнце. Для соблюдения нужной ориентации плоскость вращения корабля должна постоянно поворачиваться на Солнце. Для выполнения таких поворотов вес топлива для двигателей мог достигать 15 тонн, что потребовало бы дополнительного использования нескольких ракет Н1.
Интуитивно мы надеялись, что в длительных полетах можно будет обойтись без искусственной тяжести. Это позволило бы существенно упростить компоновку. Но ведь речь идет о 1962 годе, когда экспериментальных подтверждений благополучной реакции человека на невесомость не имелось, в отличие от фактов плохой ее переносимости. Мы обязаны были решить этот клубок противоречий и придумать другие варианты.
Решение было вскоре найдено, когда плоскость вращения корабля совместили с плоскостью траектории полета по принципу вращения бумеранга. Но концентраторы-то по-прежнему должны были смотреть на Солнце. В результате появились новые немыслимые компоновочные схемы ( рис. 3.3.2 ), на которые сегодня нельзя смотреть без улыбки. Но такова история – именно так рождался марсианский проект.
Это решение сняло прежние противоречия, но породило новую проблему – создание постоянно работающего в вакууме узла вращения между корпусом корабля и концентраторами. Да и сами концентраторы, теперь уже двойной кривизны – для сжатия солнечного потока в двух плоскостях, значительно усложнились. На их проектирование были выданы технические задания Ленинградскому государственному оптическому институту, а нашим материаловедам – задание на разработку высокопрочных тереленовых пленок и их покрытий с высокими и устойчивыми оптическими характеристиками. Еще одной головоломкой стали иллюминаторы, которые при значительных габаритах имели крайне напряженный температурный режим. В частности, рассматривалась конструкция иллюминаторов со сферическими высокопрочными и жаропрочными стеклами на основе ситалов диаметром до 1 м. Узел вращения также представлял особую проблему, поскольку трение в вакууме грозило свариванием металлов. Впоследствии для ее решения была создана специальная смазка на основе дисульфита молибдена.
После решения вышеописанных задач компоновка ТМК упростилась. В начале весны 1962 года корабль представлял собой пятиэтажный цилиндр переменного диаметра в форме бутылки ( рис. 3.3.3 ). Каждый этаж имел определенное функциональное назначение. Первый – жилой, с расположенными в нем тремя индивидуальными каютами для экипажа, туалетами, пленочными душевыми, комнатой отдыха с библиотекой микрофильмов, кухней и столовой. Второй – рабочий, с рубкой для ежедневного контроля и управления всеми системами ТМК, мастерской, медицинским кабинетом с тренажерами, лабораторией для проведения научно-исследовательских работ и надувным внешним шлюзом. Третий – биологический отсек, с размещенными в нем стеллажами с высшими растениями, светораспределительными устройствами, арматурой для подачи питательных растворов, клетками животных, хлорельным реактором, емкостями для хранения урожая, частью арматуры и оборудования ЗБТК. Четвертый – приборно-агрегатный отсек, в котором была сосредоточена основная масса приборов, аппаратуры и арматуры всех систем ТМК. Он же являлся радиационным убежищем.
Пятый этаж располагался снаружи. Это был спускаемый аппарат, который стыковался своим верхним люком к люку в корпусе ТМК, расположенному в специальной сферической нише. На днище СА устанавливалась корректирующая двигательная установка с запасом топлива и частью аппаратуры. Закрывая сферическую нишу, вместе с размещенным в ней оборудованием, они увеличивали радиационную защиту экипажа. На ОИСЗ спускаемый аппарат имел возможность с помощью КДУ автономно маневрировать и приземляться при возникновении нештатных ситуаций.
Снаружи на корпусе ТМК размещались элементы бортовых систем: параболические концентраторы и иллюминаторы системы ПОИС; солнечные батареи в двух вариантах установки – по периферии солнечных концентраторов или на панелях вокруг иллюминатов; радиаторы и жалюзи системы терморегулирования, открытием и закрытием которых регулировался тепловой режим; антенны дальней радиосвязи, в качестве которых предполагалось использовать солнечные концентраторы; люк с надувным шлюзом для выхода и элементы для передвижения по наружной поверхности.
