Текст книги "Нобелевские премии. Ученые и открытия"
Автор книги: Валерий Чолаков
Жанр:
Научпоп
сообщить о нарушении
Текущая страница: 17 (всего у книги 29 страниц)
Витамины, как сравнительно низкомолекулярные соединения, можно было успешно исследовать методами органической химии. Однако при исследовании самого сложного из них (витамина В 12) возникла необходимость в более современных средствах. После восьмилетних кропотливых исследований Дороти Кроуфут-Ходжкин из Оксфордского университета определила наконец его строение методом рентгеноструктурного анализа.
Витамин В 12был открыт в 1948 г. Ученые установили, что он синтезируется различными микроорганизмами, прежде всего обитающими в кишечнике жвачных животных. Человек также получает это вещество от микроорганизмов, находящихся в его пищеварительном тракте. Однако иногда этот чрезвычайно тонкий процесс нарушается – и наступают тяжелые авитаминозы. Вскоре после открытия витамина B 12выяснением его структуры и занялась английская исследовательница.
Через восемь лет, в 1956 г., строение витамина В 12стало известно. Это явилось триумфом метода рентгеноструктурного анализа. Впервые таким образом была раскрыта структура столь сложного вещества. Необходимо вместе с тем отметить, что уже в то время другие ученые готовились к более сложным исследованиям. Макс Фердинанд Перуц и Джон Коудери Кендрю определили структуру таких сложных белков, как гемоглобин и миоглобин, за что в 1962 году получили Нобелевскую премию по химии. Их сенсационные результаты были достигнуты с помощью более современных средств рентгеноструктурного анализа с использованием ЭВМ.
Однако в 1964 г. Нобелевский комитет по химии, проявив уважение к пионерам в этой области, принял решение присудить премию Дороти Кроуфут-Ходжкин, которая установила структуру пенициллина и витамина B 12без ЭВМ и современной техники.
Ферменты
Одним из основных жизненных процессов является биокатализ. С ним человек сталкивался еще в доисторические времена, когда, по всей вероятности, началось изготовление спиртных напитков. В XVIII в. Антуан Лоран Лавуазье исследовал ферментацию при получении спиртов и пришел к выводу, что в ходе этого процесса сахар распадается на спирт и двуокись углерода. Жозеф Луи Гей-Люссак, произведя точный количественный анализ, установил, что масса спирта и двуокиси углерода, вместе взятых, равна исходной массе сахара. Это доказывало вывод Лавуазье. Причины этого процесса установил еще в 1860 г. Антони ван Левенгук, наблюдая дрожжи в микроскоп.
Прошло, однако, более 150 лет, прежде чем получила развитие клеточная теория и ученые пришли к заключению, что ферментация является функцией живых клеток, В первой половине XIX в. были накоплены интересные данные о процессе катализа, в частности о биокатализе. В 1814 г. русский химик Константин Сигизмундович Кирхгоф открыл в ячменных зернах вещество, которое превращало крахмал в сахар. Это был фермент амилаза. В 1833 г. его выделили французские химики Ансельм Пайен и Жан Персо. В то же самое время Йене Якоб Берцелиус предложил извлекать вещества, вызывающие ферментацию из живых клеток путём растирания их в порошок. Подобный эксперимент провел в 1846 г. в Берлине Фридрих Люденсдорф. Растерев на стекле клетки дрожжей, он добавил их в сахарный сироп, однако никакой ферментации не произошло.
Подобные опыты нанесли серьезный удар точке зрения Йенса Берцелиуса, Юстуса Либиха и Фридриха Веллера, которые считали, что биокатализ и ферментация – это обычные химические процессы. В то же самое время другие ученые высказывали мнение, что в живом веществе действуют особые процессы, которые не сводятся к чисто химическим. Получили также распространение идеи о некой таинственной «жизненной силе», которая и служит отличительным признаком живого от неживого. В то время подобная идея выглядела весьма привлекательной. Конец этому положил Луи Пастер, который своими оригинальными опытами показал, что ферментация возможна только при наличии живых клеток. Эксперименты крупного французского ученого были безупречны, однако они не отрицали возможности действия ферментов и вне живой клетки: ведь никому не удавалось выделить эти вещества в устойчивом состоянии. Такую задачу поставил перед собой в 1893 г. Эдуард Бухнер из Мюнхенского политехнического института. При содействии Адольфа Байера в институте была создана лаборатория по исследованию ферментов. Бухнер намеревался провести эксперименты с целью разрушения клеток и извлечения из них биокатализаторов. Руководство, однако, посчитало, что из подобных опытов, которые уже неоднократно ставились десятилетия назад, ничего не получится, и обязало Бухнера заняться другой темой.
