355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Вертолет Журнал » Вертолет, 2004 № 3 » Текст книги (страница 4)
Вертолет, 2004 № 3
  • Текст добавлен: 26 сентября 2016, 20:34

Текст книги "Вертолет, 2004 № 3"


Автор книги: Вертолет Журнал



сообщить о нарушении

Текущая страница: 4 (всего у книги 7 страниц)

Гребни хвостовой балки

Ми-2 с гребнями хвостовой балки

Одновинтовые вертолеты при выполнении полетов с малой скоростью и на режимах висения часто испытывают недостаток путевой управляемости вследствие недостаточной эффективности рулевого винта. Это особенно заметно при боковом ветре. Кроме того, с проблемой недостаточной эффективности путевого управления сталкиваются производители вертолетной техники при установке двигателей более высокой мощности. Одним из наиболее простых и эффективных путей решения этой проблемы является установка гребней на хвостовую балку. За рубежом эти устройства нашли широкое применение, и в настоящее время многие производители закладывают гребни даже в «дальние» перспективные разработки.

Впервые гребни хвостовой балки доказали свою эффективность во время англо– аргентинского конфликта 1982 года. Английские транспортные вертолеты смогли совершать полеты со значительной нагрузкой с корабельных палуб, продуваемых атлантическими ветрами различных направлений. После этого «триумфа» гребни засекретили, правда, ненадолго. Несколько позже гребни были испытаны в NASA, и их начали применять американские фирмы.

Гребни – это пластины, закрепленные вдоль хвостовой балки вертолета со стороны того борта, в направлении которого действует индуктивный поток рулевого винта. Англичане запатентовали и использовали одиночный гребень, установленный в верхней части хвостовой балки (рис. 1). Американцы установили два гребня: один также в верхней части хвостовой балки, второй – в нижней. Впоследствии в России была разработана улучшенная конструкция гребней, позволяющая в дополнение к их обычным функциям снижать вибрацию в хвостовой части вертолета.

Принцип действия гребней хвостовой балки достаточно прост. При полете на мaлой скорости и висении гребень, являясь интерцептором, обеспечивает отрыв потока от одного борта балки, что приводит к появлению разности давлений между правым и левым бортом и возникновению боковой силы, стремящейся развернуть вертолет в сторону, противоположную направлению реактивного момента несущего винта.


Рис. 1. Одиночный и двойной гребни хвостовой балки вертолета

Диаграмма распределения давления по поверхности хвостовой балки при нулевом угле атаки показана на рис. 2. На большинстве низкоскоростных режимов поток сепарирует только верхний гребень, однако при наличии бокового ветра его может оказаться недостаточно для обеспечения отрыва от всей поверхности хвостовой балки. Возврат потока к поверхности хвостовой балки приведет к уменьшению разности давлений между правым и левым бортами. Для предотвращения этого в некоторых случаях устанавливают нижний гребень. При значительной строительной высоте хвостовой балки может быть установлен и третий гребень.

Пример зависимости коэффициента боковой силы для среднего сечения вертолета Ми-2, оснащенного и не оснащенного двойными гребнями, показан на рис. 3. Согласно этим данным, на висении гребни могут компенсировать 8-22 % реактивного момента несущего винта, то есть вертолет приобретает дополнительный небольшой «рулевой винт». По мере набора горизонтальной скорости хвостовая балка перестает обдуваться индуктивных потоком несущего винта. Исчезает и боковая сила. В случае, если гребни находятся под нулевым углом атаки к горизонтальному потоку, они практически не создают каких– либо сил сопротивления и становятся «незаметными» для пилота.

Испытанный на вертолете Ми-2 в сельскохозяйственном варианте комплект гребней подтвердил их эффективность. Большая часть сельскохозяйственных работ ведется на малых скоростях, когда вертолет испытывает значительную асимметрию путевого управления и левая педаль находится вблизи упора.

После установки гребней на летательный аппарат увеличился запас путевого управления и понизилась потребная мощность на режимах низкоскоростного полета при опылении растений. Особенно это было заметно при попутных и боковых ветрах в условиях летней жары.

Однако, как показал опыт, кроме изменения аэродинамики гребни могут эффективно оказывать влияние и на изменение некоторых вибрационных характеристик воздушного судна.

