355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Владимир Качесов » Основы интенсивной реабилитации. Травма позвоночника и спинного мозга » Текст книги (страница 1)
Основы интенсивной реабилитации. Травма позвоночника и спинного мозга
  • Текст добавлен: 9 октября 2016, 05:24

Текст книги "Основы интенсивной реабилитации. Травма позвоночника и спинного мозга"


Автор книги: Владимир Качесов



сообщить о нарушении

Текущая страница: 1 (всего у книги 11 страниц) [доступный отрывок для чтения: 5 страниц]

Качесов В. А
Основы интенсивной реабилитации
Травма позвоночника и спинного мозга

Рецензенты:

Гайдуков В. М. – профессор кафедры военной травматологии и ортопедии Военно-медицинской академии. Санкт – Петербург.

Жукоцкий А. В. – член-корреспондент РАЕН, доктор медицинских наук, профессор кафедры молекулярной фармакологии и радиобиологии медико-биологического факультета РГМУ. Москва

ПРЕДИСЛОВИЕ АВТОРА

Увеличение числа пострадавших в результате террористических актов, локальных военных конфликтов, автокатастроф, авиакатастроф, техногенных аварий, землетрясений неизбежно приводит к увеличению числа инвалидов с позвоночно– спинальной травмой.

Об актуальности проблемы реабилитации инвалидов после травмы позвоночного столба и спинного мозга говорят данные ВОЗ: ежегодно в США регистрируется 70 тысяч случаев травм позвоночника и спинного мозга, в России – 50 тысяч.

Ежегодно увеличивается количество оперативных вмешательств на позвоночнике и спинном мозге по поводу дискогенных радикулитов, опухолей, кист и других заболеваний. Инвалидность, наступившая после этих операций, учитывается по другим графам медицинской статистики. Эти пациенты также пополняют ряды инвалидов, получивших травму позвоночника и спинного мозга.

Во все времена реабилитация больных с повреждением позвоночного столба и спинного мозга являлась сложной проблемой.

В значительной мере трудность решения проблемы реабилитации инвалидов с травмой позвоночника и спинного мозга заключается в том, что «реабилитацию представляют, объясняют и проводят на практике по-разному» (Шанин Ю.Н., 1998).

Суть реабилитации в восстановлении, улучшении функции органов и организма в целом. Однако до сих пор нет единого подхода к термину «биологическая функция» (Саркисов Д.С., 1997). Практикующие врачи по-разному воспринимают «функциональные и органические изменения» и, как следствие, делают не всегда обоснованное заключение об «обратимых и необратимых изменениях». Терминологическая путаница лежит в основе различных, противоречивых методах реабилитации и различных системах прогнозирования течения и исхода заболевания. Поэтому в этой книге на вопросе о терминологии акцентируется особое внимание.

Вторая проблема заключается в различных подходах к вопросам о первичности и вторичности клинических проявлений, наблюдаемых при патологии позвоночного столба и спинного мозга. От правильного понимания этой проблемы зависит тактика реабилитолога. Причинно-следственная связь в книге изложена при описании болевых синдромов, спастических проявлений и в дополнении к патогенезу спинальной травмы.

Третья проблема: отсутствие единого подхода к понятию «проводимость». Большинство морфологов и нейрохирургов отрицательно оценивают возможность восстановления функций при анатомическом повреждении спинного мозга. В клинической практике «проводимость» воспринимается, как свойство, присущее только нервной системе, а возможность восстановления функций органов ниже места поражения спинного мозга обычно ассоциируется у врачей с регенерацией спинномозговых трактов. Отсюда следует заключение, что при анатомическом повреждении спинного мозга нарушается проводимость вообще, поэтому восстановление функций конечностей и органов, расположенных ниже травмы, невозможно.

Несомненно, что при анатомическом повреждении спинного мозга нарушается (но не теряется!) возможность проводить дифференцированные (модулированные) сигналы. Однако, возможность проводить немодулированные сигналы остается всегда!

В книге подробно рассматривается вопрос о «проводимости», как свойстве, характерном для всех видов тканей. Опыт, накопленный веками, и наш опыт показывает, что восстановление функции органов, располагающихся ниже травмы позвоночника и спинного мозга возможно! А быстрое восстановление функций, наблюдаемое при применении технологии интенсивной реабилитации, указывает на то, что восстановление этих функций не связано с регенерацией спинномозговых трактов. Регенерационные процессы идут намного медленней, чем наблюдаемые процессы восстановления функций.

