Текст книги "Нобелевские премии. Ученые и открытия"
Автор книги: Валерий Чолаков
Жанр:
Научпоп
сообщить о нарушении
Текущая страница: 19 (всего у книги 29 страниц)
Информационные молекулы
В конце 1868 г. швейцарский врач Фридрих Мишер выделил из ядер лейкоцитов неизвестное вещество, которое назвал нуклеином. Примерно в те же годы Грегор Мендель тщетно старался убедить ученый мир в значении своей работы. До середины нашего столетия никто не предполагал, что эти два открытия столь тесно связаны между собой. Работа Менделя пребывала в забвении до 1901 г., а результаты исследований Мишера были опубликованы в подробном изложении лишь после его смерти – в 1890 г. Незадолго до этого, в 1889 г., немецкий химик Рихард Альтман предложил назвать нуклеин Мишера нуклеиновой кислотой.
Мишер сделал свое открытие в лаборатории известного исследователя Феликса Гоппе-Зейлера. Оно было настолько необычным, что этот ученый, не поверив Мишеру, поручил своим сотрудникам проверить его. Это задержало на два года публикацию статьи Мишера, озаглавленной «О химических свойствах клеток гноя», в которой он описывал свое открытие [26]26
Статьи и необычайно интересная переписка Ф. Мишера изданы на русском языке: Мишер Ф. Труды по биохимии. – М.: Наука, 1985. – Прим. ред.
[Закрыть].
В 1879 г. в лаборатории Гоппе-Зейлера начал работать Альбрехт Коссель. В течение десяти последующих лет он выделил основные составные части нуклеина: содержащие азот вещества – аденин и гуанин, фосфорную кислоту и соединения из группы углеводов. Работы Косселя над нуклеиновыми кислотами явились одним из его достижений, за которые он был удостоен в 1910 г. Нобелевской премии по медицине и физиологии.
До 40-х годов исследование нуклеиновых кислот считалось весьма скучным и вообще бесперспективным занятием. Так продолжалось до 1944 г., когда Освальд Теодор Эйвери, Колин Мак-Леод и Маклин Мак-Карти установили, что дезоксирибонуклеиновая кислота (ДНК) является носителем генетической информации.
Это – одно из крупнейших открытий в современной биологии. Его история берет начало в 1928 г., когда Фредерик Гриффит в ходе своих опытов смешал невирулентные пневмококки с убитыми болезнетворными бактериями того же вида. Он заметил, что происходит какое-то взаимодействие, в результате которого живые микроорганизмы приобретают вирулентные свойства. В 1944 г. Эйвери с сотрудниками повторили этот эксперимент, используя чистую ДНК, – они обнаружили то же самое превращение. Это убедительно доказывало, что нуклеиновая кислота сохраняет и передает признаки вирулентности и вообще наследственные признаки.
Сообщение о том, что нуклеиновые кислоты выполняют столь важную функцию, сразу привлекло к себе внимание ученых. В 1948 г. исследованием нуклеиновых кислот занялся известный английский химик-органик Александер Тодд. В течение десяти лет подробно изучая первичную структуру нуклеиновых кислот, он выяснил, каким способом связываются четыре азотных основания – аденин, гуанин, цитозин, тимин (в РНК вместо тимина содержится урацил) – с пятиатомным кольцом сахара рибозы или дезоксирибозы и молекулой фосфорной кислоты. Комплекс из азотного основания (пуринового или пиримидинового), углевода (рибозы или дезоксирибозы) и остатка фосфорной кислоты называется нуклеотидом. Эти атомные соединения не только являются составной частью нуклеиновых кислот, но и входят в состав ферментов в качестве активных групп – коферментов. За свои исследования нуклеотидов А. Тодд был удостоен в 1957 г. Нобелевской премии по химии.
