355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Виктор Комаров » В звёздных лабиринтах: Ориентирование по небу » Текст книги (страница 11)
В звёздных лабиринтах: Ориентирование по небу
  • Текст добавлен: 3 апреля 2017, 06:00

Текст книги "В звёздных лабиринтах: Ориентирование по небу"


Автор книги: Виктор Комаров


Соавторы: Борис Максимачев
сообщить о нарушении

Текущая страница: 11 (всего у книги 13 страниц)

Глава V НА КОСМИЧЕСКИХ ОРБИТАХ

При космических полётах навигация по небесным светилам является полноправным методом, применяемым в самых различных условиях. К числу задач управления кораблём, которые могут быть решены с помощью наблюдения небесных светил, относятся определение координат и скорости корабля, а также его ориентация, т.е. обеспечение заданного расположения осей корабля в пространстве и поддержание этого расположения в течение определённого промежутка времени. Такая ориентированная стабилизация необходима при астрономических наблюдениях, при фотографировании земной поверхности, а также при подготовке корабля к осуществлению маневров.

Для решения указанных задач могут использоваться как бортовые автоматические астронавигационные устройства, так и приборы, управляемые космонавтом-оператором. Однако современные автоматические системы распознавания звёзд во многом уступают по надёжности работы человеку-оператору. Для достаточно надёжного функционирования такие системы должны быть слишком сложными и громоздкими. И поэтому специалисты считают, что в настоящее время задачу распознавания астроориентиров необходимо возлагать на штурмана-космонавта.

Так, например, при осуществлении наблюдений о помощью рентгеновского телескопа на борту орбитальной станции «Салют-4» космонавты В.И. Севастьянов и П.И. Климук ориентировали станцию по звёздам в заданное положение (так, чтобы рентгеновский телескоп был направлен в определённую точку небесной сферы) и поддерживали ориентацию станции в течение всего времени наблюдения данного объекта, тщательно контролируя её по избранным заранее небесным светилам.

Все действия по астроориентации, осуществляемые человеком-оператором на борту космического корабля, так или иначе связаны с поиском астроориентиров и опознаванием астронавигационных звёзд. При этом задача осложняется тем, что в иллюминатор космического корабля виден лишь сравнительно небольшой участок звёздного неба. Одно дело – найти нужную навигационную звезду по целеуказаниям, которые дают хорошо знакомые созвездия вроде Большой Медведицы, видимые целиком, и другое дело – установить это направление всего по двум-трем ярким звёздам, оказавшимся в поле зрения иллюминатора. Космонавт в короткий срок должен установить, что это за звёзды (иначе говоря, он должен уметь «узнавать их в лицо»), в каком направлении от них должно находиться искомое навигационное созвездие и какими элементами управления нужно воспользоваться, чтобы в кратчайшее время правильно ориентировать корабль.

Другая трудность визуальной астроориентации в условиях космического полёта связана с тем, что вследствие движения корабля по орбите происходит видимое перемещение небесных светил по небесной сфере с большими угловыми скоростями.

Таким образом, одним из важных требований, предъявляемых к космонавту-оператору, является безошибочное знание звёздного неба.

В связи с этим в программу предполётной подготовки советских космонавтов были включены систематические тренировки по изучению картины звёздного неба в Звёздном зале Московского планетария. Во время таких тренировок космонавты учились отличать одну звезду от другой, а также в условиях ограниченного обзора опознавать созвездия по характерным сочетаниям составляющих их звёзд. Для приближения тренировок к условиям космического полёта летчиком-космонавтом СССР В.В. Лебедевым был разработан специальный астротренажер, который имитировал условия наблюдения картины звёздного неба из кабины космического корабля.

Космонавт-оператор, помимо знания звёздного неба, должен отчётливо понимать принципы действия различных астронавигационных приборов и уметь быстро и безошибочно ими пользоваться.

