Текст книги "Кризис аграрной цивилизации и генетически модифицированные организмы"
Автор книги: Валерий Глазко
Жанр:
Биология
сообщить о нарушении
Текущая страница: 12 (всего у книги 19 страниц)
Термином «биотехнология» обозначают совокупность промышленных методов, использующих для производства живые организмы и биологические процессы. Биотехнологические приемы стары как мир – виноделие, хлебопечение, пивоварение, сыроварение основаны на использовании микроорганизмов и тоже относятся к биотехнологиям.
Современная биотехнология базируется на клеточной и генетической инженерии, что дает возможность получать ценные биологически активные вещества – антибиотики, гормоны, ферменты, иммуномодуляторы, синтетические вакцины, аминокислоты, а также пищевые белки, создавать новые сорта растений и породы животных. Основное преимущество применения новых подходов – уменьшение зависимости производства от природных ресурсов, использование экологически и экономически наиболее выгодных способов ведения хозяйства.
Создание генетически модифицированных растений позволяет многократно ускорять процесс селекции культурных сортов, а также получать культуры с такими свойствами, которые не могут быть выведены с использованием традиционных методов. Генетическая модификация сельскохозяйственных культур придает им устойчивость к пестицидам, вредителям, болезням, обеспечивая снижение потерь при выращивании, хранении и улучшении качества продукции.
Что характерно для второго поколения трансгенных культур, производящихся уже сейчас в промышленных объемах? Они обладают более высокими агротехническими характеристиками, то есть большей устойчивостью к вредителям и сорнякам, а следовательно, и более высокой урожайностью.
С точки зрения медицины немаловажные преимущества трансгенных продуктов состоят в том, что удалось, во-первых, значительно снизить остаточное количество пестицидов, благодаря чему появилась реальная возможность уменьшить химическую нагрузку на организм человека в условиях неблагоприятной экологической обстановки. Во-вторых, придать инсектицидные свойства растениям, что ведет к уменьшению их поражения насекомыми, а это многократно снижает пораженность зерновых культур плесневыми грибами. Известно, что они продуцируют микотоксины (в частности, фумонизины – природные контаминанты злаковых культур), токсичные для человека.
Таким образом, ГМ продукты как первого поколения, так и второго оказывают положительное влияние на здоровье людей не только опосредованно – через улучшение состояния окружающей среды, но и прямо – через снижение остаточного количества пестицидов и содержания микотоксинов. Неудивительно, что площади, занятые трансгенными культурами, год от года увеличиваются.
Но сейчас наибольшее внимание будет обращено на создание продуктов третьего поколения, с улучшенной или измененной пищевой ценностью, устойчивых к воздействию климатических факторов, засолению почв, а также имеющих пролонгированный срок хранения и улучшенные вкусовые свойства, характеризующихся отсутствием аллергенов.
Для культур четвертого поколения помимо вышеперечисленных качеств будут характерны изменение архитектуры растений (например, низкорослость), изменение времени цветения и плодоношения, что даст возможность выращивать тропические фрукты в условиях средней полосы, изменение размера, формы и количества плодов, повышение эффективности фотосинтеза, продуцирование пищевых веществ с повышенным уровнем ассимиляции, то есть лучше усваивающихся организмом.
Совершенствование методов генетической модификации, а также углубление знаний о функциях пищи и об обмене веществ в организме человека дадут возможность производить продукты, предназначенные не только для обеспечения полноценного питания, но и для дополнительного укрепления здоровья и профилактики заболеваний.
Растения-биореакторыОдним из перспективных направлений ДНК-технологий растений является создание растений-биореакторов, способных продуцировать белки, необходимые в медицине, фармакологии и др. К достоинствам растений-биореакторов относится отсутствие необходимости в кормлении и содержании, относительная простота создания и размножения, высокая продуктивность. Кроме того, чужеродные белки не вызывают иммунных реакций у растений, чего трудно добиться у животных.