Еще в 1938 г. Уильям Астбери, автор термина «молекулярная биология», получил со своим сотрудником Флорином Беллом рентгенограммы ДНК и установил, что азотные основания в этой длинной молекуле должны располагаться, как пластинки, одно над другим. Через 10 лет Эрвин Чаргафф сформулировал знаменитые «правила Чаргаффа» – общее количество гуанина и аденина из группы пуринов в молекуле ДНК равно количеству цитозина и тимина из группы пиримидинов. Указанные два типа соединений различаются по форме и размеру своих кольцевидных структур. Эти данные имели очень большое значение для работ, которые проводили в Кавендишской лаборатории Кембриджского университета Фрэнсис Харри Комптон Крик и Джеймс Дьюи Уотсон.
В мае 1951 г. Уотсон, молодой исследователь и ученик Сальвадора Эдуарда Лурии, встретившись в Копенгагене с Морисом Уилкинсом из Лондонского университета, ознакомился с его рентгенограммой кристаллов ДНК. Уотсона это очень заинтересовало, и по его просьбе Лурия договорился о его работе у Джона Кендрю в Кавендишской лаборатории. В то время М.Ф. Перуц, Дж. К. Кендрю и многие другие ученые занимались рентгеноструктурным анализом сложных биомолекул, используя методы Дж. Бернала и Д. Кроуфут-Ходжкин и проводя расчеты с. помощью первых, еще несовершенных ЭВМ. В Кембридже Уотсон познакомился, с Фрэнсисом Криком; они быстро нашли общий язык и поставили перед собой сложную задачу – определить структуру ДНК. В 1952 г. этим вопросом занимались в. Лондонском университете Розалинд Франклин и Морис Уилкинс. Они получили довольно хорошие рентгенограммы, но не знали точно, как их интерпретировать. Этот вопрос пытались, разрешить многие исследователи, в том числе и известный Лайнус Карл Полинг, – но без особого успеха.
История открытия структуры ДНК описана Уотсоном в его замечательной книге «Двойная спираль», изданной в 1968 г. В ней он вспоминает о целом ряде счастливых обстоятельств, которые помогли ему и Крику первыми разгадать структуру ДНК. Одно из таких обстоятельств—общение со специалистами, из других областей науки. В разговорах с химиками. Уотсон узнал, что структурные формулы, которыми пользовались они с Криком и их «конкуренты» в Лондоне, весьма схематичны и вряд ли: отвечают истине. Поняв подлинное строение пуринов и пиримидинов, Уотсон и Крик установили, что они тесно связаны между собой, и если, принять, что молекула ДНК состоит из двух цепей, то можно хорошо объяснить и правила Чаргаффа. Цепи должны быть закрученными одна вокруг другой, так чтобы сохранялись углы между различными группами атомов; таким образом и появилась на свет структура знаменитой двойной спирали, в которой связанные между собой пурины и пиримидины создают систему, напоминающую ступеньки лестницы.
Уже в первом своем сообщении в 1953 г. Крик и Уотсон отметили, что структура двойной спирали ДНК очень хорошо объясняет процесс «размножения» этой молекулы. Когда две цепи ее разъединяются, к ним могут прикрепляться новые нуклеотиды, и около каждой из старых цепей образуется новая, точно ей соответствующая. Это было поистине замечательное открытие. Впервые была найдена структура, которая могла самовоспроизводиться и, таким образом, осуществлять основную жизненную функцию. Великолепные результаты Уотсона и Крика были бы невозможны без точных рентгенограмм Р. Франклин и М. Уилкинса. Ученые, открывшие знаменитую двойную спираль ДНК, в которой содержится генетическая информация о жизни, стали в 1962 г. лауреатами Нобелевской премии. Физики Крик и Уилкинс и биохимик Уотсон получили премию по физиологии и медицине за открытие структуры нуклеиновых кислот и ее роли в переносе информации в живом веществе. К сожалению, Франклин не оказалась в числе лауреатов – она умерла в 1957 г.