Астронавигационное оборудование современного пилотируемого космического корабля включает в себя как приборы ориентации, так и большой комплекс различных навигационных приборов. К числу первых можно отнести оптические визиры, астроориентаторы, астрогиды, электронно-оптические приборы наблюдения. К средствам навигации принадлежат ручные секстанты, астроизмерители, астровизиры. Астрогиды, например, предназначены для точного слежения за небесными светилами. Задача космонавта заключается в том, чтобы соответствующим образом настроить такой прибор и проверить «захват» заданного светила. После этого астрогид будет автоматически удерживать корабль в ориентированном положении, так как при малейшем отклонении линии визирования на заданное светило возникает электрический сигнал рассогласования, поступающий в соответствующие системы управления.

Контроль положения осей космического корабля, определённым образом ориентированного в пространстве, может осуществляться космонавтом с помощью ручного астроориентатора.

Прибор работает по принципу совмещения изображений реальных звёзд, наблюдаемых в поле зрения прибора, со специально нанесенными для данного случая «метками», которые также видны в поле зрения. Эти искусственные ориентиры выглядят как световые колечки. Их положение в поле зрения прибора определяется той пространственной ориентацией космического корабля, которую необходимо осуществить.

Работа космонавта-оператора состоит в том, что с помощью ручки управления он изменяет положение корабля в пространстве таким образом, чтобы изображения звёзд в поле зрения астроорпентатора совпали с колечками «меток». После этого космонавт, продолжая управлять кораблём, удерживает оба изображения совмещёнными в течение заданного времени.

Именно таким путем осуществлялась ориентация космической станции «Салют-4» во время упомянутых выше наблюдений с помощью рентгеновского телескопа.

Как выяснилось, пользуясь подобным способом, можно вручную обеспечивать стабилизацию космического корабля в заданном положении с точностью, достаточной для астрономических наблюдений.

Наряду с этими сравнительно простыми средствами ориентирования и навигации на космических кораблях применяются и более сложные автоматические устройства. Ввиду важности обеспечения точной заданной ориентации корабля в соответствии с программой полёта эти системы не столько дублируют, сколько дополняют друг друга. К числу таких комплексных систем принадлежит астроинерциальная система навигации космического корабля, включающая в себя гиростабилизированную платформу, систему астрокоррекции и вычислительное устройство, снабжённое оптическим визиром, направленным на заданное светило. В электронной памяти вычислительной машины имеется несколько десятков навигационных звёзд.

Но и здесь со стороны космонавта необходим контроль за действием системы. В качестве основных ориентиров берутся обычно наиболее яркие звёзды: Сириус, Канопус, Вега. Но разница в их блеске незначительна. И если создавались устройства на автоматических межпланетных станциях, способные, например, отличить блеск Канопуса от блеска Сириуса и Веги, то с течением времени, когда ослабевала чувствительность светопринимающих элементов, точность такого наведения резко снижалась. Автомат с одинаковым успехом мог удерживать станцию ориентированной на любую яркую звезду. Поэтому в новых системах предусматривается различать не только блеск, но и спектральные характеристики звезды. Однако ошибки не исключены и в этом случае, так как все наиболее яркие звёзды (за исключением Бетельгейзе, Альдебарана, Антареса, Капеллы и Арктура) принадлежат к числу голубовато-белых. Очевидно, в основе наиболее надёжных методов опознавания «опорных» звёзд должно лежать их взаимное расположение на небе. Для этой цели можно использовать не одну, а несколько следящих систем, как было, например, осуществлено на одной из орбитальных астрономических обсерваторий. Можно сочетать оба метода вместе, но это потребует громоздких систем, надёжность которых обратно пропорциональна их сложности. Поэтому важное место в космической навигации принадлежит, безусловно, человеку-оператору.

Глава VI СРЕДИ ГОР И КРАТЕРОВ

Луна – настоящее и будущее

Среди множества космических объектов Вселенной ближайшим к Земле является естественный спутник нашей планеты – Луна.

В последние годы учёные проявляют к исследованию этого небесного тела особый интерес. И этот интерес не случаен. Прежде всего он определяется тем обстоятельством, что Луна – сходное с Землей по своей природе космическое тело. Судя по всему, и Земля и Луна возникли в едином процессе формирования Солнечной системы и прошли во многом аналогичные стадии развития. Поэтому, изучая Луну и сравнивая её с Землей, мы можем добыть такие данные о нашей собственной планете, получить которые было бы весьма затруднительно или даже в обозримом будущем практически невозможно, если бы мы изучали её обособленно, в единственном экземпляре. Исследование Луны даст возможность применить для изучения Земли «принцип сравнения», играющий чрезвычайно важную роль в астрономии: если мы хотим познать какой-либо космический объект, мы должны исследовать сходные с ним объекты, находящиеся на иных стадиях своего развития, и сравнить их между собой.

