Текст книги "Кризис аграрной цивилизации и генетически модифицированные организмы"
Автор книги: Валерий Глазко
Жанр:
Биология
сообщить о нарушении
Текущая страница: 4 (всего у книги 19 страниц)
В последние годы обострилась проблема дефицита плодородных почв. Если сравнить мировую продукцию растениеводства в 1950 и 1998 г., то при урожайности 1950 г. для обеспечения такого роста пришлось бы засеять не 600 млн га, как ныне, а втрое больше. Между тем дополнительные 1,2 млрд га уже, по сути, взять негде, особенно в странах Азии, где плотность населения чрезвычайно высока. Кроме того, земли, вовлеченные в сельскохозяйственный оборот, с каждым годом становятся все более истощенными и экологически уязвимыми.
Из стран-экспортеров лишь США и Россия могут расширить посевы зерновых. Ни Австралия, ни Аргентина, ни Канада, ни страны ЕС резервов не имеют – там все распахано. В США, как и в России, также есть угодья, выведенные из оборота, так что, задействовав их, американцы могут получить еще 100 млн т в год. Это внушительный резерв экспорта, ибо свои потребности США с лихвой удовлетворяют на нынешних площадях. Но что США поставляют на мировой рынок? В основном кукурузу и сою – пшеницу они почти не экспортируют. Россия же, при использовании современных технологий, потенциально может экспортировать больше 100 млн т.
Влияние эрозии почв, сведения лесов и лугов на биоразнообразие все ощутимее; усиливается зависимость продуктивности агроэкосистем от техногенных факторов. С неудачами стран «третьего мирав и международных организаций, содействующих их развитию, в попытках добиться адекватной отдачи от вложений в сельское хозяйство смириться нелегко, поскольку на протяжении всей истории ни одной нации не удавалось повысить благосостояние и добиться развития экономики без предварительного резкого увеличения производства продуктов питания, главным источником которых всегда оставалось сельское хозяйство. Поэтому, как считают многие специалисты, в XXI в. предстоит вторая «зеленая революция». Без этого не удастся обеспечить человеческое существование всем, кто приходит в этот мир.
Очевидно, что потребуются немалые усилия, как традиционной селекции, так и современной сельскохозяйственной ДНК-технологии, для того чтобы добиться генетического совершенствования продовольственных растений в темпе, который позволил бы к 2025 г. удовлетворить потребности 8,3 млрд человек. Для дальнейшего роста производства сельскохозяйственной продукции понадобится много удобрений, особенно в странах Экваториальной Африки, где до сих пор удобрения вносят не более 10 кг на гектар (в десятки раз меньше, чем в развитых странах и даже в развивающихся странах Азии).
По оценкам специалистов, изучающих азотные циклы в природе, не менее 40% из 6 млрд человек, населяющих ныне планету, живы лишь благодаря открытию синтеза аммиака. Внести такое количество азота в почву с помощью органических удобрений было бы совершенно немыслимо, даже если бы все мы только этим и занимались.
«Зеленая революция» создала предпосылки для решения продовольственной проблемы, но не превратила обещание победить голод к XXI веку в действительность. Засуха в США и Канаде в 1989 г. сожгла почти треть урожая и напомнила миру о неустойчивости земледелия в условиях глобального потепления. В 90-е годы XX века темпы производства зерна замедлились, а в ряде регионов – снизились по сравнению с 80-ми.
Если принять индекс мирового производства продовольствия в 1979-1981 гг. за 100, то динамика его движения в 1993-1995 гг. приобрела отрицательное значение и составила в Африке – 95,9, в Северной и Центральной Америке – 95,4, в Европе – 99,4. Это поставило под угрозу достижения «зеленой революции» и потребовало создание принципиально новых методов для выведения новых сортов.
Положение в сельском хозяйстве осложнилось в связи со снижением плодородия и сокращением пахотных земель. По данным исследования, проведенного в 1991 г., потери верхнего слоя земли вследствие ее деградации в различных регионах мира в 16-300 раз превышали способность почвы к естественному восстановлению. По оценкам другого исследования, деградация земли с 1945 по 1990 год привела к снижению производства продовольствия в мире на 17%. Попытки компенсировать эти потери за счет ирригации и химизации дали определенный эффект, но разрушающе воздействовали на окружающую среду.