Существует потребность в получении целого набора биологически активных белков, которые, из-за очень низкого уровня синтеза в специфических тканях или продуктах, недоступны для изучения по механизму действия, широкого использования или определения областей дополнительного применения. К таким белкам относится, например, лактоферрин, который находится в небольшом количестве в молоке млекопитающих, лейкоцитах крови.
Лактоферрин человека (hLF) перспективно использовать в качестве пищевой добавки и лечебного препарата для профилактики и лечения инфекционных заболеваний желудочно-кишечного тракта детей раннего возраста, повышения иммунного ответа организма при злокачественных и ряде вирусных (СПИД) заболеваний. Получение лактоферрина из молока крупного рогатого скота, вследствие его низкого содержания, приводит к высокой стоимости препарата. При введении кДНК гена лактоферрина в клетки табака получен ряд каллусных тканей, синтезирующих укороченный лактоферрин, антибактериальные свойства которого были значительно сильнее антибактериальных свойств нативного лактоферрина. Концентрация этого укороченного лактоферрина в клетках табака составляла 0,6-2,5%.
В геном растений встраиваются гены, продукты которых индуцируют у человека и животных иммунный ответ, например, на оболочечные белки возбудителей различных заболеваний, в частности, холеры, гепатита, диареи, а также на антигены плазматических мембран некоторых опухолей.
Создаются трансгенные растения, несущие гены, продуцирующие некоторые гормоны, необходимые для гормонотерапии людей и так далее.
Примером использования растений для создания вакцин являются работы, выполненные в Стенфордском университете. В работе были получены антитела к одной из форм рака с помощью модернизированного вируса табачной мозаики, в который был встроен гипервариабельный участок иммуноглобулина лимфомы. Растения, зараженные модернизированным вирусом, продуцировали антитела правильной конформации в достаточном для клинического применения количестве. 80% мышей, получавших антитела, пережили лимфому, в то время как все мыши, не получавшие вакцины, погибли. Предложенный метод позволяет быстро получать специфичные для пациента антитела в достаточном для клинического применения количестве.
Велики перспективы использования растений для производства антител. Кевин Узил с сотрудниками показал, что антитела, продуцируемые соей, эффективно защищали мышей от инфекции вирусом герпеса. В сравнении с антителами, продуцируемыми в культурах клеток млекопитающих, антитела, продуцируемые растениями, имели сходные физические свойства, оставались стабильными в человеческих клетках и не имели отличий в способности связывать и нейтрализовать вирус. Клинические испытания показали, что использование антител, продуцируемых табаком, эффективно препятствовало размножению мутантных стрептококков, вызывающих кариес.
Было проведено создание вакцины, продуцируемой картофелем, против инсулинозависимого диабета. В клубнях картофеля накапливался химерный белок, состоящий из субъединицы В токсина холеры и проинсулина. Наличие субъединицы В облегчает потребление данного продукта клетками, что делает вакцину в 100 раз более эффективной. Скармливание клубней с микрограммовыми количествами инсулина мышам, больным диабетом, позволяло затормозить прогрессирование болезни.
Генные технологии в борьбе с загрязнением окружающей среды. ФиторемедиацияСвоими действиями человек вмешался в ход эволюционного развития жизни на Земле и разрушил независимое от человека существование биосферы. Но он не сумел отменить управляющие биосферой фундаментальные законы и освободиться от их влияния.