Луна не только заманчивый, но и сравнительно весьма удобный объект научного исследования. Это небесное тело расположено намного ближе к Земле, чем любое другое. Достаточно напомнить, что соседние с Землей планеты Венера и Марс даже в моменты наибольшего сближения удалены от нас соответственно на 39 и 56 миллионов км, между тем как среднее расстояние до Луны равно 384 000 км.

Благодаря своей близости Луна стала первым небесным телом, которого достигли космические аппараты, в том числе и с человеком на борту. Она также стала своеобразным полигоном для отработки космической техники.

Весьма вероятно, что в будущем именно Луна станет первым естественным космическим объектом, который человек начнёт непосредственно осваивать...

Луна – стартовая площадка для межпланетных кораблей. Луна – космическая обсерватория. Луна – идеальная лаборатория для проведения уникальных физических, химических, биологических исследований... Наконец, Луна – источник ценного сырья и заманчивая база для развития различных отраслей космического производства и осуществления ряда технологических процессов, для которых необходимы пониженная сила тяжести и космический вакуум.

На эти темы написано множество научно-фантастических произведений. Однако наша эпоха – это эпоха реализации многих идей, ещё недавно представлявшихся чисто фантастическими. В какой мере значительные успехи, достигнутые в последние годы в изучении Луны с помощью космических аппаратов различных типов, делают реальными перспективы её освоения человеком?

Если учесть возможности современных космических аппаратов, то любое строительство и вообще любая длительная активная деятельность людей на Луне, но крайней мере в обозримом будущем, могут быть признаны целесообразными, очевидно, лишь в том случае, если существенная часть необходимых для этой цели ресурсов будет добываться непосредственно на нашей естественной спутнице. Каковы же, если исходить из имеющихся в нашем распоряжении данных, скрытые ресурсы самой Луны и прилегающего пространства?

Анализ образцов лунных пород, доставленных на Землю американскими экспедициями и советскими автоматическими станциями, показал, что Луна – сильно обезвоженное небесное тело.

Между тем геологи утверждают, что если образование рудных залежей происходило в отсутствие воды, то запасы полезных ископаемых на Луне должны быть весьма бедны но своему составу и к тому же располагаться на глубине не менее десяти километров. Для их разработки понадобились бы сверхглубокие шахты. Если учесть, что подобных шахт нет ещё и на Земле, то станет ясно, что в ближайшем будущем залежи лунных полезных ископаемых скорее всего останутся недоступными для человека.

В настоящее время речь реально может идти лишь о тех ресурсах Луны, которые сосредоточены в её поверхностных слоях. Это – вода, кислород, водород и энергетические ресурсы.

Что касается воды, то реально можно рассчитывать только на ту воду, которая может быть выделена нагреванием из лунного вещества.

Однако для осуществления подобного процесса, требующего создания высоких температур, необходима энергия. Она понадобится и для других практических нужд. Одним из самых перспективных её источников на Луне является солнечное излучение. На каждый квадратный метр лунной поверхности солнечные лучи при отвесном падении приносят энергию, равную 1400 ватт. Если же учесть полную энергию, поступающую от Солнца на всю освещённую часть поверхности Луны, то окажется, что она примерно в три тысячи раз превосходит энергию всех используемых человеком энергетических источников на Земле, вместе взятых.

Возникает вопрос: как эту энергию добыть? Очевидно, на современном научно-техническом уровне наиболее реальный путь – применение солнечных батарей, т.е. прямых преобразователей солнечной энергии в электрическую. Как известно, подобные устройства с успехом работают на различных космических аппаратах, обеспечивая их основные энергетические потребности.

Правда, коэффициент полезного действия современных солнечных батарей довольно низок: всего около 10—13%. Это означает, что на каждый киловатт получаемой энергии приходится около 10 килограммов самого устройства. Иными словами, солнечные батареи пока что отличаются громоздкостью конструкции и большим весом. Это одна из причин того, почему на Земле пока ещё не строятся солнечные полупроводниковые электростанции.