В сельском хозяйстве происходит ежегодный вынос с урожаем значительных количеств биогенных элементов, почва постепенно обедняется ими, истощается. Внесение минеральных удобрений компенсирует эти потери и позволяет получать относительно устойчивые высокие урожаи. Вместе с тем, не будучи связаны в гумусе, минеральные соли легко вымываются почвенными водами, постепенно стекают в водоемы и реки, уходят в подземные водоносные горизонты. В самой почве избыток минеральных солей изменяет состав почвенных животных и микроорганизмов, создающих гумус, его становится все меньше, и почва, теряя естественное плодородие, становится чем-то вроде мертвого пористого материала для пропитки минеральными солями. А промышленные удобрения всегда содержат примеси тяжелых металлов, которые склонны накапливаться в почве.
Процесс разрушения почвы значительно ускоряется применением ядохимикатов, убивающих вместе с вредителями почвенных насекомых, червей, клещей, без которых образование гумуса сильно тормозится.
Постепенно продукция с таких полей становится все более загрязненной нитратами и нитритами от избытка удобрений, пестицидами и тяжелыми металлами. Такая интенсификация земледелия дает, конечно, кратковременные положительные результаты, но все более обостряет проблему потери почвенного плодородия и сокращения земельных ресурсов.
Дальнейшее расширение посевных площадей приведет к катастрофическому ускорению исчезновения видов. Биологические методы поддержания плодородия почв – органические удобрения, смена и оптимальное сочетание культур, переход от химической защиты растений к биологической, строго соответствующие местным особенностям почв и климата способы обработки почв (например, безотвальная пахота) – необходимые условия сохранения и повышения плодородия почв и стабилизации производства продовольствия достаточно высокого качества и безопасного для здоровья людей.
Поиски выхода с использованием генетически модифицированных организмовШироко известны медицинские проблемы, связанные с действием возбудителей болезней растений, в частности, грибов, на организм человека. Так, продукты жизнедеятельности грибка аспергилла – афлатоксины – являются опасными канцерогенами. Сегодня этим неистребимым грибком заражены посевы зерновых по всему миру – 20-25% площадей в зависимости от культуры и региона. И эти афлатоксины мы, не ведая об этом, потребляем, например, с хлебом. ПМО-сорта с устойчивостью к грибковым заболеваниям не несут никаких токсических нагрузок.
Учитывая возрастающий интерес фермеров и других производителей к биотехнологической продукции, увеличение посевных площадей под ГМО-культурами, в рамках государственных инициатив предусмотрено углубление научных исследований по оценке риска биотехнологической продукции. Ученые, как правило, высказываются за принцип «осторожного отношения». Восприятие риска, оценка риска несомненно зависят от уровня культуры нации. Например, даже «зеленые», активно протестуя против использования ГМ растений в сельском хозяйстве, как правило, даже не упоминают об использовании ГМО в медицине и фармакологии. Те же «Друзья Земли» признают безопасность устойчивых к гербицидам растений.
Никому не приходит в голову протестовать против генно-инженерного (человеческого) инсулина, которому диабетики в своей массе отдают предпочтение перед отечественным «свиным».
Во многих странах мира уже широко применяются в растениеводстве так называемые трансгенные (точнее другой термин – генетически модифицированные) растения – соя, кукуруза, хлопок, рапс, картофель и многие другие, устойчивые к определенным пестицидам или насекомым. В 1995 году в США зарегистрирован модифицированный сорт картофеля «NewLeaf», устойчивый к колорадскому жуку (компания «Монсанто»). Уже в последующие два года модифицированный сорт картофеля зарегистрировали у себя Канада, Япония, Мексика. Многие страны Европы, Южной Америки, Австралия проводят сегодня испытания модифицированных сортов растений.
Позитивные стороны модификации растений очевидны. Это – упрощение технологий выращивания сельскохозяйственных культур, существенное снижение энергозатрат. А, главное – уменьшение загрязнения окружающей среды пестицидами. Кроме того, ГМ растения дают значительное повышение урожайности за счет снижения вредных воздействий насекомых и микроорганизмов, снижение себестоимости, а отсюда и цен на продукты питания.
Надежды, которые возлагаются на генетически модифицированные (ГМ) растения, можно подразделить на два основных направления:
1. Усовершенствование качественных характеристик продукции растениеводства.
2. Увеличение продуктивности и стабильности растениеводства путем повышения резистентности растений к неблагоприятным факторам.
Создание генетически модифицированных растений чаще всего выполняется для решения следующих конкретных задач.