Одним из источников вибрации на борту вертолета является рулевой винт. При стационарных условиях полета основными причинами динамического нагружения втулки рулевого винта являются аэродинамические силы и массовый эксцентриситет лопастей рулевого винта, вызывающие как горизонтальные, так и вертикальные колебания. Через хвостовую балку эти виды вибрации передаются на центральную часть фюзеляжа, а в некоторых случаях – по каналам путевого управления на педали летчика. Летчик вертолета Ми-2 ощущает колебания рулевого винта в виде «зудящей» тряски ног с частотой выше основной проходной частоты несущего винта. Кроме того, во время выполнения разворотов вертолета, при которых рулевой винт движется в сторону своего индуктивного потока со скоростью 2–8 м/с, наблюдаются горизонтальные колебания рулевого винта со значительной амплитудой. Они вызваны нестабильностью появляющегося режима вихревого кольца рулевого винта. Обычно это ощущается в виде низкочастотных динамических толчков фюзеляжа. Сельскохозяйственный не вертолет, как правило, попадает в этот режим при каждом развороте на новую полосу обработки.


Рис. 2. Диаграмма распределения давления по поверхности хвостовой балки до установки гребней и после


Рис. 3. Зависимость аэродинамического коэффициента боковой силы хвостовой балки от угла атаки по результатам продувок (1 – без гребней, 2 – с гребнями)


Рис. 4. Продольное виброускорение на педалях летчика вертолета Ми-2 до установки гребней (1) и после (2)

Гребни, дополненные упруго-диссипативными элементами, превращаются в виброзадерживающие ребра жесткости и позволяют снизить вибрацию на пути от рулевого винта к центральной части фюзеляжа. Количество и угловое расположение гребней по контуру хвостовой балки влияет на демпфирование вибрации в горизонтальной или вертикальной плоскости. Например, гребни, установленные на вертолете Ми-2, позволили вывести вибрацию за границы чувствительности человека – летчик перестал ощущать как вибрацию на педалях, так и толчки на разворотах. Снижение продольной вибрации на педалях в наиболее ощутимой октавной полосе 63 Гц оказалось четырехкратным (рис. 4).

Таким образом, установка легких и простых устройств – гребней хвостовой балки, оптимизированных по нескольким критериям, вызывает снижение динамических нагрузок на хвостовую балку, электронное оборудование, расположенное внутри нее, и на путевое управление, при этом увеличивая запас хода педалей, снижая потребную мощность при попутных и боковых ветрах.

Виталий ДУДНИК, ведущий инженер Ростовского филиала НИИ физических измерений, канд. техн. наук


Электронные технологии создания тренажеров

С усложнением современного бортового оборудования воздушных судов (ВС) возрастает роль авиационных тренажеров при подготовке авиационного персонала. Однако тренажеры, не обладающие требуемым уровнем подобия воздушному судну и не оснащенные средствами объективного контроля и анализа действии обучаемых, не могут обеспечить качественную подготовку специалистов. Эффективность таких тренажеров низка, а их роль в обеспечении безопасности полетов ничтожно мала. Эти обстоятельства отчасти уже привели в середине 90-х годов к снижению значимости применения отечественной тренажерной техники при обучении летных кадров.

Успешный мировой опыт внедрения авиационных тренажеров, построенных на основе наукоемких технологий, показал, что авиатренажеры существенно влияют на качество, сроки и стоимость подготовки специалистов. Поэтому в авиационной отрасли за рубежом тренажеры стали обязательным, а часто и незаменимым средством подготовки экипажей ВС. По разным оценкам в печати, в результате применения высококачественной тренажерной техники удалось сократить сроки подготовки экипажей вертолетов в среднем на 40–60 % (в зависимости от типа вертолета и видов подготовки). При этом в результате переноса на тренажеры уровня «С» и «D» большей части подготовки летных специалистов (в отдельных случаях до 90 %) стал очевиден экономический эффект от их внедрения. Действительно, стоимость летного часа на реальном ВС в среднем на порядок выше часа «полетов» на тренажере аналогичного типа летательного аппарата, а риск при отработке экипажами сложных полетных заданий практически отсутствует. Сейчас в системе подготовки летных кадров за рубежом соотношение времени обучения на учебно-тренировочных самолетах (вертолетах) к времени обучения на тренажерах продолжает неуклонно меняться в сторону увеличения времени «полета» на тренажерах (в зависимости от специальности обучаемых по видам подготовки).

За последние годы появились различные типы авиационных тренажеров, которые могут использоваться на разных этапах подготовки летных экипажей. И хотя применение тренажеров в системе подготовки летных кадров в большей мере относится к методике обучения – очень важно, чтобы было из чего выбирать!