Однако для Луны этот недостаток Солнечных батарей не так существен. На Луне сила тяжести в шесть раз меньше, чем на Земле, и нет ветров, что в принципе позволяет создавать достаточно громоздкие, но при этом вполне надёжные и устойчивые конструкции. К тому же благодаря отсутствию атмосферы солнечные лучи беспрепятственно и без потерь достигают лунной поверхности, что создаёт благоприятные условия для работы солнечных установок.

Наряду с обычными солнечными батареями на Луне могут быть применены и устройства, работающие на принципе термопары. Как известно, принцип этот состоит в том, что два электрода, изготовленные из различных биметаллов, помещают в различные температурные условия, в результате чего между ними возникает разность потенциалов. На Луне необходимый для работы термопар перепад температур создан самой природой. Если один из электродов поместить на глубине одного метра под поверхностью в слое постоянной отрицательной температуры, а другой непосредственно на поверхности, где днем температура поднимается до 130—150 градусов тепла, а ночью опускается до 150—170 градусов ниже нуля, то между ними в любое время лунных суток будет существовать значительная разность температур, вполне достаточная для того, чтобы обеспечить генерирование электроэнергии.

Есть и ещё одна идея, граничащая с фантастикой... Дело в том, что на Луне имеется очень мощный источник энергии, но совершенно не ясно, как его использовать. Речь идёт о выпадении на лунную поверхность метеоритного вещества. Приближаясь к Луне, метеоритные тела движутся с большими скоростями и поэтому обладают огромным запасом энергии, которая выделяется при взрыве в момент удара.

Взрывы, возникающие при падении крупных метеоритов, по своей мощности сравнимы с термоядерными взрывами.

Однако никаких конструктивных идей, а тем более инженерных расчётов относительно того, каким образом эту энергию использовать, нет. Видимо, если и существуют какие-то пути, то только косвенные: скажем, каким-то образом превращать в полезную работу энергию возникающих в теле Луны сейсмических волн... Но и на этот счёт реальных практических предложений пока не существует.

Создание на Луне научной базы или пересадочной станции для космических кораблей будет неизбежно связано со значительным усилением интенсивности полётов по трассе Земля – Луна – Земля. В связи с этим возникает задача обеспечения космических кораблей для обратных рейсов топливом, изготовляемым непосредственно на Луне за счёт лунных ресурсов. Если бы эту проблему удалось решить, отпала бы необходимость загружать космические корабли топливом для возвращения на Землю, а это в свою очередь дало бы значительный выигрыш полезного веса и повысило эффективность челночных рейсов между Землей и Луной.

Согласно оценкам специалистов по ракетной технике, встречающимся в зарубежной научной литературе, если учесть возможность применения в будущем для полётов к Луне ракет-носителей с многократным использованием первых ступеней, а также осуществления челночных рейсов с помощью средств многоразовой доставки на промежуточные станции, движущиеся по околоземным орбитам, то масса топлива, которое можно будет выработать на Луне, превысит массу доставленного для этой цели на Луну необходимого оборудования примерно в 20—40 раз. Такое соотношение можно считать в достаточной степени рентабельным. А это означает, что подобные проекты, по всей вероятности, со временем будут осуществлены.

Очень важно отметить, что все проекты, о которых идёт речь, – это отнюдь не чисто умозрительные, а вполне реальные разработки, в основе которых лежат результаты исследования лунной среды и точные расчёты.

Таковы некоторые соображения, связанные с возможностью освоения Луны в обозримом будущем. Они говорят о том, что идея создания на нашем естественном спутнике научной базы отнюдь не может считаться утопией, что в результате развития космических полётов Луна постепенно вовлекается в сферу практической деятельности человека.

А если людям придётся жить, работать и передвигаться по Луне, то неизбежно возникает проблема ориентирования на лунной местности и определения местоположения.

Однако прежде чем перейти непосредственно к этому вопросу, познакомимся кратко с теми условиями, с которыми встретится человек на поверхности естественного спутника Земли.