1) В целях увеличения урожайности путем повышения:
а) резистентности к патогенам;
б) резистентности к гербицидам;
в) устойчивости к температурам, различному качеству почв;
г) улучшения характеристик продуктивности (вкусовых качеств, облегчение усвояемости).
2) В фармакологических целях:
а) получение продуцентов терапевтических агентов;
б) продуцентов антигенов, обеспечения пищевой «пассивной» иммунизации.
Основные задачи ДНК-технологии в создании ГМ растений в современны' условиях развития сельского хозяйства и общества довольно многообразны и заключаются в следующем:
1. Получение гибридов (совместимость, мужская стерильность).
2. Рост и развитие растений (изменение габитуса растений – например, высоты, формы листьев и корневой системы и др.; изменение в цветении – например, строении и окраске цветков, времени зацветания).
3. Питание растений (фиксация атмосферного азота небобовыми растениями; улучшение поглощения элементов минерального питания; повышение эффективности фотосинтеза).
4. Качество продукции (изменение состава и/или количества сахаров и крахмала; изменение состава и/или количества жиров; изменение вкуса и запаха пищевых продуктов; получение новых видов лекарственного сырья; изменение свойств волокна для текстильного сырья; изменение качества и сроков созревания или хранения плодов).
5. Устойчивость к абиотическим факторам стресса (устойчивость к засухе и засолению, жароустойчивость; устойчивость к затоплению; адаптация к холоду; устойчивость к гербицидам; устойчивость к кислотности почв и алюминию; устойчивость к тяжелым металлам).
6. Устойчивость к биотическим факторам стресса (устойчивость к вредителям; устойчивость к бактериальным, вирусным и грибным болезням).
На практике среди признаков, контролируемых перенесенными генами, на первом месте стоит устойчивость к гербицидам. Доля устойчивых к вирусным, бактериальным или грибным болезням среди промышленно выращиваемых трансгенных растений – менее 1%.
Среди генов, определяющих устойчивость к гербицидам, уже клонированы гены устойчивости к таким гербицидам как глифосат (Раундап), фосфимотрицин (Биалафос), глифосимат аммония (Баста), сульфонилмочевинным и имидозолиновым препаратам. С использованием этих генов уже получены трансгенные соя, кукуруза, хлопчатник и тд. В России также проходят испытания трансгенные культуры, устойчивые к гербицидам. В Центре «Биоинженерия» создан сорт картофеля, устойчивый к Басте, проходящий в настоящее время полевые испытания.
Необходимость создания ГМО в современном мире связана с тем, что многие сорта характеризуются недостаточной приспособленностью к местным особенностям почвенно-климатических и погодных условий, технологиям возделывания (сортовой агротехнике) и требованиям рынка, нарушение принципов агроэкологического макро-, мезо– и микрорайонирования сельскохозяйственной территории. Односторонняя ориентация на «техногенную» интенсивность сортов и гибридов, способных обеспечить рост урожайности лишь при всевозрастающих затратах исчерпаемых ресурсов (минеральных удобрений, мелиорантов, пестицидов, орошений и пр.), неизбежно приводит к снижению коэффициентов ресурсной и энергетической эффективности, непропорциональному росту затрат невосполнимых ресурсов, загрязнению и разрушению природной среды.
Существенным направлением в получении ГМ растений являются попытки создать биотопливо. Проблема создания биотоплива возникла достаточно давно. Об этом мечтал еще Генри Форд. Будущий бензин можно будет извлекать из генетически модифицированных сои или кукурузы. Т.е. будут растения-фабрики по производству заданных веществ (например, упомянутого растительного масла, которое в недалеком будущем с успехом заменит нефть в качестве топлива). В результате резко сократятся посевные площади и воздействие добываемого топлива на окружающую среду. Переход к топливным плантациям должен начаться с биодизельных топлив – их молекулярная структура настолько близка к структуре некоторых растительных масел, что на первых порах можно будет обойтись и без генной инженерии.
Необходимо подчеркнуть, что с помощью генетической инженерии новые сорта не создают, а только улучшают их, делают более адаптированными к конкретным условиям разведения и задачам. То есть исходный сорт должен быть уже адаптирован к определенным условиям внешней среды, а также технологиям возделывания. Поэтому в комплексных селекционно-агротехнических программах должны быть изначально определены цели и этапы использования классических и биоинженерных методов управления наследственной изменчивостью при реализации той или иной морфофизиологической модели сорта (гибрида). Обычно районированные сорта, используемые для генно-инженерной работы, характеризуются идеальной агроэкологической «подогнанностью» его генома и цитоплазмы (плазмона) к конкретным условиям.