Принятые в России «Нормы годности авиационных тренажеров», гармонизированные с мировыми JAR и FAR, а также с «Руководством по критериям квалификационной оценки пилотажных тренажеров», позволяют классифицировать тренажеры по уровням сложности воспроизведения характеристик реального ВС. По такой классификации можно установить роль и место тренажера в системе подготовки летных кадров. Следует отметить, что классифицировать устаревшую отечественную тренажерную технику весьма сложно: слишком велик разрыв между тем, что требуется для подготовки, и тем, что мы имеем на самом деле.

Так чем же должен отличаться современный авиационный тренажер от устаревших, громоздких и малопригодных для задач обучения тренажеров недавнего прошлого, чтобы его могли успешно применять в системе подготовки летных кадров?

Прежде всего, высоким уровнем подобия имитируемых на нем процессов, которые заданы нормативам и в указанных ранее документах. В число основных имитируемых на тренажере процессов входят:

– динамика полета ВС и адекватность поведения имитируемого ВС при воздействии членов экипажа на органы управления;

– логика работы бортовых систем и время реакции имитируемых приборов на управляющие воздействия;

– качество воспроизведения и подробность отображения закабинного визуального пространства;

– точнее воспроизведение акустических шумов на всех режимах работы ВС;

– соответствие акселерационной информации, получаемой экипажем при пространственном движении имитируемого ВС.


Важнейшим отличием тренажеров нового поколения является то, что практически все моделируемые процессы, в том. числе имитация работы всех систем и комплексов, установленных на ВС, выполняются в виде программного обеспечения, то есть без использования реальных блоков бортовых систем и комплексов или полунатурного моделирования, как это было в тренажерах еще прошлого десятилетия. Такой подход в построении тренажеров позволяет обеспечить их гибкость, модульность и возможность легко менять состав оборудования в случае его модернизации на ВС. Тренажеры нового поколения имеют минимальный состав собственного оборудования. В основном, эго кабина имитируемого ВС, вычислительный комплекс и система отображения визуальной информации. Такой тренажер мобилен, прост в эксплуатации, потребляет малое количество электроэнергии и, конечно же, дешевле своих предшественников при значительно более высокой эффективности в обучении специалистов.

Повышение обучающего эффекта на тренажерах нового поколения достигается средствами объективного контроля и анализа деятельности обучаемых. При этом в автоматизированном режиме формируются рекомендации по продолжению подготовки с учетом всех задач, выполненных во время тренировочных полетов. Важно также получить объективные данные о психофизиологическом состоянии каждого члена экипажа, особенно при выполнении сложных действий во время «полета» на тренажере. Основная цель использования таких оценок заключается в выявлении внутренних резервов и снижении нагрузок на пилота, в более точном анализе динамики освоения техники пилотирования на тренажере и ее последующей корректировке.


Такая система оценки операторской деятельности в нашей стране создана в санкт– петербургской компании «транзас», которая уже более 10 лет профессионально занимается разработкой, поставкой и обслуживанием тренажерной техники.

Все имитируемые на тренажере процессы воспринимаются интегрально. Однако наибольшая часть информации воспринимается зрительно (на комплексном тренажере вертолета уровня «А» и выше – это около 80 % всей получаемой оператором информации в зависимости от режима полета). Причем значительная часть визуальной информации формируется по видимому закабинному пространству, исходя из специфики полета на вертолете. Поэтому так важно обеспечить высокий уровень подобия тренажера именно средствами визуализации закабинного пространства или внешней среды.


Понимая всю важность формирования качественной визуальной среды, компания «Транзас» постоянно совершенствует технологии создания систем визуализации. В настоящее время разработана и успешно эксплуатируется уже третья версия программно-аппаратного комплекса (ПАК) «Аврора». Комплекс создан специально для разработки систем визуализации авиационных тренажеров (основные характеристики ПАК «Аврора» приведены в таблице 1). На сегодняшний день ПАК «Аврора» является единственным. в России передовым, постоянно развивающимся продуктом, конкурентоспособным на мировом рынке. Кроме того, ПАК «Аврора» ориентирован на IBM-технологии, что делает его особенно привлекательных для использования в составе относительно недорогих тренажеров.

Мы рассказали лишь о двух системах, без которых современный авиационный тренажер не может претендовать на роль качественного средства подготовки. Построить же тренажер нового поколения можно только опираясь на электронные технологии, которые продолжают свое бурное развитие уже в новом тысячелетии.

Санкт-петербургская компания «Транзас» производит морские и авиационные тренажеры нового поколения. Наукоемкой и высокотехнологичной продукцией для авиации являются бортовые навигационные и вычислительные системы (АБРИС и TNC-1G), системы раннего предупреждения столкновения с землей (ТТА-12), бортовые интегрированные комплексы вертолетов (ИБКВ-17), разработанные компанией.