О напряженности нашей работы говорит хотя бы тот факт, что вовремя домой уходили лишь молодые кормящие мамы, а основные «забойщики» освобождались в 20–21, а то и в 22 часа. Нужно сказать, что такой режим распространялся на весь отдел Тихонравова, где проектировались автоматические аппараты к Луне, Марсу, Венере и пилотируемые корабли. Сверхурочные не фиксировались и не оплачивались.
Однажды был такой эпизод. Наша табельная для укрепления трудовой дисциплины (иногда москвичи опаздывали на пару минут из-за задержки электрички) установила на входе аппарат, где каждый сотрудник пробивал на своей карте точное время прихода на службу, а вечером – время ухода. В конце месяца, поскольку факт массовой сверхурочной работы был официально зафиксирован, экономисты обнаружили, что всем сотрудникам отдела нужно выдать зарплату в полтора раза больше обычной. Денег на это, конечно, не было предусмотрено. В дело включились юристы, и запахло грубым нарушением трудового законодательства. В итоге все закончилось тем, что злополучный агрегат убрали.
О напряжении, с каким трудилась наша группа, и о задачах, которые приходилось решать, можно судить и по черновикам ежемесячных планов, например, за первое полугодие 1962 года ( рис. 3.3.4 ). Помимо проблем по компоновке ТМК, проводились проработки теоретических чертежей для определения весовых характеристик корпуса ( рис. 3.3.5 ), а также расчеты весовых характеристик основных систем ТМК ( рис. 3.3.6 ).
3.4. Экспедиция на Марс – главная цель космической программы Королева
В мае 1962 года Сергей Павлович подписал эскизный проект по ракете-носителю Н1, состоящий из 29 томов и 8 приложений. Задачи, ею решаемые, были представлены в общем виде. Королев вынужден был маскировать нашу работу по марсианской экспедиции, поскольку Министерство обороны не было заинтересовано в создании сверхтяжелых носителей, да и межпланетные полеты ему были не нужны. А так как без одобрения военных трудно было утвердить проект на экспертной комиссии, Королев в одном из пунктов предлагал в их интересах: «…вывод тяжелых автоматических и пилотируемых станций боевого назначения, способных длительно существовать на орбитах и позволяющих производить маневр для одновременного вывода на орбиту большого количества ИСЗ военного назначения». Это именно то, что спустя почти 20 лет США начали воплощать в программе СОИ. Наши военные специалисты, глядя на американцев, тоже увлеклись этой затеей, хотя в те времена она их не заинтересовала.
Были и другие причины для маскировки марсианского проекта. Королев опасался его необъективной критики со стороны оппонентов в вышестоящих организациях. Опасения эти были не беспочвенными. В апреле 1962 года Н. С. Хрущев подписал постановления, по которым разработка тяжелых носителей поручалась М. К. Янгелю и В. Н. Челомею, а работы Королева по созданию Н1 ограничивались эскизным проектом. Правда, назначение ракеты не отменялось – продолжала действовать формулировка постановления 1960 года: «…предназначенной для выведения на околоземную орбиту тяжелого межпланетного корабля весом 60–80 т». Но Королев решил «не дразнить гусей».
Летом предполагалось представить эскизный проект экспертной комиссии под председательством президента Академии наук СССР М. В. Келдыша, разделявшего взгляды Королева, и Сергей Павлович готовился впервые обнародовать свои сокровенные и весьма далеко идущие планы по марсианской экспедиции. Он дал указание своему заместителю С. С. Крюкову: «Вместе с М. В. Мельниковым определить потребный вес для полета ЭРДУ для решения главных задач: Луна, Марс, Венера (то есть ТМК)». Приписка в скобках говорит о том, что Королев собирался осваивать и Луну, но только с помощью ТМК.