Наши клинические наблюдения показывают, что после восстановления функций у пострадавших в результате применения технологий интенсивной реабилитации, рентгенологическая картина в области повреждения позвоночного столба остается неизменной. Проведенные ЯМР-исследования показывают отсутствие динамики и в местах повреждений спинного мозга.

Эти исследования лишь подтверждают, что тяжелая клиническая картина у пострадавших связана не столько и не только с повреждением спинного мозга, но обусловлена также и другими факторами. Устранение этих факторов и приводит к восстановлению функций.

В книге подробно освещается вопрос о проводимости, потому что эта проблема вызывает наибольшее количество ожесточенных споров в прогнозировании результатов реабилитации.

Наиболее, распространены пессимистические прогнозы для пациентов с травмой шейного отдела позвоночника и обширным повреждением спинного мозга в этом отделе. Трудности восстановления пациентов с тетраплегией при высоком уровне повреждения спинного мозга создают закономерное ощущение безысходности, как у врачей, так и у пациентов и их родственников.

Поэтому основное внимание в книге уделено реабилитации пациентов именно с тетраплегией, как самого тяжелого контингента в структуре пострадавших. Но даже среди этой группы следует выделить наиболее тяжелых хронических больных, более года после выписки из стационаров пролежавших неподвижно и без перспектив на положительные результаты.

Наш практический опыт позволяет сделать заключение том, что, применяя технологию интенсивной реабилитации, положительного результата можно добиться как в ранних, так и поздних посттравматических периодах у пациентов с травмами шейного и других отделов позвоночника.

Трофические нарушения, язвы и пролежни усугубляют состояние пациента, осложняют уход за ним и, по мнению специалистов, затрудняют реабилитацию (Гайдар Б.В. и соавт.,1998). Полученный автором опыт позволяет утверждать, что наличие пролежней, ложных суставов не влияет на возможность проведения реабилитационных мероприятий. Наоборот, применение описанной реабилитационной технологии ускоряет заживление пролежней и регенерацию костной ткани в местах формирования ложных суставов (Гайдуков В.М., Качесов В.А. 1998). Регресс пролежневых процессов и регенерация специализированных тканей на месте трофических нарушений у хронических больных не описаны в литературе. Практическим врачам, впервые столкнувшимся с этим явлением при применении технологии интенсивной реабилитации, будет сложно его интерпретировать. В книге уделяется внимание подробному описанию регресса симптомов спинальной травмы, критериям реабилитационного процесса, на которые должен опираться врач.

Нарушение функций тазовых органов и безуспешность попыток их восстановления заставляет врачей зарубежных реабилитационных центров накладывать эпицистому и проводить постоянную катетеризацию.

При применении технологии интенсивной реабилитации функция тазовых органов восстанавливается вначале на рефлекторном уровне, затем постепенно появляется возможность волевого управления актами дефекации и мочеиспускания. Помимо физических страданий, нарушение функций тазовых органов усиливает психологические страдания таких пациентов, поэтому подробно рассмотрен вопрос о восстановлении этих функций.

Данная книга освещает первый этап интенсивной реабилитации, результатом которого являются:

1. Восстановление нарушенных функций вегетативной нервной системы.

2. Устранение трофических нарушений.

3. Восстановление функций тазовых органов.

4. Восстановление поверхностной и глубокой чувствительности.

5. Восстановление тонуса поперечнополосатой мускулатуры и появление возможности волевого управления туловищем и конечностями.

В приложении рассматриваются психологические аспекты общения врача с больными и их родственниками.

В.А. Качесов

Москва, Санкт-Петербург,

1996–2002 г.

к. т. 999-05-11

Глава 1
К ВОПРОСУ О ТЕРМИНОЛОГИИ В РЕАБИЛИТОЛОГИИ

СТРУКТУРА И ФУНКЦИЯ

Любая научная дисциплина базируется на четком понятийном аппарате. В реабилитологии одним из основных понятий является функция, так как восстановление функции является основной задачей реабилитологов. И хотя о единстве структуры и функции говорил еще Р. Декарт, до сих пор нет четкого определения, связывающего эти два понятия. Образно о структуре и функции высказался известный терапевт В. Х. Василенко: «Функция без структуры немыслима, а структура без функции бессмысленна» (16).