В принципе трансгенные растения должны заметно увеличить разнообразие сельскохозяйственных культур. Например, до сих пор селекция кукурузы в США основана на небольшом числе культивируемых сортов, и в результате применяемый генофонд довольно беден. Семена сортов, находящихся в семенных банках, практически не используются; для скрещивания применяют несколько высокоурожайных сортов. А если у нас есть гены, ответственные за необходимые свойства, то, вводя их в эти сорта, мы увеличим биоразнообразие используемых сортов.
Гпавная проблема природной генетической инженерии – ее медлительностьГенетической инженерией занимается и сама природа. За последние тысячелетия (с помощью искусственного отбора) она добилась немалого. Так, в частности, полагают, что вследствие генных мутаций и природной генной инженерии природа поставила на стол человеку массу новых продуктов, начиная от мягкой пшеницы (слияние трех геномов) и кончая кукурузой. Но как нормальному селекционеру спрессовать миллионы лет того, что делала природа, в десятилетия и даже годы? Как максимально сократить сроки? Способна ли справиться со всем этим генетика и селекция? Адаптивная система селекции растений, базирующаяся на мобилизации генофонда, управлении наследственностью, сортоиспытании и семеноводстве, обеспечивает повышение величины и качества урожая сельскохозяйственных культур на большей части земледельческой территории Земли. При этом именно селекционеры растений играют роль стратегов в улучшении сельскохозяйственных культур и обеспечении продовольственной безопасности, осваивая новые, в том числе и трансгенные, технологии. Поэтому ближайшая проблема в области селекции состоит в том, чтобы интегрировать и скооперировать усилия селекционеров и молекулярных биологов для решения общей задачи – повышения величины и качества урожая, ресурсо– и энергоэкономичности, экологической надежности, безопасности и рентабельности растениеводства.
Гибридизация, хотя до сих пор не вполне понятны ее молекулярные механизмы, играет важную роль в повышении эффективности сельского хозяйства. Так, при перекрестном опылении кукурузы образуются более сильные и урожайные гибриды. В компании «Plant Genetic System» в Генте такие гибриды получены не только для кукурузы, но и для рапса. Китай еще раз показал свои возможности, лежащие, по-видимому, в основе его тысячелетней устойчивости: независимо от политической системы в стране, он полностью обеспечил свою продовольственную безопасность.
Например, именно в Китае достигнуты большие успехи в селекции риса. Это прежде всего высокоурожайные гибриды на основе традиционных местных сортов, дающие 10-11 т/га вместо обычных 2,5-3. Фермеры довольны этими сортами, и сейчас их выращивают на огромных площадях в Китае, Вьетнаме и других странах Юго-Восточной Азии. Если бы все эти площади засевали одним сортом, то в скором времени он оказался бы очень восприимчивым к различным заболеваниям. Гибрид, полученный из различных ГМ сортов, стал важной вехой на пути к стабильно высоким урожаям риса, обеспечивающего продовольственную безопасность и благополучие половины населения Земли. В каждом районе, где выращивают свой сорт, не мешало бы использовать ГМ сорта и гибриды на их основе для получения широкого спектра высокоурожайных местных адаптированных сортов.
Анализ роста урожайности в XX веке показывает, что наряду с минеральными удобрениями, пестицидами и средствами механизации основную роль в этом процессе сыграло генетическое улучшение растений.
Так, вклад селекции в повышение урожайности важнейших сельскохозяйственных культур за последние 30 лет оценивают в 40-80%. Именно благодаря селекции на протяжении последних 50 лет, например в США, была обеспечена ежегодная прибавка урожая в размере 1-2% по основным полевым культурам. Имеются все основания считать, что в обозримом будущем роль биологической составляющей, и в первую очередь селекционного улучшения сортов и гибридов, в повышении величины и качества урожая будет непрерывно возрастать.
Однако для того, чтобы накормить мир, даже такие цифры сегодня малы. Селекционное конструирование нового сорта – трудный научный процесс. Это дело требует от селекционеров чудовищного упорства, десятков лет труда, а успех к ним чаще всего приходит только на склоне лет. Сколько селекционеров так и не дожили до времени, когда их усилия стали приносить плоды, а многие вообще остались без сортов. А проблема голода по-прежнему является главной для многих стран. Время не ждет, речь идет о миллионах живых людей, им требуется помочь.