Наряду с химическими и физическими исследованиями нуклеиновых кислот в 40—50-е годы ставились опыты, целью которых было выяснение механизма их биосинтеза. В 1946 г. в Нью-Йоркском университете встретились Северо Очоа, баск из Испании, и Артур Корнберг из Нью-Йорка, с тех пор началось их длительное и плодотворное сотрудничество. Очоа работал с РНК бактерий, вызывающих уксуснокислую ферментацию, и Корнберг – с ДНК известной бактерией коли, обитающей в пищеварительном тракте человека. Ученым удалось обнаружить ферменты, которые синтезируют длинные цепи этих биополимеров – ДНК и РНК: достаточно было поместить в подходящую среду четыре основных нуклеотида и добавить фермент полимер азу. Необходимо также еще и небольшое количество готовой нуклеиновой кислоты. В этих условиях начинался синтез ДНК или РНК «ин витро» – в пробирке.
Результаты оказались весьма впечатляющими: впервые нуклеиновая кислота была синтезирована вне живой клетки. Сам Корнберг сравнивал это достижение с открытием Бухнером внеклеточного брожения. Еще одна функция живого вещества была выведена из клетки, и стало возможным изучать ее в лабораторных условиях. За открытие механизмов биосинтеза РНК и ДНК С. Очоа и А. Корнбергу была присуждена в 1959 г. Нобелевская премия по физиологии и медицине.
Еще в 40-х годах биохимикам было ясно, что последовательность нуклеотидов определяет систему расположения аминокислот в белковой молекуле. Все белки построены из полипептидных цепей, которые включают 20 аминокислот. В ДНК, однако, только 4 нуклеотида. Очевидно, эти 20 аминокислот представляются какими-то различными комбинациями нуклеотидов. Этим вопросом занялся известный физик Г.А. Гамов. Он показал, что при сочетании четырех нуклеотидов тройками получаются 64 различные комбинации, чего вполне достаточно для кодирования любых белков. Идея выглядела привлекательной, но в 1954 г., когда Гамов опубликовал свою работу, было совершенно неясно, как ее можно доказать. В 1958 г. Эдуард Тейтем в своей Нобелевской лекции выразил надежду, что кто-нибудь из более молодых слушателей доживет до расшифровки генетического кода. Но реальность нередко опережает мечты: это произошло уже в 1961 г.
В этом году Маршалл Уоррен Ниренберг и Генрих Маттеи искусственно синтезировали РНК, состоящую только из одного нуклеотида. С ее участием они осуществили внеклеточный синтез белковой молекулы и получили полипептид лишь из одной аминокислоты. Оказалось, например, что РНК, построенная из урацила и содержащая, естественно, лишь триплет УУУ, кодирует синтез полипептида, состоящего только из аминокислоты – фенилаланина. Так этот удивительно простой и остроумный метод положил начало расшифровке генетического кода. В данной работе принимали участие Северо Очоа и индийский ученый Хар Гобинд Корана, ученик Владимира Прелога из Цюриха и Александера Тодда из Кембриджа.
Большой заслугой Кораны явилась разработка методов синтеза различных молекул ДНК и РНК с определенной последовательностью кодирующих триплетов. Искусственное синтезирование нуклеиновых кислот позволило к. 1966 г. раскрыть значение всех 64 комбинаций. Оказалось, что некоторые аминокислоты кодируются несколькими триплетами. В разных организмах используются различные триплеты, или, как говорят биохимики, ДНК пользуется различными «диалектами». Только три кодона (триплета) оказались бессмысленными: они не кодируют аминокислоту, но зато играют роль «знаков препинания». Когда процесс записи информации доходит до такого «бессмысленного» кодона, синтез белка прекращается.
После раскрытия генетического кода, когда стало ясно, как записывается наследственная информация, остался неразрешенным вопрос о «переводе» этой информации с языка ДИК на язык белков. Этой проблемой занялся Роберт Уильям Холли, ученик Винсента дю Виньо из Корнеллского университета.