Обобщая дискуссионный материал, Д. С. Саркисов дает такое определение функции: «Биологическая функция – это деятельность, то есть изменение во времени и пространстве состояния или свойств тех или иных структур организма и его самого как целого» (16). Взаимоотношения структуры и функции до сих пор являются предметом острейших дискуссий.

Рассмотрим процессы сокращения и расслабления гладкомышечного волокна, как наиболее изученные на данном этапе развития науки. От способности мышечных клеток функционировать зависят, в конечном итоге, гомеостаз и жизнедеятельность всего организма (13, 15). Гладкая мускулатура широко представлена в человеческом организме циркулярными волокнами во всех трубчатых органах (сосуды, кишечник, бронхи, трахея, протоки желез и каналов, желчный и мочевой пузыри, зрачок). Актин, миозин или их комплекс содержатся во всех клетках и участвуют в осуществлении митоза, амебовидного движения, фагоцитоза, секреции (5, 13).

ФАЗА СОКРАЩЕНИЯ (СИНТЕЗА АКТИН-МИОЗИНОВОГО КОМПЛЕКСА)

Если мышечная клетка не сжата и не перерастянута, то это состояние называется состоянием покоя. В этот момент клеточная мембрана поляризована, а клетка готова совершить работу (3, 6, 24).

Механизм синаптической передачи в холинергических синапсах заключается в том, что при выделении ацетилхолина (АХ) в нейромышечном синапсе возбуждается холинорецептор, происходит резкое изменение ионной проницаемости и возникает потенциал действия (ПД). В результате происходящей деполяризации мембраны изменяется электрическое поле, которое открывает натриевые каналы в мембране (12, 13, 17, 21). В клинической практике по изменению электромагнитного поля определяют специфическую функцию органа (ЭКГ, ЭЭГ и т. д.).

После возникновения потенциала действия (ПД) через короткий промежуток времени может произойти сокращение мышечного волокна за счет движения актина и миозина внутриклеточных миофибрилл относительно друг друга. В момент возбуждения миофибриллы ее мембрана становится проницаемой для ионов кальция, который войдя в клетку, активирует миозин. В процессе сокращения важную роль играет циклический гуанозинмонофосфат (цГМФ). Рецепторы, расположенные на внешней поверхности клетки, связываются с лигандами, что сопровождается активизацией мембранной олигоферментной системы – гуанилатциклазы, необходимой для модуляции цГМФ. Реакция идет в присутствии ионов кальция (12, 21).

Соответственно вводимому количеству ионов кальция будет расход энергии макроэргов (ГТФ и креатин-фосфата). Сокращение и расслабление мышечных волокон осуществляется при участии миозиновой АТФазы, которая является бифункциональным ферментом и действует попеременно: то как Ca 2+Mg 2+K +АТФаза, то как K +Mg 2+Ca 2+– АТФаза (21).

Таким образом, проявление специфической функции клетки, в данном случае сокращения, обязательно сопровождается следующими процессами: модуляцией цГМФ, выходом ионов калия из клетки, входом ионов натрия и кальция в клетку, гидролизом трифосфатов и выделением энергии. Резко возрастает потребление кислорода. Происходит деполяризация клеточной мембраны, затем возникновение ПД и, наконец, синтез актин-миозинового комплекса – собственно сокращение (3, 5, 6, 13, 14).

ОСТАНОВКА СОКРАЩЕНИЯ (СИНТЕЗА АКТИН-МИОЗИНОВОГО КОМПЛЕКСА)

Циклический процесс сокращения и расслабления мышечного волокна включает остановку сокращения и расслабления. Эти состояния характеризуются прекращением гидролиза АТФ, ГТФ и других макроэргов за счет модуляции цАМФ и других механизмов, которые инициируют каскад реакций, мгновенно выводящих продукты метаболизма (СО 2, Н 2О и др.), в результате чего не нарастает метаболический ацидоз (14, 21).

Модуляция циклических нуклеотидов цГМФ и цАМФ необходима как энергетически выгодный процесс для активации ферментов, катализирующих каскад реакций, происходящих при сокращении и расслаблении с затратами энергии (12, 21).