Тогда ему пришлось обратиться в различные университеты. Он отправился в Киль, затем в Тюбинген и наконец, в 1896 г., во время летнего отпуска смог провести задуманные эксперименты в лаборатории своего брата Ганса, известного бактериолога Института гигиены в Мюнхене. Бухнер смешивал дрожжи с кварцевым песком и путем сильного встряхивания добился разрушения клеток. Он предложил метод фильтрации тонкой гомогенной массы под большим давлением. Так, из дрожжей был получен сок, обладающий большой ферментационной способностью. В нем не было ни одной частицы живого вещества, но, несмотря на это, сахар разлагался.
Эти опыты, удачно завершенные в 1897 г., положили начало современной энзимологии. В 1907 г. Эдуард Бухнер был удостоен Нобелевской премии по химии за открытие бесклеточной ферментации. После проведенных Э. Бухнером исследований сложных биокатализаторов, которые известный биохимик Вилли Кюне назвал энзимами или ферментами, стало возможным изучать их химическими методами.
Опыты Бухнера расширил и усовершенствовал английский биохимик Артур Гарден. В начале века стало известно, что при нагревании ферменты теряют активность. В 1906 г. Гарден и Уильям Юнг провели интересный эксперимент. Добавив к соку живых дрожжей сок прокипяченных дрожжей, они обнаружили, что ферментация резко усилилась. Это навело исследователей на мысль, что фермент состоит из каких-то двух веществ, одно из которых – термостойкое. Бухнер назвал открытый им фермент зимазой – от греческого названия дрожжей. Гарден ввел понятие «козимаза», которым он обозначал устойчивый компонент фермента [18]18
Одновременно роль фосфатов и коферментов в процесса брожения изучал русский химик Александр Николаевич Лебедев. – Прим. ред.
[Закрыть].
Разработка метода ультрафильтрации через желатиновый фильтр открыла перед исследователями новые возможности. Этим методом Гарден разделил зимазу на составные части: через фильтр проходил только коэнзим, оказавшийся достаточно низкомолекулярным соединением. Гарден установил, что в разложении сахара определенную роль играет фосфорная кислота, которая соединяется с ним, образуя глюкозодифосфат. Так, Гарден выделил промежуточный продукт биологического распада углеводов.
Дальнейшие исследования в этой области связаны с деятельностью шведского ученого немецкого происхождения профессора Стокгольмского университета Ханса фон Эйлер-Хельпина. В 1906 г. он вместе с Карлом Мюрбеком приступил к исследованию ферментов. Производя разделение фермента от кофермента по методу Гардена, они после длительных экспериментов установили, что козимаза – это вещество из группы нуклеотидов (соединений аденина с пентозой) с молекулярным весом 490. X. Эйлер-Хельпин установил, что этот кофермент встречается и во многих других биокатализаторах, выполняющих самые разные функции. Это стимулировало исследование коферментов. Эти вещества сравнительно просты, и определение их структуры позволило применить методы органической химии для исследования процессов обмена веществ, связанных с переносом водорода.
Исследования Гардена и Эйлер-Хельпина явились очень важным этапом в развитии энзимологии. Оба ученых были удостоены в 1929 г. Нобелевской премии по химии за расшифровку механизма брожения и исследования в этой связи ферментов.
Еще в прошлом веке некоторые ученые пытались выделить в чистом виде и исследовать вещества, вызывающие биологический катализ. В 1896 г. Корнелис Пекельхаринг выделил белок из желудочного сока, однако не смог убедительно доказать, что это фермент, активизирующий процесс переваривания пищи. Большую работу по. выделению ферментов в чистом виде проделал со своими сотрудниками немецкий химик Рихард Мартин Вилып-теттер. Они добились в этом определенных успехов, и Вильштеттер высказывал даже предположение, что ферменты не относятся ни к белкам, ни к углеводам, а представляют собой какой-то новый тип веществ с неизвестной структурой. Подобные туманные рассуждения продолжались до 1926 г., когда Джеймсу Бетчеллеру Самнеру из Корнеллского университета удалось получить кристаллы фермента уреазы и он доказал, что это белок. Самнер начал свои исследования в 1917 г., и они вызвали немало насмешек со стороны его коллег, находившихся под влиянием идей Вильштеттера. Однако такое отношение только еще более подталкивало исследователя к достижению поставленной цели [19]19
В 1906 г. в лаборатории Н.П. Кравкова врач А.Д. Розенфельд выделил из хрена кристаллы фермента оксидазы и показал их белковую природу, но эта работа оказалась забытой. – Прим. ред.