Луна вблизи

На лунной поверхности можно выделить две основные формы рельефа: материковый и морской. Морские районы выглядят на фотографиях Луны, сделанных с помощью наземных телескопов, тёмными пятнами. В своё время считалось, что это довольно ровные участки, однако в результате изучения Луны космическими средствами выяснилось, что их поверхность также довольно шероховата.

Наиболее характерной формой лунного рельефа являются кольцевые горы – кратеры. Поперечники некоторых из них достигают 200—300 км. Благодаря космическим аппаратам на Луне обнаружены не только крупные, но и мелкие кольцевые образования. В частности, оказалось, что почти вся лунная поверхность усеяна множеством мелких кратеров различных размеров и форм.

Чтобы не заблудиться на Луне

Существенное значение для условий ориентирования на Луне имеет отсутствие у этого небесного тела сколько-нибудь заметного магнитного поля.

Ещё в 1959 г., во время полёта второй советской АМС «Луна-2», были проведены первые магнитные измерения. Установленный на ней магнитометр, несмотря на высокую чувствительность, не обнаружил у Луны никаких признаков присутствия магнитного поля. Между тем, если бы магнитное поле было даже в тысячу раз слабее земного, прибор зарегистрировал бы его.

Магнитное поле удалось обнаружить, когда ещё более чувствительная аппаратура для магнитных измерений была размещена на борту первого искусственного спутника Луны – советской автоматической станции «Луна-10». Это позволило не только определить верхнюю границу величины магнитного поля, но и зарегистрировать его изменения на протяжении шести суток. Оказалось, что максимального значения магнитное поле Луны достигало в тот момент, когда Луна находилась в полнолунии, т.е. около линии, проходящей через Землю и Солнце. Это, по всей вероятности, объясняется тем, что земное магнитное поле, так называемая магнитосфера, имеет своеобразный «хвост», направленный в сторону, противоположную Солнцу, и, видимо, достигающий орбиты Луны.

Такое предположение подтверждается измерениями интенсивности потоков заряженных частиц в окололунном пространстве. Дело в том, что заряженные частицы солнечной плазмы не могут проникать внутрь магнитосферы Земли. Поэтому можно было ожидать, что, когда Луна выйдет из магнитного хвоста нашей планеты, эти потоки усилятся. И действительно, после того как Луна уходит от линии Земля – Солнце, интенсивность заряженных частиц значительно возрастает.

Последующие измерения показали, что в отдельных местах лунной поверхности были обнаружены «намагниченные пятна». Природа этого явления пока что остается неясной. Не исключено, что здесь мы столкнулись с остатками былого магнитного поля Луны, которое когда-то, возможно, было достаточно сильным.

Согласно современным представлениям планетный магнетизм связан с электрическими явлениями, протекающими в жидком ядре небесного тела. Поскольку сейсмические измерения указывают на возможность существования жидкого ядра у современной Луны, не исключено, что на ранней стадии своей истории она могла обладать достаточно сильным магнитным полем. Однако приблизительно 3—4 миллиарда лет назад это поле распалось в результате каких-то изменений в ядре.

С другой стороны, намагничение отдельных участков лунной поверхности могло происходить и в результате ударных процессов при падении крупных космических тел.

Что же касается общего магнитного поля Луны, то согласно современным данным оно в сотни тысяч, а то и в миллионы раз слабее земного.

В связи с этим особое значение для ориентирования на Луне приобретают наблюдения звёздного неба.

О перспективах астрономических исследований на Луне написано немало. Лунные обсерватории... Гигантские телескопы, оснащенные зеркалами поперечником в десятки метров, зеркала, которым не грозит искривление под действием слабого поля лунного тяготения... Колоссальные увеличения, не ограниченные атмосферными помехами... Идеальные фотографии далёких космических объектов на идеально прозрачном лунном небе.

И как результат – новые удивительные открытия в сокровенных глубинах космоса. Об этом мечтали не только писатели-фантасты, но и вполне серьезные учёные.