ФАЗА РАССЛАБЛЕНИЯ (РАСПАДА АКТИН-МИОЗИНОВОГО КОМПЛЕКСА)

После сокращения гладкомышечного волокна и наступления контрактуры происходит каскад биохимических реакций, ведущий к распаду актин-миозинового комплекса и расслаблению мышцы. Этот процесс начинается при возбуждении адренорецептора медиатором симпатином – смесью норадреналина и адреналина (13, 14, 17, 21). Адренорецептор, связанный через лигандный комплекс с аденилатциклазой, модулирует цАМФ. В этот момент снова действует универсальный фермент K +Mg 2+Ca 2+—АТФаза. Ионы кальция, натрия и хлора выводятся из клетки, выводятся также окончательные продукты метаболизма (СО 2, Н 2О и др.) (5, 21).

СОСТОЯНИЕ ПОКОЯ

Для мышц, находящихся в состоянии покоя и не расходующих энергию, характерен очень низкий уровень потребления кислорода. В этих условиях концентрация АТФ и ГТФ высокая, а АДФ и ГДФ – низкая. Активные центры молекул актина и миозина заблокированы ионами калия (12, 13, 14, 17, 20, 22). Состояние покоя характеризуется наличием потенциальной энергии и готовности мышцы совершить работу, проявить функцию.

СЕКРЕЦИЯ

Если рассматривать секрецию как специфическую функцию, то она обеспечивается теми же процессами, что и мышечное сокращение (табл. 1.1) (24), в том числе синтезом актин-миозинового комплекса (5, 13). Процесс секреции включает фазу синтеза (накопления) секрета и фазу собственно секреции – выделение секрета.

ПРОВОДИМОСТЬ – ПЕРЕДАЧА НЕРВНОГО ИМПУЛЬСА

Нервная ткань функционирует по тому же принципу, что и секретирующая– железистая ткань, так как возбуждение мембраны нейрона и возникающие затем электрические явления в проводнике заканчиваются в конечном итоге секрецией – выбросом медиатора в синаптическую щель (5, 13, 23, 24). Изменение ЭЭГ и скорости проведения импульса позволяет в клинической практике косвенно оценить способность нейрона к синтезу медиатора.

ФУНКЦИЯ СОЕДИНИТЕЛЬНОЙ ТКАНИ

Соединительная ткань характеризуется способностью к синтезу коллагена, эластина и др. (7, 9, 13, 14, 21). Секреция этих веществ в межклеточное пространство и образование из них матрикса, который затем соединяется с ионами кальция, заканчивается формированием плотных тканевых образований, скрепляющих между собой разноименные клетки и ткани, что и определяет функцию ткани как соединительную (табл. 1.1).

При описании функции всегда подразумеваются две фазы: фаза проявления специфической функции и фаза возврата к исходному уровню. Примером графического изображения функции являются ЭКГ, электромиограмма, допплерография, характеризующие изменение функции во времени.

Исходя из вышеизложенного, можно дать следующее определение функции. Функция – это переменная величина, характеризующая циклический процесс синтеза (накопления) и распада (выделения) специфического органического субстрата.В соответствии с математическим определением функции специфический органический субстрат является аргументом данной функции и именно от его изменения зависит переменная величина функции. Это определение можно перенести на клеточный, тканевой и органный уровень (11).

В процессе функционирования объем мышечных клеток и тканей изменяется незначительно, поэтому в общеклинической практике ориентируются не столько на изменение объема исследуемой структуры, сколько на периодическое изменение формы этих структур.

Таблица 1.1. Процессы, происходящие при проявлении функции


1. Специфическая функция– сокращение; – выделение секрета– расслабление; – синтез секрета
2. Специфический субстрат: актин-миозиновый комплекс секретсинтез; выделениераспад; синтез (накопление)
3. Преобладающий циклический нуклеотидцГМФцАМФ
4. Энергия (АТФ, ГТФ, креатин-фосфат)преобладает гидролизпреобладает синтез
5. ИннервацияПСНССНС
6. Рецепторхолинореактивный белок гуанилат-циклазаадренореактивный белок аденилат-циклаза
7. Медиаторацетилхолинсимпатин (адреналин + норадреналин)
8. Активный центр структурно-лигандного комплексаСа 2+Mg 2+
9. ФерментCa 2+Mg 2+K +АТФазаK +Mg 2+Ca2 +АТФаза
10. Глюкозараспадается в цикле Кребсапоглощается клеткой
11. Са 2+вводится в клеткувыводится из клетки
12. К +выводится из клеткивводится в клетку
13. Na +вводится в клеткувыводится из клетки
14. Кислородусиление поглощениязамедление потребления
15. Н 2Овыделениенакопление

В клинической практике, оценивая функцию поперечно-полосатой мускулатуры, чаще всего ориентируются на изменение ее линейных размеров, то есть на изменение расстояния между двумя точками фиксации какой-либо мышцы. При сокращении и расслаблении изменение расстояния происходит по осям, соответствующим трем плоскостям ОХ, ОУ, OZ [1]1
  При оценке функции поперечнополосатой мускулатуры следует помнить, что параллельно и синхронно изменяется функция мышц-антагонистов в соответствии с механизмами реципрокной иннервации (4,18,23).