[Закрыть].
По словам самого Самнер а, ему просто повезло с выбором фермента. Вильштеттер работал с сахаразой и не мог получить даже ее концентрат. Самнер взял для исследования семена растений, в которых в большом количестве содержался фермент уреаза. После многолетних экспериментов он получил наконец это вещество в кристаллической форме путем охлаждения и центрифугирования гомогената из растительных клеток. Значение этого экспериментального результата нельзя недооценивать, особенно если учесть, что лаборатория Самнера располагала незначительными средствами и имела мало сотрудников, а сам он еще в 17-летнем возрасте лишился руки.
Вначале сообщение о том, что кристаллизован фермент, было встречено с недоверием. Однако постепенно число сомневающихся в результатах Самнера становилось все меньше, и, наконец, последний из них, Рихард Вильштеттер, признал себя побежденным. Вслед за этим подобными опытами увлеклись многие ученые, и вскоре были достигнуты новые успехи. Вторым биохимиком, сумевшим получить ферменты в кристаллическом виде, стал Джои Хоуарт Нортроп из Принстона.
Американский биохимик занимался исследованием желудочных соков. Еще в конце прошлого века возникло подозрение, что это белковые вещества. Пекельхаринр был «на пороге» этого открытия. В 1920 г. Дж. Нортроп, повторив его эксперименты, значительно усовершенствовал их и через 10 лет сумел выделить из желудочного сока чистый пепсин. Впоследствии Нортроп и его сотрудники, совершенствуя свою методику, получили еще пять ферментов.
Это были выдающиеся открытия в области химии ферментов и вообще белков. Разработанные учеными способы выделения этих сложных веществ – и именно в кристаллической форме—имели исключительное значение для их исследования, особенно методом рентгеноструктурного анализа. Вершиной этих исследований стало получение в кристаллическом виде вирусов табачной мозаики и полиомиелита, которое осуществил в 1932 г., также в Принстоне, Уэнделл Мередит Стэнли.
Вирусы были открыты русским ученым Дмитрием Иосифовичем Ивановским в 1892 г. Шесть лет спустя их исследовал Мартин Бейеринк, который первым высказал мысль, что это какой-то новый тип возбудителей заболеваний исключительно малых размеров, невидимых в микроскоп. Когда Стэнли удалось получить вирусы в кристаллической форме, это послужило подтверждением их белковой природы, и показало, что они занимают промежуточное положение между живым и неживым миром.
Исследования Самнера, Нортропа и Стэнли завоевали в 30-е годы признание во всем мире. В 1946 г. эти ученые были удостоены Нобелевской премии по химии. Дж. Самнер получил половину премии (за доказательство белковой природы ферментов и выделения их в виде кристаллов), другая половина была разделена между Дж. Нортропом (за выделение ферментов в кристаллическом виде) и У. Стэнли (за получение вирусов в кристаллическом виде).
Исследования кофермеитов показали, что многие из них относятся к нуклеотидам. Эти вещества представляют собой комплекс из трех связанных между собой соединений: остатка фосфорной кислоты, сахара (пентозы) и одного из азотных оснований (пурина или пиримидина).
Когда английский ученый Александер Тодд в 40-е годы приступил к исследованию нуклеотидов, их состав в общих чертах был известен, однако оставалось неясным, как связываются между собой различные субструктуры. В 1949 г. Уолдо Кои определил, в каком месте пятиатомного кольца сахара присоединяются другие соединения. Тодд развил эти идеи и установил точную структуру нуклеотидов. Его результаты не только сыграли исключительно важную роль в энзимологии, но и заложили основы для исследования структуры ДНК, осуществленного Фрэнсисом Гарри Комптоном Криком, Джеймсом Дьюи Уотсоном и другими. учеными.
А. Тодд известен также своими исследованиями витаминов и ряда других биологически активных природных веществ. Свою научную деятельность он начал у Роберта Робинсона с опытов над растительными пигментами – антоцианами в 30-е годы. Наибольшую известность, однако, получили его исследования нуклеотидов и нуклеотидокоферментов, за которые он и был удостоен Нобелевской премии по химии в 1957 г.