Возрождаясь после очередного катаклизма из сохранившихся очагов, приспосабливаясь и эволюционируя, жизнь, тем не менее, во все времена имела основное направление развития. Оно определялось законом исторического развития Рулье, согласно которому в рамках прогресса жизни и необратимости эволюции все стремится к независимости от условий среды. В историческом процессе такое стремление реализуется путем усложнения организации, выражающейся в нарастании дифференциации структуры и функций. Таким образом, на каждом очередном витке спирали эволюции появляются организмы с усложняющейся нервной системой и ее центром – головным мозгом. Ученые-эволюционисты XIX в. назвали это направление эволюции «цефализацией» (от греческого «цефалон» – мозг) Однако цефализация приматов и усложнение их организма в конечном итоге поставили человечество как биологический вид на грань исчезновения согласно биологическому правилу ускорения эволюции, по которому усложнение биологической системы означает сокращение средней продолжительности существования вида и возрастание темпов его эволюции. Например, средняя продолжительность существования вида птиц составляет 2 млн. лет, млекопитающих – 800 тыс. лет, предковых форм человека – 200-500 тыс. лет. Современный подвид человека существует, по некоторым представлениям, всего от 50 до 100 тыс. лет, но многие ученые считают, что его генетические возможности и резервы исчерпаны (Длексеенко, Кейсевич, 1997).
На путь, усиливающий конфронтацию с биосферой и ведущий к катастрофе, предки современного человека ступили примерно 1.5-3 млн. лет тому назад, когда впервые начали пользоваться огнем. С этого момента пути человека и биосферы разошлись, началось их противостояние, итогом которого может явиться коллапс биосферы или исчезновение человека как вида.
Отказаться от чего-либо из достижений цивилизации, даже если они гибельны, человечество не может: в отличие от животных, использующих лишь возобновляемые источники энергии, причем в количествах, адекватных способности биосферы к самовоспроизведению биомассы, человечество может существовать, используя не столько возобновляемые, сколько не возобновляемые энергоносители и источники энергии. Новые изобретения в данной области только усиливают это противостояние.
Одним из новейших направлений использования трансгенных растений является их применение для фиторемедиации – очистки почв, фунтовых вод и т.п. – от загрязнителей: тяжелых металлов, радионуклидов и других вредных соединений.
Загрязнение окружающей среды природными веществами (нефтью, тяжелыми металлами и т.д.) и синтетическими соединениями (ксенобиотиками), часто токсичными для всего живого, год от года усиливается. Как предотвратить дальнейшее зафязнение биосферы и ликвидировать его существующие очаги? Один из выходов – использование генных технологий. Например, живые организмы, прежде всего микроорганизмы. Этот подход получил название «биоремедиация» – биотехнология, направленная на защиту окружающей среды. В отличие от промышленных биотехнологий, главная цель которых – получить полезные метаболиты микроорганизмов, борьба с загрязнениями неизбежно связана с «выпуском» микроорганизмов в окружающую среду, что требует углубленного понимания их взаимодействия с нею. Микроорганизмы производят биодеградацию – разрушение опасных соединений, не являющихся для большинства из них обычным субстратом. Биохимические пути деградации сложных органических соединений могут быть весьма протяженными (например, нафталин и его производные разрушаются под действием дюжины разных ферментов).
Деградацию органических соединений у бактерий чаще всего контролируют плазмиды. Их называют плазмидами деградации, или D-плазмидами. Они разлагают такие соединения, как салицилат, нафталин, камфора, октан, толуол, ксилол, бифенил и тд. Большинство D-плазмид выделено в почвенных штаммах бактерий рода псевдомонад (Pseudomonas). Но есть они и у других бактерий: Alcalkjenes, Flavobacterium, Artrobacter и тд. У многих псевдомонад обнаружены плазмиды, контролирующие устойчивость к тяжелым металлам. Почти все D-плазмиды, как говорят специалисты, конъюгативны, т.е. способны самостоятельно переноситься в клетки потенциального реципиента.
D-плазмиды могут контролировать как начальные этапы разрушения органического соединения, так и полное его разложение. К первому типу относится плазмида ОСТ, контролирующая окисление алифатических углеводородов до альдегидов. Содержащиеся в ней гены управляют экспрессией двух ферментов: гидроксилазы, переводящей углеводород в спирт, и алкогольдегидрогеназы, окисляющей спирт в альдегид. Дальнейшее окисление осуществляют ферменты, за синтез которых «отвечают» гены хромосом. Впрочем, большинство D-плазмид принадлежат ко второму типу.