[Закрыть]
.

Отсутствие изменений может объясняться:

1) недостаточной чувствительностью прибора, и в таком случае речь идет не об отсутствии функции, а о резком уменьшении ее параметров;

2) противодействием мышц-антагонистов, которое приводит к тому, что линейные размеры исследуемой мышцы остаются неизменными – отсюда следует ошибочное заключение об отсутствии функции (4). Основные изменения функций согласуются с вышеприведенным определением и подчеркивают связь с морфологическими структурными единицами (11).

Если понятия гипофункции и гиперфункции не вызывают вопросов у клиницистов, то понятие «видоизмененная функция» трактуется по-разному. В контексте данной главы видоизменение функции может быть двух видов.

1 Дистрофические изменения в клетках специализированной ткани. В этом случае утрачивается способность синтезировать специфические субстраты, и ткань по своим свойствам становится более похожа на соединительную. Понижается активность метаболизма, замедляется потребление кислорода. Реабилитологам известны различные дистрофические изменения у хронически спинальных больных. Важно понять, что этот процесс обратим и что компетентный врач способен восстановить дистрофически измененные структуры.

2.  Метаплазия – доброкачественное или злокачественное изменение функции,что подразумевает синтез нетипичных специфических продуктов и морфологические изменения ткани (9,11). При этом метаболизм в тканях повышен (21). При реабилитации спинальных больных иногда возникает необходимость выяснить, чем вызвано изменение функции: дистрофией или метаплазией, и от этого будет зависеть прогноз реабилитации.

Под восстановлением функции следует понимать увеличение количественных характеристик специфических субстратов и восстановление возможности их последующих периодических конформационных изменений (то есть изменений по осям OX, OY, OZ) с определенными частотой и амплитудой (3,4,6,13,18).

Как определить, жизнеспособна ли структура? Имеются ли в ней признаки жизни? От правильного толкования этих понятий зависит тактика врачей, судьба пациента, особенно когда речь идёт о восстановлении функции органов или их возможной ампутации.

ЖИЗНЕСПОСОБНОСТЬ. ЖИЗНЕДЕЯТЕЛЬНОСТЬ. ЖИЗНЬ. СМЕРТЬ. ОБРАТИМЫЕ И НЕОБРАТИМЫЕ ПРОЦЕССЫ. РЕГЕНЕРАЦИЯ

Однократное проявление специфической функции клетки, то есть однократное сокращение, однократное выделение секрета, – это еще не признак жизнеспособности и жизнедеятельности (13). Например, У трупа можно вызвать одиночные сокращения мышечных групп и внутренних органов, воздействуя на них электрическим разрядом, но это не значит, что ткань (орган) функционирует. Следовательно, Жизнеспособность – это способность к многократному периодическому проявлению своей специфической функции. А жизнедеятельность – это многогранное проявление специфической функции.Например, ритмические сокращения сердечной мышцы изолированного сердца свидетельствуют о высокой жизнеспособности этого органа и его возможности проявлять жизнедеятельность путем синтеза и распада большого количества актин-миозиновых комплексов и выделения (секреции) продуктов метаболизма.

ДНК является носителем генетической информации, на основе которой формируются специфические белки, определяющие специализацию клетки – ее специфическую функцию (5,11,13). Понятие жизнь можно сформулировать так: «Жизнь – это способ передачи генетической информации во времени и защита ее в пространстве белками, синтезируемыми на базе этой генетической информации».Это определение не противоречит ни одному из данных ранее определений жизни (16). В случае сохранения генетического аппарата клеточных структур всегда имеется возможность восстановления функции ткани, органа, и только от компетентности врача зависит, сможет ли он воспользоваться этой возможностью для восстановления утраченной функции.

Исходя из изложенного, можно дать определение понятия необратимого состояния – биологической смерти: «Биологическая смерть – это всегда деструктуризация генетического аппарата».


    Ваша оценка произведения:

Популярные книги за неделю