В 50-е годы в Рокфеллеровском университете в Нью-Йорке работали два исследователя, чьи имена для биохимиков неразрывно связаны. Это Станфорд Мур и Уильям Хоуард Стайн, внесшие огромный вклад в исследование структуры ферментов.
Биокатализаторы являются белковыми телами, и их исследование составляет часть химии белков. Большие достижения здесь принадлежат Эмилю Фишеру, который установил, как связываются аминокислоты (из которых построены все белки). Английский ученый Фредерик Сенгер разработал в 50-е годы метод определения последовательности аминокислот в белках. Он определил структуру гормона инсулина, за что в 1958 г. был удостоен Нобелевской премии по химии. В то же самое время С. Мур и У. Стайн усовершенствовали метод, создав автоматическую установку для исследования полипептидных цепей, из которых построены белки.
В 1960 г. эти два исследователя определили первичную структуру, т. е. последовательность соединения аминокислотных оснований в панкреатической рибонуклеазе. Параллельно они усовершенствовали свою методику, развив дальше метод Сенгера: исследуемые белковые молекулы разделялись с помощью ферментов на отдельные фрагменты. (Биохимикам хорошо известно, что различные ферменты разрывают молекулы в разных точках.) Получался набор белковых фрагментов, которые разделялись с помощью ионообменных смол и анализировались. Эти фрагменты частично взаимно перекрывались, что позволило путем их сопоставления определять общую последовательность аминокислот.
Стайн и Мур установили первичную структуру и других ферментов. Параллельно с ними работал Кристиан Бемер Анфинсен, который изучал связь между первичной (упорядоченностью аминокислот в цепях) и третичной (пространственным расположением этих цепей) структурами. Вторичная структура ферментов была исследована Лайнусом Карлом Полингом в конце 40-х годов. Он установил, что несколько полипептидных цепей закручивается, образуя различного рода спирали. В свою очередь спиральные нити также деформируются определенным образом, создавая третичную структуру.
Исследованием именно этого наиболее общего строения белковой молекулы, определяющего ее форму и функцию, занялся Анфинсен из Национального института здравоохранения в Бетесде (близ Вашингтона). Он установил, что при денатурации белка (когда клубок полипептидной цепи раскручивается) возможно спонтанное восстановление пространственной структуры (обратное раскручиванию белка). Разумеется, это происходит в том случае, если сами цепи не повреждены. Эти результаты привели Анфинсена к выводу, что в первичной структуре белка заложена вся информация о пространственном строении его молекулы. Для химиков это был очень важный вывод. Он означал, что достаточно только правильно упорядочить аминокислоты в цепи – и можно искусственным путем синтезировать молекулу белка, которая ничем не будет отличаться от природной.
Исследования Стайна, Мура и Анфинсена оказали большое влияние на развитие химии белков и особенно на исследование ферментов, которые относятся к числу наиболее интересных белковых молекул. В 1972 г. за фундаментальный вклад в химию ферментов эти трое ученых были удостоены Нобелевской премии по химии.
XI. ФОТОСИНТЕЗ
В середине XVIII в. ученые заметили, что процессы горения, окисления и дыхания связаны с расходом кислорода из воздуха. Возник тревожный вопрос: не исчерпается ли в один прекрасный день в атмосфере этот живительный газ? Пожалуй, это был один из первых случаев, когда научное открытие предвещало опасность для существования мира. Впоследствии не раз возникали подобные ситуации, но, к счастью, со временем выяснялось, что пессимистические прогнозы – это лишь результат ограниченности человеческих знаний. Так произошло и в 70-е годы XVIII в., после того как Джозеф Пристли поставил свои знаменитые опыты по фотосинтезу.
В 1771 г. он сообщил, что на свету зеленые растения восстанавливают воздух, «испорченный» дыханием животных или в процессе горения. Пристли открыл круговорот кислорода в природе, установив, что в организме животных он соединяется с углеродом, образуя углекислый газ, а затем восстанавливается в процессе жизнедеятельности растений. Человечество могло дышать спокойно.
В 1918 г. французские ученые Жозеф Пелетье и Жозеф Каванту выделили из листа растения зеленый пигмент, которому дали название «хлорофилл» (от греческого «хлорос» – зеленый и «филон» – лист). Великий Берцелиус не оставил без внимания и этот вопрос и в 1837 г. попытался исследовать свойства хлорофилла, подвергнув его воздействию сильных кислот и щелочей. В 1864 г. английский ученый Джордж Стоукс установил, что зеленый растительный пигмент состоит из смеси различных веществ. Наиболее полно этот вопрос был изучен русским ученым Михаилом Семеновичем Цветом с помощью созданного им метода хроматографии.