Сложность путей создания сортов становится наглядной, если, например, учесть перечень требований к новому сорту пшеницы по классическому подсчету Николая Ивановича Вавилова. В число признаков, которым должен соответствовать новый сорт, входит сорок шесть пунктов.
Перечислим некоторые из них: форма зерна; высокий вес 1000 семян; крупный, при созревании не осыпающийся колос; не прорастающее на корню и в снопах зерно; прочная, неполегающая соломина; оптимальное соотношение массы зерна и соломины; иммунитет к вредителям, болезням; устойчивость к засухам; пригодность к механизированной уборке и т.д. и т.п.
И это по меркам прошедших десятилетий. Ныне же количество требований выросло еще больше. Чем больше признаков селекционер стремится объединить в одном сорте или гибриде, тем ниже темпы искусственного отбора, тем больше времени требуется для создания нового сорта.
Наличие отрицательных генетических и биоэнергетических по своей природе корреляций между признаками существенно снижает темпы создания новых сортов. Кроме этого, как считает Жученко (2001), повышение эффективности современного селекционного процесса предполагает контроль целого комплекса популяционно-генетических характеристик. К числу важнейших из них следует отнести: подбор пар для скрещивания с учетом их рекомбинационного потенциала, выбор направления скрещивания и условий получения гибридов F1 с учетом разной способности макро– и микроспор к переносу хромосомных аберраций, а также элиминации рекомбинантных гамет в процессе селективного избирательного оплодотворения; выбор фона для выращивания гибридов с учетом влияния факторов внешней среды на уровень и спектр ре комбинационной изменчивости на этапах предмейоза, мейоза и постмейоза; использование эффективных селективных сред для отбора рекомбинантных генотипов на клеточном уровне (In vitro), а также перемещающихся генетических элементов; переноса чужеродной ДНК путем трансгеноза; снижения селективной элиминации рекомбинантных гамет и зигот, и все же прежде всего требует особого международного внимания ряд экологических проблем, таких как засоление почв, вызванное плохо спроектированными и обслуживаемыми ирригационными системами, а также загрязнение почв и поверхностных водоемов, обусловленное в значительной мере избыточным использованием удобрений и химических средств защиты.
В то же время, геном растений имеет большой потенциал в отношении их совершенствования по разным признакам, в том числе и для роста урожайности. Это важный аспект, не принимаемый в расчет «зелеными». Они полагают, что продуктивность сельского хозяйства развивающихся стран и стран с переходной экономикой зависит от социальных и экономических условий, с чем трудно не согласиться, но не учитывают, что сегодня для повышения производительности этого уже недостаточно и нужны новые технологии, необходимые для реализации скрытого в сельскохозяйственных видах генетического потенциала. Лишь они позволят приблизиться к устойчивому сельскому хозяйству, устойчиво функционирующей промышленности и ответственно, к преодолению экологического кризиса.
Почти все наши традиционные продукты питания представляют собой результат естественных мутаций и генетической трансформации, которые служат движущими силами эволюции. Не будь этих основополагающих процессов, возможно, мы все еще оставались бы в донных осадках первобытного океана. К счастью, время от времени мать-природа брала на себя ответственность и совершала генетические модификации. Так, пшеница, которой принадлежит столь значительная роль в нашем современном рационе, приобрела свои нынешние качества в результате необычных (но вполне естественных) скрещиваний между различными видами трав. Сегодняшний пшеничный хлеб – результат гибридизации трех различных растительных геномов, каждый из которых содержит набор семи хромосом. В этом смысле пшеничный хлеб следовало бы отнести к трансгенным, или генетически модифицированным, продуктам. Еще один результат трансгенной гибридизации – современная кукуруза, появившаяся, скорее всего, благодаря скрещиванию видов Teosinte и Tripsacum.
Перспективы решения проблемы голода с использованием традиционных подходов селекции не внушают надежд. К 2015 г. около 2 млрд человек будут жить в бедности. Растениеводы давно пытались решить эту проблему, издавна занимаясь выведением новых, высокопродуктивных сортов, традиционными путями при помощи скрещивания и отбора, то есть путями естественными, главные недостатки которых – ненадежность и малая вероятность получения селекционером того, что он запланировал, и слишком большие временные затраты.