Еще в начале 40-х годов Торбьёрн Касперсон в Швеции и Жан Браше в Бельгии установили, что в тканях, где идет активный синтез белков, наблюдается повышенное содержание РНК. В 50-е годы некоторые ученые, исследуя этот вопрос, открыли рибонуклеиновые кислоты, молекулы которых имеют сравнительно небольшие массы и размеры. В 1957 г. Фрэнсис Крик разработал теорию, согласно которой на нуклеиновой матрице должны выстраиваться по определенной системе какие-то вещества, которые и переносят аминокислоты в белковую молекулу. Так возникла гипотеза транспортной РНК.
Теория исходила из необходимости наличия 20 различных транспортных РНК, соответствующих 20 аминокислотам. Р. Холли поставил перед собой задачу – исследовать одну из них. С помощью специальных ферментов (рибонуклеаз) он разделял молекулу РНК на небольшие фрагменты и определял их нуклеотидную последовательность. Используя различные ферменты, Холли синтезировал все более крупные фрагменты и к 1965 г. определил структуру транспортной РНК, переносящей аланин в клетках дрожжей.
Метод Холли был сразу же взят на вооружение учеными, и вскоре удалось раскрыть структуры других транспортных рибонуклеиновых кислот. Оказалось, что молекула этих веществ имеет на одном конце триплет нуклеотидов (антикодон), который точно отвечает триплету матрицы. Так, транспортные РНК встречаются по определенной системе на длинной молекуле информационной РНК, являющейся копией соответствующего гена из молекулы ДНК. Транспортные РНК несут на своем хвосте различные аминокислоты, которые также упорядочиваются по определенной системе и с помощью ферментов соединяются в цепь. Этот процесс осуществляется в рибосомах – клеточных «фабриках» по производству белковых молекул.
Обширные и глубокие исследования Ниренберта, Кораны и Холли внесли ясность в вопрос о способе записи и использования генетической информации. В 1968 г. эти трое ученых были удостоены Нобелевской премии по физиологии и медицине за интерпретацию генетического кода и его функций в синтезе белка.
Совершенствуя свои методы синтеза полинуклеотидных цепей, Корана сумел получить в 1970 г. первый искусственный ген (триплет). Это сыграло важную роль в зарождении генной инженерии. Синтезирование стало возможным лишь после того, как была определена последовательность нуклеотидов в гене. Эта сложнейшая задача в исследовании нуклеиновых кислот нашла свое решение лишь в последнее время.
Молекулярная генетика
В 1935 г. в Париж к известному генетику Борису Эфрусси прибыл молодой исследователь из Калифорнийского технологического института. Это был Джордж Уэлс Бидл. В Париже он вместе со своим французским коллегой начал эксперименты в области, пограничной между генетикой и биохимией. Маленькая мушка дрозофила по-прежнему оставалась для генетиков предпочтительным объектом исследования. Ученые решили проследить, как наследуется у нее глазной пигмент. Эти эксперименты побудили Бидла продолжить изучение биохимических основ наследственности, и это сделало его одним из пионеров зародившейся в 40-х годах новой науки – молекулярной генетики.
В 1937 г. Бидл уехал в Станфордский университет, где встретился с Эдуардом Тейтемом. Там началось их плодотворное сотрудничество. Прежде всего они пришли к заключению, что дрозофила – слишком сложный объект для исследования, и в качестве такового избрали плесневый грибок – нейроспору. Тейтем, работавший над диссертацией по обмену веществ у бактерий, как специалист-микробиолог, знал, что этот плесневый грибок может расти в искусственной среде, состоящей из сахара, соли и витамина Н. В ходе опытов грибок облучали рентгеновскими лучами, получая различные мутантные формы. Наиболее характерной особенностью этих мутантов было то, что они уже не могли расти в такой бедной средз требовались добавки новых веществ. Это было истолковано как изменение ферментативных систем организма.