Одним из первых, кто добился крупных успехов в исследовании химического состава хлорофилла, был Рихард Вильштеттер. Он разработал методы извлечения этого растительного пигмента в больших количествах, не повреждая молекулы. В отличие от Берцелиуса Вильштеттер исследовал хлорофилл в мягких условиях с помощью реагентов, которые позволяли постепенно отщеплять различные части от сложного соединения, что и помогло определить его структуру. Вильштеттер подтвердил ранее высказанные предположения, что хлорофилл по своему строению родствен гемоглобину крови, но одновременно указал, что этот растительный пигмент содержит магний, а не железо, как гемоглобин.
Исследования Внльштеттером хлорофилла заложили основу для полного раскрытия его структуры [20]20
Основополагающие исследования структуры хлорофилла были выполнены Марцелием Вильгельмовичем Ненцким, который в 1847—1901 гг. в Институте экспериментальной медицины совместно с Л.П. Мархлевским установил химическое родство гемоглобина и хлорофилла. – Прим. ред.
[Закрыть]. За исследования растительных пигментов, в частности хлорофилла, Р. Вильштеттер был удостоен в 1915 г. Нобелевской премии по химии.
Вильштеттер указал, что и хлорофилл, и гемоглобин принадлежат к группе порфиринов. Дальнейшее уточнение их структуры произвел Ханс Эйген Фишер. Он начал с опытов над гемоглобином, в частности над так называемым гемином – небелковой частью молекулы гемоглобина. В дальнейшем Фишер исследовал всю группу пигментов, имеющих одинаковую порфириновую структуру, подобную структуре гемина и хлорофилла. Разделяя эти молекулы различными способами, Фишер пришел к определенным выводам относительно их строения. Чтобы обосновать эти выводы, он прибег к классическому средству органической химии – решил их синтезировать.
Это была довольно трудная задача, для ее выполнения Фишеру пришлось создать целый раздел органической химии – химию пиррольных соединений. Они имеют кольцевидную молекулу, состоящую из 4 атомов углерода и 1 атома азота. Фишер доказал, что из 4 пиррольных ядер строится исходная структура всех порфиринов. В центре этой кольцевидной структуры гемина находится железо, а у хлорофилла – магний.
Результаты Фишера – блестящий пример мастерства в проведении химического анализа и синтеза, и в 1930 г. ученый был удостоен за свои достижения Нобелевской премии по химии.
К порфирированному ядру в хлорофилле присоединяются другие молекулы, которые определяют его физические и химические свойства. Еще в 30-е годы Фишер пытался синтезировать молекулу хлорофилла, но это удалось сделать лишь в 1960 г. его ученикам М. Штерлу, А. Калояну и Г. Колеру. Одновременно с ними синтез хлорофилла осуществил и американский химик Роберт Берне Вудворд, лауреат Нобелевской премии по химии за 1965 г.
После успехов, которыми были отмечены первые десятилетия нашего столетия, в изучении фотосинтеза наступил застой. Оказалось, что классическими химическими методами больше нельзя получить никакой информации об этом процессе. Ученые чувствовали, что фотосинтез – это целая цепь быстро протекающих реакций, но не находили способа их изучения. Лишь в 40-е годы удалось разработать новые методы, которые подняли исследования фотосинтеза на качественно новый уровень. Большая заслуга в этом принадлежит американскому биологу Мелвину Калвину.
В 1935 г., находясь на стажировке в Манчестерском университете, Калвин познакомился с металлопорфиринами, к которым относятся гемин и хлорофилл. После возвращения в США он начал работать в Калифорнийском университете в Беркли. Там профессор Гильберт Ньютон Льюис порекомендовал Калвину продолжить исследование порфиринов, которым он занимался в Манчестере под руководством Майкла Полани. По счастливому совпадению Беркли был центром исследований в области радиохимии, и это обстоятельство сыграло в работе Калвина очень важную роль.
В 1940 г. Сэмуэль Рубен и Мартин Камен открыли радиоактивный углерод-14. Вскоре этот элемент стали широко использовать в качестве «меток» при исследовании биохимических реакций. Калвин, включившись в исследование процесса фотосинтеза, решил использовать этот метод в радиационной лаборатории, руководителем которой он стал в 1946 г. Там он и провел свои знаменитые опыты с хлореллой.