Казалось, полное отсутствие атмосферы действительно создаёт на естественном спутнике Земли идеальные условия для астрономических наблюдений как во время лунной ночи, так и в условиях лунного дня. Ведь на Земле именно наличие газовой оболочки ставит предел телескопическим увеличениям. Неоднородность атмосферы, неизбежные перемещения тёплых и холодных воздушных масс, запылённость и загрязненность воздуха отрицательно сказываются на качестве изображений космических объектов, получаемых в наземных обсерваториях. Ожидалось, что астрономические наблюдения на будущих лунных обсерваториях окажутся свободными от этих недостатков.

Действительность оказалась несколько иной. Так, выяснилось, что в условиях лунного дня, несмотря на отсутствие атмосферной оболочки звезды недоступны наблюдению невооруженным глазом.

По отзывам американских космонавтов, условия наблюдения неба на дневной стороне Луны примерно такие же, как в ясную ночь на Земле для человека, находящегося на ярко освещённом прожекторами поле стадиона.

Глаза на Луне настолько ослеплены ярким светом Солнца, что звёзд практически не видно. Мешает и свет, отраженный лунной поверхностью. Глаз не в состоянии адаптироваться, приспособиться к резкой смене световых контрастов. Чтобы защититься от ярких солнечных лучей, приходится пользоваться плотным светофильтром. А сквозь такой светофильтр ни одной звезды увидеть нельзя.

Однако с помощью телескопов и других специальных приборов, защищенных от постороннего света, звёзды на Луне можно наблюдать и в дневное время, как, впрочем, и на Земле.

Для более детального изучения условий лунных астрономических наблюдений были проведены специальные исследования на советской автоматической передвижной лунной лаборатории «Луноход-2».

С этой целью он был оборудован специальным прибором – астрономическим фотометром, разработанным и изготовленным на Крымской обсерватории АН СССР и предназначенным для измерения яркости неба в видимых и ультрафиолетовых лучах.

Прибор был установлен на «Луноходе» таким образом, что его оптическая ось всегда была направлена с зенит лунного неба. Были также приняты меры, препятствующие попаданию в фотометр света, рассеянного выступающими деталями «Лунохода». Включение и выключение прибора осуществлялось с помощью радиокоманд, подаваемых с Земли. Результаты измерений передавались в Центр управления с помощью телеметрии.

За время начиная с момента посадки «Лунохода-2», т.е. с 16 января по 20 марта 1973 г. было проведено 12 сеансов связи с фотометром: 9 из них в условиях лунного дня, 2 во время лунной ночи и 1 в сумерки, вскоре после того как диск Солнца скрылся за лунным горизонтом.

В итоге проведенных измерений были получены несколько неожиданные результаты. Оказалось, что свечение как дневного, так и ночного неба на Луне и в видимых, и в особенности в ультрафиолетовых лучах заметно выше ожидавшегося.

Изучение характеристик этого свечения в зависимости от высоты Солнца на лунном небе показало, что оно может быть вызвано рассеянными в окололунном пространстве частицами лунной пыли.

В связи с этим учёные высказали предположение, что вокруг Луны существует разреженный рой пылевых частиц, образованный в результате бомбардировки лунной поверхности метеоритами.

Подобные частицы рассеивают не только солнечный свет, но и свет Земли. Дело в том, что наша планета на лунном небе – это светило, примерно в 40 раз более яркое, чем полная Луна в небе Земли.

В свете этих исследований возможность эффективных телескопических наблюдений на Луне становится проблематичной.

Однако для навигационных целей условия наблюдения звёздного неба на ночной стороне Луны являются вполне приемлемыми.

На дневной же стороне поиск и наблюдение нужных звёзд могут осуществляться с помощью астрономических инструментов, что, несомненно, осложнит и навигационные измерения.

Итак, астрономические методы ориентирования, очевидно, будут основными для будущих покорителей нашего естественного спутника. Конечно, со временем на Луне, как и на Земле, появятся радионавигационные системы с применением радиомаяков и искусственных спутников Луны. Но до этого лунная астронавигация будет играть важную роль. Существенное значение имеют астрономические наблюдения и для управления с Земли передвижными автоматическими лунными лабораториями типа «Луноходов».

Прежде всего необходимо заметить, что взаимное расположение и форма созвездий для наблюдателя, находящегося на поверхности Луны, ничем не отличается от их расположения для земного наблюдателя или наблюдателя, который находится на борту орбитальных станций и пилотируемых космических кораблей. Даже удаление от Земли на 384 тыс. км ничего не меняет в видимом расположении небесных светил. 384 тыс. км – это всего-навсего полторы световые секунды, ничто в сравнении со световыми годами, отделяющими нас даже от ближайших звёзд.