В свое время работы Г. Дж. Мёллера показали, что рентгеновское излучение вызывает изменения в генетическом материале. Теперь из опытов Бидда и Тейтема следовало, что мутации в генах непосредственно влияют на ферментативные системы организма. Это явилось первым доказательством того, что гены регулируют биохимические функции живых существ. Обобщая результаты своих исследований, Бидл и Тейтем в 1944 г. выдвинули широкоизвестную ныне концепцию «один ген – один фермент».
В 1958 г. Нобелевский комитет при Каролинском институте принял решение присудить Бидлу и Тейтему премию по физиологии и медицине за открытие влияния генов на обмен веществ. Вместе с ними Нобелевскую премию получил молодой исследователь Джошуа Ледерберг, который рано приобрел известность своими исследованиями по генетике бактерий. В 1946 г. он стал сотрудничать с Тейтемом в Йельском университете и за два года подготовил и защитил докторскую диссертацию.
Крупное открытие Ледерберга связано с исследованием механизмов конъюгации у бактерий: при совместном выращивании бактериальные клетки часто соприкасаются и обмениваются генетическим материалом. Ледерберг и Тейтем поставили опыты по совместному выращиванию мутантов бактерии кишечной палочки – одного из любимых объектов исследования для микробиологов. Опыты строились по тому же принципу, что и прежде: получали так называемые ауксотрофные мутанты, которые не способны уже расти в бедной питательными веществами среде, а испытывают потребность в специальных добавках. Ученые обнаружили, что при совместном выращивании таких бактерий появляются гибриды, объединяющие в себе признаки «родителей». Наблюдаемый результат объяснили конъюгацией клеток – своеобразным процессом полового размножения у бактерий.
При исследованиях под микроскопом Ледерберг заметил, что в точке соприкосновения двух клеток их стенки исчезают и образуется протоплазменный мостик, по которому ДНК переходит из одной бактерии в другую. Это наблюдение привело Ледерберга к интересной идее: а что, если попробовать встряхнуть чашку с бактериями? Ведь в таком случае связь между бактериями должна прекратиться преждевременно и обмен ограничится лишь частью генетического материала. Исследуя затем свойства полученных штаммов гибридов, можно точно определить, какие гены переходят из одной бактерии в другую за тот или иной промежуток времени. Этот оригинальный метод дал возможность Ледербергу составить генетические карты микроорганизмов.
В зависимости от строения клеток живые организмы делятся на две крупные группы. Те, что устроены просто, называются прокариотами: их клетки не имеют, оформленного ядра и ДИК у них находится в клетке в необособленном виде. К этой группе относятся бактерии. Более сложные организмы, эукариоты, имеют клеточное ядро, которое отделено мембраной от клеточной плазмы и содержит ДНК, связанную специфическими белками в хромосомы. Бактериальную ДНК иногда также называют хромосомой. Благодаря своему простому устройству генетический аппарат бактерий легче поддается исследованию, и это позволило французским ученым Франсуа Жакобу и Жаку Люсьену Моно изучить механизм регуляции генной активности.
В молодости ученый-медик Франсуа Жакоб мечтал стать хирургом. Но началась вторая мировая война, и ему пришлось поехать военным врачом в Африку. В 1944 г. при высадке десанта в Нормандии он был тяжело ранен, и это окончательно расстроило все его планы. Тогда Жакоб решил заняться наукой. В 1950 г. он попадает в Институт Пастера к известному микробиологу и вирусологу Андре Мишелю Львову. Там уже работал Моно, ученик Львова и Эфрусси.