Важнейших направлением деятельности компании «Транзас» является разработка и производство авиационных тренажеров всех уровней сложности для различных типов вертолетов и самолетов, а также автоматизированных систем обучения (АОС) и функциональных тренажеров в составе АОС.


Таблица. Характеристики программно-аппаратного комплекса «Аврора»

ХарактеристикиОписание
Исходные данныеЭлектронные топографические, аэронавигационные и морские карты различных общепринятых форматов; аэрофотоснимки, снимки из космоса, наземные фотоснимки, базы 3D-объектов
Текстура земной поверхностиСочетание мозаичного принципа текстурирования ландшафта и использования спутниковых или аэро, орто, фото изображений, автоматическая выкладка мозаичных текстур на большие площади, обширная база данных исходных текстурных мозаик для разных широт, плавность перехода от одного типа ландшафта к другому, точнее наложение спутниковых или аэрофотоснимков по координатам привязки, высока 0, детализация текстур до сантиметрового разрешения
Генерация 3D-объектов по исходным, данным. (цифровой карте, топографическому плану)Дороги, реки, озера, моря и т. п. создаются как ЗБ-объекты с точностью их воспроизведения на карте, используемой в качестве исходной информации, леса заполняются трехмерными деревьями, внутри контуров городов и поселков генерируются отдельные строения, высокая детализация объгктового состава вплоть до трехмерного отображения растительности в соответствии с типом поверхности, точная генерация объектового состава сцены при использовании топопланов
Генерация рельефаМодель рельефа создается по изолиниям, отметкам, высот, изобатам с точностью их воспроизведения на карте, используемой в качестве исходной информации
Наличие картографического модуляЗагрузка (конвертирование) карт различных форматов, контроль корректности карты, возможность редактирования карты
Визуализация сценыЗначительные размеры сцены 1000x1000 км и более; детальность проработки – 1 м и выше, оперативность создания – от 10 мин для сцены 100x100 км; широкий набор спецэффектов: дымы, пожары, взрывы, снежные, пылевые вихри и т. д.; корректная визуализация при изменении дальности наблюдения от единиц до десятков тысяч метров, изменение положения и углов камеры наблюдения, возможность применения для различных приложений
Моделирование объемной облачностиОблачность является ЗБ-обгектом, имеет прозрачность, учитывается подсветка солнцем
Моделирование туманов, дымкиЗадание дальности видимости на высоте земли, автоматический пересчет видимости при наборе высоты, возможность задания локальных туманов
Моделирование дыма, открытого огня, пожара, взрывовЭффективная система генерации частиц позволяет пользователю смоделировать широкий спектр эффектов; при создании собственных моделей пользователь может задавать различные физические параметры – притяжение, направление, силу ветра и др.
Учет положения солнца, луны, звездМоделирование освещенности ландшафта, динамический расчет освещенности 31) – о6лаков
Ночные сцены и огниМоделирование освещения небосклона с учетом физической модели атмосферы, реалистичнее отображение огней с учетом яркости, направленности, углов обзора неограниченное количество огней в сцене, отображение несколько тысяч огней в поле зрения, моделирование локального освещения ландшафта, динамическое освещение фарой или прожектором любого участка местности (количество прожекторов не ограничено); минимальное падение производительности при отображении ночной сцены, использование новейших технологий, поддержка языка Сд
Создание и встраивание в визуализацию сцены уникальных сооруженийМодели уникальных сооружений создаются с помощью специального инструмента поддерживается экспорт моделей из 3D Мах и AutoCAD; простая установка объектов на местности – осуществляется одним, щелчком мыши или в автоматическом режиме через связывание моделей с объектами электронной карты
Протяженные коммуникацииПараметрическое моделирование различных систем энергетики и коммуникаций: ЛЭП, нефте– и газопроводы, линии связи
Виртуальные объектыВозможно визуальнсе отображение различных виртуальных объектов: границы, зоны безопасности и др.
Смена времен годаШирокий выбор библиотечных объектов и материалов позволяет моделировать как времена года, так и различные климатические пояса (зоны)

В 2001 году компанией был создан комплексный тренажер вертолета Ми-8МТВ/АМТ, сертифицированный по новым отечественным. «Нормам годности авиационных тренажеров» (установлен в ОАО «СПАРК»), а в 2002 году этот тренажер получил от Департамента летной службы (ДЛС) ГС ГА России сертификат на проведение тренажерной подготовки и переподготовки летного состава.

Все поставляемые компанией тренажеры выполнены на модульной основе и при использовании принципа «открытой архитектуры», на базе широко распространенных IBM PC технологий вычислительной техники. При разработке и производстве тренажеров «Транзас» применяет передовые программные и системотехнические решения, что гарантирует всем поставляемым изделиям высокое качество, надежность и технологичность в эксплуатации.