Устойчивые к ртути бактерии экспрессируют ген mеr А, кодирующий белок переноса и детоксикации ртути. Модифицированную конструкцию гена mеr А использовали для трансформации табака, рапса, тополя, арабидопсиса. В гидропонной культуре растения с этим геном извлекали из водной среды до 80% ионов ртути. При этом рост и метаболизм трансгенных растений не подавлялись. Устойчивость к ртути передавалась в семенных поколениях.
При интродукции трех модифицированных конструкций гена mеr А в тюльпанное дерево (Liriodendron tulipifera) растения одной из полученных линий характеризовались быстрым темпом роста в присутствии опасных для контрольных растений концентраций хлорида ртути (HgCI2). Растения этой линии поглощали и превращали в менее токсичную элементарную форму ртути и испаряли до 10 раз больше ионной ртути, чем контрольные растения. Ученые полагают, что элементарная ртуть, испаряемая трансгенными деревьями этого вида, будет тут же рассеиваться в воздухе.
Тяжелые металлы – составная часть загрязнителей земель, используемых в сельскохозяйственном производстве. В случае с кадмием известно, что большинство растений накапливают его в корнях, тогда как некоторые растения, такие как салат-латук и табак, накапливают его в основном в листьях. Кадмий поступает в почву главным образом из промышленных выбросов и как примесь в фосфорных удобрениях.
Одним из подходов к снижению поступления кадмия в организм человека и животных может быть получение трансгенных растений, накапливающих меньшее количества этого металла в листьях. Данный подход представляет ценность для тех видов растений, листья которых используют в пищу или для корма животным.
Можно также использовать металлотионеины – небольшие богатые цистеином белки, способные связывать тяжелые металлы. Показано, что металлотионеин млекопитающих является функциональным в растениях. Получены трансгенные растения, экспрессирующие гены металлотионеинов, и показано, что эти растения были более устойчивыми к кадмию, чем контрольные.
Трансгенные растения с hMTII геном млекопитающих имели на 60-70% ниже концентрацию кадмия в стеблях по сравнению с контролем, и перенос кадмия из корней в стебли также был снижен – только 20% поглощенного кадмия было транспортировано в стебли.
Известно, что растения аккумулируют тяжелые металлы, извлекая их из почвы или воды. На этом свойстве основана фиторемедиация, подразделяемая на фитоэкстракцию и ризофильтрацию. Под фитоэкстракцией понимают использование быстрорастущих растений для извлечения тяжелых металлов из почвы. Ризофильтрация – это абсорбция и концентрация корнями растений токсичных металлов из воды. Растения, вобравшие в себя металлы, компостируют либо сжигают. Растения заметно различаются по аккумулирующей способности. Так, брюссельская капуста может накапливать до 3,5% свинца (от сухого веса растений), а ее корни – до 20%. Это растение успешно аккумулирует также медь, никель, хром, цинк и тд. Фиторемедиация перспективна и для очистки почвы и воды от радионуклидов. А вот токсичные органические соединения растениями не разлагаются, здесь перспективнее использовать микроорганизмы. Хотя некоторые авторы настаивают на снижении концентрации органических загрязнений при фиторемедиации, разрушают их в основном не растения, а микроорганизмы, обитающие в их ризосфере.
Симбиотическому азотфиксатору люцерны Rhlzobium melitotj был встроен ряд генов, осуществляющих разложение бензина, толуина и ксилена, содержащихся в горючем. Глубокая корневая система люцерны позволяет очищать почву, загрязненную нефтепродуктами, на глубину до 2-2.5 метров.