Отвесная линия на Луне определяется таким же способом, как и на Земле, т.е. по направлению нити отвеса. Так же как и на Земле, можно найти точку зенита, построить горизонтальную плоскость и получить линию математического горизонта.

Луна вращается вокруг собственной оси, совершая полный оборот по отношению к Солнцу за 29,53 земных суток, а по отношению к неподвижным звёздам за 27.32 земных суток. Если продолжить направлений оси вращения Луны до пересечения с небесной сферой – мы определим положение северного полюса мира лунной небесной сферы.

Эта точка находится в созвездии Дракона вблизи звезды «омега» (ω) этого созвездия. Южный полюс мира лунной небесной сферы расположен в области созвездия Золотой Рыбы.

Соединив точки полюсов с центром лунной небесной сферы, получим ось мира для Луны и построим по аналогии с земной небесной сферой плоскость небесного экватора и небесный экватор.

Рассмотрим картину видимого движения Земли для наблюдателя, расположенного в центре обращенной к Земле стороны Луны. Мы обнаружим, что вследствие движения Луны вокруг нашей планеты Земля на лунной небесной сфере описывает окружность, переходя из одного созвездия в другое. Поскольку плоскость орбиты Луны составляет с плоскостью орбиты Земли сравнительно небольшой угол, это будут те же зодиакальные созвездия, на фоне которых перемещается Солнце для земного наблюдателя. Правда, зрительно для нашего наблюдателя на Луне картина перемещения Земли на фоне звёзд выглядит своеобразно. Диск Земли всё время остается в зените, над головой наблюдателя, а небесная сфера медленно вращается.

Если в экваториальной системе координат на земной небесной сфере координаты светил с течением времени остаются неизменными, то в лунно-экваториальной системе дело обстоит несколько иначе.

Вследствие различных колебаний, или, как их называют, неравенств в движении Луны, экваториальные координаты светил на лунной небесной сфере довольно быстро изменяются со временем.

Поскольку линия лунного экватора наклонена к линии эклиптики всего на 1°32', можно с достаточно большой степенью точности заменить лунно-экваториальные координаты эклиптическими. Эта система удобнее тем, что широты светил в ней практически не зависят от времени, а долготы ежегодно увеличиваются на вполне определённую и сравнительно небольшую величину, равную 50”,256, связанную с ежегодным смещением по эклиптике точки весеннего равноденствия.

В этом случае приближенно можно считать, что северный полюс мира для Луны совпадает с северным полюсом эклиптики, координаты которого в земной экваториальной системе равны (ε = 23°27'):

αPэк = 18h; δPэк = 90° – ε,

(1)

На дневной стороне Луны можно приближенно ориентироваться по Солнцу и Земле.

Благодаря осевому вращению Луны происходит суточное перемещение Солнца по лунной небесной сфере. Для наблюдателя, расположенного в центре обращенной к Земле стороны Луны, Солнце взойдет в восточной стороне и спустя 7,4 земных суток пройдет вблизи точки зенита. Ещё через 7,4 земных суток после кульминации Солнце зайдет на западе.

Знание этих особенностей суточного движения Солнца по лунной небесной сфере поможет наблюдателю приближенно определить по положению Солнца на лунном небе направления на стороны горизонта.

Что касается ориентирования по наблюдению Земли, то здесь нужно иметь в виду следующее. Как известно, Луна всегда обращена к Земле одной и той же стороной. Происходит это благодаря тому, что Луна совершает полный оборот вокруг своей оси за то же время, в течение которого она обходит вокруг Земли. Совпадение периодов обращения и собственного вращения, видимо, не является простой случайностью. Немаловажную роль сыграли земные приливы в веществе Луны, тормозившие её суточное вращение. Но если с Земли мы всегда видим одну и ту же половину Луны, то это означает, что для наблюдателя, который находится в центре обращенной к Земле стороны Луны, Земля всегда должна находиться в точке зенита.


    Ваша оценка произведения:

Популярные книги за неделю