Калвин помещал эти зеленые водоросли в специальный сосуд и освещал их на протяжении 1—30 с. Одновременно через воду пропускалась двуокись углерода (углекислый газ), меченная углеродом-14. Под действием света этот элемент тотчас включался в цепь фотосинтеза.
По истечении контрольного времени сосуд открывали, и водоросли переносили в спирт, где они сразу погибали. Таким образом можно было фиксировать различные этапы фотосинтеза.
Оставалось лишь выяснить, в какие соединения включился меченый углерод. Для этой цели использовался метод хроматографии на бумаге. Поскольку радиоактивный углерод непрерывно излучает, хроматографический лист, положенный на фотопластинку, создавал на ней изображение. Это позволило хорошо видеть, как разделились различные вещества, и давало возможность выделить их в чистом виде для анализа. С помощью этого оригинального метода Калвин показал, что двуокись углерода фиксируется в форме фосфоглицериновой кислоты. Это было поистине замечательное открытие. Оказалось, что углерод просто подключается к одному из уже известных звеньев цепи обмена углеводов и таким образом входит в состав глюкозы и других более сложных Сахаров.
За это крупное открытие – этапов биохимических превращений двуокиси углерода при фотосинтезе – М. Калвин получил в 1961 г. Нобелевскую премию по химии. Находясь в расцвете творческих сил (ему было тогда 50 лет), профессор Калвин продолжает плодотворно работать в этой исключительно важной для человечества области. Овладение тайной фотосинтеза оказало большое влияние на развитие земледелия. Как известно, растения усваивают менее одного процента падающего на них света, но исследования показывают, что эффективность фотосинтеза можно многократно увеличить. Это привело бы к значительному повышению урожайности и, кроме того, способствовало бы развитию «зеленой энергетики» (использованию биомассы в качестве топлива).
Зеленые растения продолжают оставаться основой существования человечества. Однако в земледелии проблема, заключается не только в получении высокого урожая, но и в его сохранности и наиболее рациональном использовании.
В голодный послевоенный 1945 г. Нобелевская премия по химии была присуждена финскому биохимику Арттури Илмари Виртанену за разработанный им эффективный метод консервирования и хранения зеленых кормов. Этот метод давал возможность в несколько раз увеличить производство кормов, особенно в северных странах.
Виртанен начал заниматься данной проблемой еще в 20-е годы, когда, будучи молодым ученым, проходил стажировку в Мюнхене. Там он познакомился с исследованиями Г. Вигнера, касающимися потери питательных веществ при консервации зеленой массы. Оказалось, что эти потери значительны – составляют до 50% содержания белков и витаминов. Потеря ценных питательных веществ происходит при сушке сена и складировании зеленой массы, когда в них начинают происходить нежелательные биохимические процессы.
В результате экспериментов Виртанен разработал в 1928 г. простой метод консервации свежескошенных трав путем добавления соляной и серной кислот. Это приводило к почти полному прекращению процессов окисления в растительной массе и связанному с ними распаду питательных веществ. Прекращались и всякого рода ферментационные процессы, вызываемые микроорганизмами. Чтобы обеспечить почти 100-процентное сохранение белков и витаминов, необходимо было только строго соблюдать установленную дозировку кислот.
Метод Виртанена имел еще одно преимущество: скошенную зеленую массу можно было сразу же убирать с поля. В северных странах сено сохнет довольно медленно, нередко подвергаясь при этом пагубному воздействию дождей. Кроме того, оно долго занимает площадь, предназначенную для других сельскохозяйственных культур. Быстрая уборка зеленой массы позволила получать ежегодно по два-три урожая высококачественных кормов. Эта технология нашла широкое применение в 30-е годы и дала возможность ряду стран удовлетворить потребности животноводства в фураже без импорта его из других стран [21]21
А.И. Виртанен сделал очень много для совершенствования технологии производства масла и сыров. Он был научным консультантом известной фирмы «Валио». – Прим. ред.
[Закрыть]. Во время войны, когда международная торговля практически прекратилась, это стало жизненно важным. И не удивительно, что Виртанен стал первым послевоенным лауреатом Нобелевской премии по химии. Он один из нескольких лауреатов этой премии, открытия которых непосредственно способствовали решению продовольственной проблемы человечества.