Одним из важнейших вопросов, над которыми трудились в то время биологи, касался лизогении у некоторых бактерий. Это странное явление заключалось в том, что на плотных колониях бактерий неожиданно появлялись светлые пятна, вызванные разложением клеток. Андре Львов с сотрудниками установил, что ультрафиолетовое излучение может вызывать процесс распада бактерий, имеющих в своей наследственности фактор лизогенности. Это открытие позволило французскому ученому впервые правильно объяснить явление лизогении. А.М. Львов доказал, что в клетках лизогенных бактерий существует некая неинфекционная форма вируса (профаг), которая не размножается там, а прикрепляется к бактериальной ДНК. Становясь частью генетического аппарата, он влияет на механизм генной регуляции, вследствие чего теряет свою активность. Под внешним воздействием (например, ультрафиолетового излучения) профаг может оторваться от бактериальной хромосомы и превратиться в активный вирус, который и вызывает гибель клетки. Теория Львова представляла большой интерес, ибо впервые ставился вопрос о регуляции генной активности. За эту работу А.М. Львов был удостоен в 1965 г. Нобелевской премии по физиологии и медицине.
Еще в 40-е годы высказывались предположения, что, возможно, функции генов регулируют гистоны (белки, связанные с ДНК). В 1958 г. Жакоб и Моно, изучая образование в бактериальной клетке фермента бета-галактозидазы, обнаружили аналогию между этими процессами и процессами ингибирования у лизогенных бактерий. Постепенно накапливая факты, они в 1961 г. выдвинули свою теорию регуляции генной активности.
Согласно этой теории, в ДНК кроме структурных генов, несущих информацию о процессах биосинтеза, есть гены-регуляторы и гены-операторы. Ген-регулятор кодирует синтезирование специфического вещества – репрессора. Оно присоединяется к гену-регулятору, который непосредственно регулирует деятельность структурных генов. В результате прекращается работа генов, а следовательно, и синтез белка. Если, однако, в клетку попадает некое вещество, индуктор, для построения которого нужен фермент, то репрессор соединяется с ним, освобождая ген-оператор. Начинается синтезирование информационной РНК, служащей матрицей для производства нужного белка. После того как вещество-индуктор полностью израсходуется, репрессор, непрерывно производимый геном-регулятором, вновь связывается с геном-оператором – и процесс прекращается. Это хороший пример использования принципов обратной связи на молекулярном уровне.
На основе своей теории Жакоб и Моно смогли более детально объяснить лизогению. Ранее уже было известно, что гены бактериофага читаются в различной последовательности. Эти ученые показали, что при блокировании первых генов полностью прекращается синтез вирусных частиц и вирусная ДНК прикрепляется к бактериальной хромосоме. При этом остальные гены вируса могут и не быть блокированными, а функционировать в бактериальной клетке, придавая ей новые свойства. Это обстоятельство используется сегодня генной инженерией.
Идеи Жакоба и Моно оказали в 60-е годы большое влияние на развитие молекулярной биологии. В 1965 г. они вместе с А.М. Львовым получили Нобелевскую премию по физиологии и медицине за открытия, связанные с генетической регуляцией синтеза белка у бактерий.
В возникновении молекулярной генетики как науки большую роль сыграли исследования простейших живых организмов – вирусов. Особо важным моментом в развитии этой науки было изучение бактериофагов – вирусов бактерий. Исключительные заслуги в этой области имеют: Макс Дельбрюк, Алфред Дей Херши и Сальвадор Эдуард Лурия – физик, биохимик и врач, которые превратили учение о бактериофагах в науку.
Еще в 1939 г. Дельбрюк вместе с Эмори Леоном Эллисом изучили процесс размножения фагов. Было обнаружено, что он состоит из трех периодов: прикрепление фага к бактериям, скрытый период, в течение которого фаг размножается в клетке, и, наконец, период распада, ведущий к уничтожению бактерии и выделению в большом количестве новых фагов. Этот процесс наглядно показывал, как внешнее генетическое влияние может коренным образом изменить функции живой клетки. Еще в середине 30-х годов было известно, что вирусы являются нуклеопротеидами, подобными хромосомам высших организмов. Поэтому они представляли большой интерес в качестве модели для изучения функций гена. Именно это и побудило Дельбрюка заняться в 1939 г. бактериофагами.