Следует помнить, что большая часть ксенобиотиков появилась в окружающей среде в последние 50 лет. Но в природе уже существуют микроорганизмы, способные к их утилизации. Это говорит о том, что в популяциях микроорганизмов достаточно быстро происходят генетические события, определяющие их эволюцию точнее, микроэволюцию. Поскольку ксенобиотиков в связи с нашей техногенной цивилизацией становится все больше, важно иметь общее представление о метаболизме микроорганизмов, и об их метаболических возможностях. Все это потребовало развитие новой науки – метаболомики. Основана она на том, что бактерии могут приобретать способность к переработке новых соединений в результате мутаций. Как правило, для этого требуется несколько последовательных мутаций или встройка новых генных систем из уже существующих у других видов микроорганизмов. Например, для разложения устойчивого галогенорганического соединения нужна генетическая информация, находящаяся в клетках разных микроорганизмов. В природе такой обмен информацией происходит за счет горизонтального переноса генов, а в лабораториях используются методы ДНК-технологий, взятые из природы.
Дальнейшее развитие фито– и биоремедиации – это комплексная проблема, связанная, в частности, с использованием растений и ризосферных микроорганизмов. Растения будут с успехом извлекать из почвы тяжелые металлы, а ризосферные бактерии – разлагать органические соединения, повышая эффективность фиторемедиации, способствуя росту растений, а растения – развитию обитающих на их корнях микроорганизмов.
Загрязнение окружающей среды можно считать заболеванием экосистем, а биоремедиацию – лечением. Ее следует рассматривать и как профилактику многочисленных заболеваний человека, вызываемых загрязнением среды. По сравнению с другими методами очистки, этот гораздо дешевле. При рассеянных загрязнениях (пестициды, нефть и нефтепродукты, тринитротолуол, которым загрязнены многочисленные земли), ему нет альтернативы. В очистке окружающей среды от загрязнений важно правильно выделить приоритеты, минимизируя риски, связанные с тем или иным загрязнением, и учитывая свойства конкретного соединения и его влияние прежде всего на здоровье человека. Необходимы законодательные акты и правила, регламентирующие интродукцию в окружающую среду ГМ микроорганизмов, с которыми связаны особые надежды на очистку от любых загрязнителей. В отличие от промышленной биотехнологии, где можно строго контролировать все параметры технологического процесса, биоремедиация проводится в открытой системе, где такой контроль затруднен. В известной мере это всегда «ноу-хау», своего рода искусство.
В полной мере преимущество микроорганизмов при очистке от нефтепродуктов удалось продемонстрировать, когда после катастрофы танкера 5000 м3 нефти вылилось в море у берегов Аляски. Около 1,5 тыс. км береговой линии оказалось загрязнено нефтью. К механической очистке привлекли 11 тыс. рабочих и разнообразное оборудование (это обходилось в 1 млн долл. в день). Но был и другой путь: параллельно для очистки берега в почву вносили азотное удобрение, что ускорило развитие природных микробных сообществ. Это в 3-5 раз ускорило разложение нефти. В итоге загрязнение, последствия которого, по расчетам, могли сказываться и через 10 лет, полностью устранили за 2 года, затратив на биоремедиацию менее 1 млн долл.
Развитие биоремедиации, технологий и способов ее применения требуют междисциплинарного подхода и сотрудничества специалистов в области генетики и молекулярной биологии, экологии, и других дисциплин. Таким образом, направления использования генной инженерии очень разнообразны и обширны, а некоторые из них фантастичны и в то же время весьма перспективны по достижимости результатов.
Исследование реакции живых организмов на изменения окружающей среды чрезвычайно важно для оценки влияния этих изменений, особенно имеющих антропогенное происхождение, на биоразнообразие, сохранение которого является важнейшей задачей человеческой цивилизации.
По данным Организации экономического сотрудничества и развития (ОЭСР), потенциальный рынок биоремедиации составляет более 75 млрд долл. Ускоренное внедрение биотехнологий для защиты окружающей среды вызвано, в частности, тем, что они гораздо дешевле других технологий очистки. По мнению ОЭСР, биоремедиация имеет локальное, региональное и глобальное значение, и для очистки будут все шире применять как природные организмы, так и ГМО.