Использование созданных компанией тренажеров нового поколения в системе подготовки экипажей ВС дает ряд преимуществ, основные из которых: отсутствие расхода авиационного топлива, ресурса ВС и двигателей; возможность показа правильности выполнения действий и контроля их реализации обучаемыми; сокращение времени подготовки и переучивания на новую технику. И конечно, безопасность при отработке действий в сложных ситуациях, которые могут возникнуть з реальном полете.

Александр Бандурин, канд. техн. наук, инженер-пилот, Борис Некрасов, руководитель научного направления, Олег Hоcоpeb, начальник отдела, Павел Рожков, канд. техн. наук

ЭКСПЛУАТАЦИЯ

Однодвигательный скоростной MD 600N

Вертолет MD 600N впервые поднялся в воздух в 1994 году, тогда же он был сертифицирован в США. MD 600N стал продолжением и более мощной модификацией вертолета MD 520N, снабженного системой курсовой стабилизации NOTAR (без хвостового винта).

MD 600N предназначен для пассажирских перевозок (до шести человек), полетов по заданиям санавиации, а также для перевозки до 1360 кг грузов на внешней подвеске (вес пустого вертолета 953 кг). Зто становится возможным, поскольку мощность двигателя вертолета составляет 808 л.с. Такая мощность обеспечивает также и курсовую скорость в 250 км/ч с максимальной дальностью полета до 1050 км.

Установленный на вертолете двигатель Rolls-Royce 250-С47 зарекомендовал себя как один из надежнейших для высотных вертолетов, работающих даже в жарком климате. Он обеспечивает наилучшие летно-технические показатели среди машин со взлетным весом до двух тонн. Высокооборотный шестилопастной несущий винт диаметром 8,4 м позволяет эксплуатировать эту машину в качестве авиатакси в густонаселенных городских застройках.

Панорамное остекление вертолета, комфортные кресла салона бизнес-класса – все это делает вертолет MD 600N реальной воздушной альтернативой автомобилю «Мерседес-600».


Система NOTAR снижает шумовое воздействие вертолета в два раза, в салоне можно спокойно разговаривать даже без использования системы внутренней связи.


Дополнительным преимуществом

MD 600N является запатентованная система крепления несущего винта через неподвижную стойку, жестко связанную с фюзеляжем, через которую на вертолет передаются все динамические нагрузки, Тем самым разгружается вал привода несущего винта, что позволяет машине выполнять при полной управляемости такие фигуры высшего пилотажа, как петля.

Проводка системы управления вертолетом состоит из трубчатых тяг и качалок без пресс-масленок, поэтому фактически не требует обслуживания при эксплуатации.

Полное компьютерное тестирование, выбор оптимальных режимов работы двигателя и современное навигационное оборудование уменьшают нагрузку на пилота.

Летный ресурс по основным агрегатам при эксплуатации вертолета в климатических зонах от -30 до +45 °C – до 5000 часов. Опыт использования MD 600N на Аляске показал его работоспособность при температуре до -32 °C, что актуально для российского климата.

Прямые операционные затраты, заявленные производителем, составляют 230 долларов на один летный час, потребление авиационного топлива марки ТС-1 – до 150 л/ч.

В базовой комплектации новый MD 600N стоит 1,3 млн. долларов, что выгодно отличает его от других вертолетов, предлагаемых сегодня на рынке.

Срок поставки вертолета не превышает семи месяцев с момента заказа, несмотря на то, что MD Helicopters получила недавно большой заказ от американского правительства.

В настоящее время проходит сертификация вертолета MD 500Е, сертификат типа будет получен к концу 2004 года. Заявка на строительство еще трех MD 600N, заказанных одной российской компанией для использования в качестве авиатакси, послужила поводом для начала сертификации этой модели вертолета.

Вертолет MD 600N можно использовать и для мониторинга ЛЭП и нефтегазопроводов, доставки бригады ремонтников с необходимым тяжелым инструментом в специально устанавливаемом багажнике. На вертолете легко перевозить газосварочное оборудование, электрогенераторы и т. д.

Вертолетный Центр GALS – генеральный дистрибьютор MD Helicopters в России и странах СНГ приглашает авиационные и коммерческие структуры для создания дилерской сети.

Приглашаем ознакомиться с вертолетом MD 600N на нашей базе в Москве на аэродроме Тушино.

Евгений Ермаков, Президент Вертолетной Компании GALS


    Ваша оценка произведения:

Популярные книги за неделю