Полный цикл размножения бактериофагов продолжается около 15 мин, причем один вирус дает сотни потомков. Очевидно, это значительно ускоряет исследования, и простое устройство фагов, раскрытое Лурией, позволяло испытать новые методы исследования. В 1946 г. Дельбрюк, Херши и другие ученые открыли явление рекомбинации генов у вирусов, что позволило построить генные карты. В 1952 г. Херши методом меченых атомов доказал, что только ДНК имеет значение для репликации вирусов. Хотя о роли ДНК стало известно еще из экспериментов Эйвери, лишь после работы Херши резко изменились взгляды на природу генов. Лурия открыл комплекс ферментов и особые состояния клетки, когда она может противостоять бактериофагу. Это имело большое значение для развития генной инженерии.
В конце 50-х и в 60-е годы многие ученые стали лауреатами Нобелевской премии за достижения в области генетики. Однако основополагающие работы трех патриархов современной молекулярной генетики (М. Дельбрюка, А. Херши и С. Лурии) получили признания Нобелевского комитета с большим опозданием: они были удостоены Нобелевской премии по физиологии и медицине лишь в 1969 г.
Исследования бактериофагов показали, что они способны присоединяться к генетическому аппарату бактерии, становясь частью ее гена. В результате клетка не погибает, а продолжает размножаться и даже приобретает новые свойства. Вскоре подобные особенности были замечены и у других вирусов, в частности у так называемых онкогенных вирусов.
Еще в 1911 г. Фрэнсис Роус (Раус) совершенно точно установил, что один из видов саркомы у птиц (саркома Рауса) вызывается вирусом. В 1965 г. Ренато Дульбекко, итальянский ученый, работавший в США, заметил, что вирус полиомиелита может присоединяться к клеточной ДНК, становясь ее составной частью. Обычно этот вирус вызывает инфекцию, но в культурах тканей приводит к неопластической трансформации. Это явилось убедительным аргументом в пользу вирусной теории раковых заболеваний. Однако выяснилось, что у большинства «подозрительных» онкогенных вирусов основным генетическим материалом является РНК. К числу таких вирусов относился вирус саркомы Рауса. Оставалось неясным, как вирусы, содержащие РНК, могут присоединяться к клеточной ДНК высших организмов.
Пытаясь разрешить этот вопрос, Хоуард Мартин Темин из Висконсинского университета предположил в 1970 г., что возможен процесс обратной транскрипции [27]27
Первые исследования возможности обратной передачи генетической информации от РНК к ДНК провел в 1961 г. советский генетик. Сергей Михайлович Гершензон. – Прим. ред.
[Закрыть]. Одной из важнейших основ молекулярной генетики (ее «центральной догмой») было представление, что наследственная информация движется только по линии ДНК – РНК – белок. Темин предположил, что вирусная РНК транскрибируется в ДНК, которая присоединяется к клеточному геному.
Вначале эта точка зрения была встречена в штыки. Но в 1970 г. Темин одновременно с Дейвидом Балтимором из Массачусетского технологического института открыл фермент РНК-зависимую ДНК-полимеразу, или обратную транскриптазу. Именно этот фермент осуществляет синтез ДНК на матрице вирусной РНК.
Открытие обратной транскрипции и присоединения вирусов к клеточному геному вселило в ученых надежды на новые успехи медицины. Вместе с тем указанные открытия имели и большое чисто теоретическое значение, позволив глубже проникнуть в молекулярные механизмы генетики. За свои достижения Д. Балтимор, X. Темин и Р. Дульбекко были удостоены в 1975 г. Нобелевской премии по физиологии и медицине.