Текст книги "Нобелевские премии. Ученые и открытия"
Автор книги: Валерий Чолаков
Жанр:
Научпоп
сообщить о нарушении
Текущая страница: 12 (всего у книги 29 страниц)
Путь к абсолютному нулю
В конце XIX в. широкое распространение получили опыты по сжижению газов. Исследователям удалось получить жидкие кислород, водород и гелий; появились и технические средства, необходимые для создания сверхнизких температур. Эксперименты такого рода привели в конце концов к важным результатам: в физике были открыты явления сверхтекучести и сверхпроводимости, в химии – группа инертных газов.
Первые научные исследования свойств газов относятся к XVII в. Англичанин Роберт Бойль и француз Эдм Мариотт установили закон изменения объема данной массы газов от давления при постоянной температуре. В конце XVIII в. нидерландский физик Мартин Ван Марум, занимаясь экспериментальной проверкой закона I Бойля – Мариотта, обнаружил, что при давлении в 7 атм. газообразный аммиак переходит в жидкое состояние. Незадолго до этого Антуан Лоран Лавуазье обратил внимание на роль охлаждения. Идя этими двумя путями (используя высокое давление и низкие температуры), ученые XIX в. пытались сжижать газы.
В 60-е годы прошлого века Томас Эндрюс из Королевского колледжа в Белфасте провел серию экспериментов, желая выяснить, как влияют давление и температура на состояние вещества и на его переход из жидкого состояния в газообразное. Он выявил интересные закономерности, которые впоследствии были обобщены Яном Дидериком Ван-дер-Ваальсом. В 1873 г. этот нидерландский физик вывел уравнение состояния реального газа, в котором учитывались объем молекул и силы взаимодействия между ними. Работа Ван-дер-Ваальса имела большое значение как для физики, так и для химии, поскольку в ней впервые агрегатное состояние вещества рассматривалось с точки зрения атомистических представлений о его микроструктуре.
В 1910 г. Нобелевский комитет по физике наконец принял решение о присуждении премии видному исследователю, который сделал свои открытия несколько десятилетий назад, – тем самым, казалось бы, нарушались условия, оговоренные в завещании Альфреда Нобеля, В период, когда началось интенсивное исследование строения атома, Ван-дер-Ваальс стал лауреатом Нобелевской премии, так как он первым показал реальность существования молекул.
В конце прошлого столетия исследованием поведения газов при сверхнизких температурах занимался и известный английский физик Джон Уильям Стретт (лорд Рэлей). Он хотел проверить гипотезу Уильяма Праута о том, что все химические элементы образуются путем «конденсации» атомов водорода. Определяя вес атмосферных газов, Рэлей установил, что атмосферный азот тяжелее азота, полученного химическим путем. В сущности, это было установлено еще в XVIII в., после того как Генри Кавендиш провел в 1785 г. соответствующие эксперименты. Однако это открытие, как и многие другие работы талантливого, но очень замкнутого ученого, долгое время оставалось неизвестным научной общественности.
В 1892 г. Рэлей публикует результаты своих исследований, из которых следовало, что в атмосфере присутствует какой-то неизвестный элемент. Два года спустя Рэлей вместе с химиком Уильямом Рамзаем сумел идентифицировать это вещество. Они показали, что в воздухе имеется химически инертный газ, относительное содержание которого составляет один процент. Поскольку этот газ не вступал ни в какие химические реакции, он получил греческое название «аргон» (что в переводе означает «инертный»).
Химик Рамзай сразу же понял, что здесь он имеет дело с особым химическим элементом. Из таблицы Менделеева следовало, что наряду с гелием должна существовать целая группа инертных элементов, обнаружение которых могло бы придать законченность этой системе классификации. Рамзай приступил к интенсивным исследованиям, завершившимся в 1895 г. получением гелия. Ранее этот элемент был открыт лишь на Солнце – при исследовании солнечного спектра. В последующие три года упорной работы были открыты и остальные газы, относящиеся к этой группе: криптон, ксенон и неон. Последний представитель группы инертных газов – радиоактивный радон – обнаружен Рамзаем в 1903 г.
Стокгольмские профессора не оставили без внимания эти успехи, и в 1904 г. Уильям Рамзай получил Нобелевскую премию по химии за открытие инертных газов и определение их места в периодической системе элементов. Одновременно с ним премию по физике получил Рэлей – за исследования газов, приведшие к открытию аргона, а также за определение его свойств и места в периодической системе.
Сжижение газов перестало быть проблемой после того, как в 1894—1896 гг. немецкий инженер Карл Линде сконструировал первую промышленную установку для получения жидкого воздуха. В 1898 г. Джеймс Дьюар получил жидкий водород, а в 1908 г. Хейке Камерлинг-Оннес, достигнув температуры 4,2 К – что лишь немного выше абсолютного нуля, – получил жидкий гелий. Однако только почти через три десятилетия было открыто замечательнейшее свойство гелия – его сверхтекучесть. Честь этого открытия принадлежит видному советскому физику Петру Леонидовичу Капице.
Этот талантливый ученик известного физика А.Ф. Иоффе в 1921 г. был направлен в научную командировку в Англию, где работал в Кавендишской лаборатории, руководимой Резерфордом. Капица быстро проявил себя как талантливый экспериментатор, наделенный способностями не только ученого, но и инженера. Он сконструировал установку для получения сильных магнитных полей и исследовал их влияние на свойства различных металлов. Затем он решил заняться изучением свойств металлов при низких температурах. Подходя к проблеме, как всегда, своим оригинальным путем, Капица построил новые высокоэффективные установки для сжижения газов, в которых вместо поршневых компрессоров использовались более совершенные, турбо-детандерные.
Эти исследования проводились уже по возвращение Капицы в Москву, где он возглавил основанный в 1935г-Институт физических проблем. В этом институте в 1937 г., работая на мощной установке для получения низких температур, ученый открыл явление сверхтекучести гелия. Некоторые исследователи и раньше наблюдали странное поведение этого газа при температуре около 2 К, однако лишь Капица детально описал это явление.
Явление сверхтекучести гелия II получило объяснение в 1941 г. в работе Льва Давыдовича Ландау, заведовавшего тогда теоретическим отделом Института физических проблем. Согласно теории Ландау, гелий II можно представить состоящим из двух компонент нормальной и сверхтекучей. При температуре 2,19 К наблюдается фазовый переход между двумя состояниями.
Гелий II наблюдал еще в 1926 г. Камерлинг-Оннес. В 1936 г. Биллем Хендрик Кеезом в Лейденском университете обнаружил, что это вещество обладает аномально высокой теплопроводностью. В следующем, 1937 г., Капица заметил, что вязкость гелия II в миллионы раз меньше, чем у гелия I. По существу, в зависимости от метода измерения вязкости обнаруживается либо нормальная, либо сверхтекучая компонента гелия II. За несколько лет до Капицы группа ученых из Торонтского университета, исследуя гелий II, измерила вязкость только нормальной компоненты, тогда как Капица открыл сверхтекучесть.
Созданная Ландау теория сверхтекучести и представление о гелии II как о слабовозбужденной квантовой системе оказались весьма плодотворными для физической теории. За это достижение Л.Д. Ландау был удостоен в 1962 г. звания лауреата Нобелевской премии по физике. О его награждении стало известно вскоре после того, как он тяжело пострадал в автомобильной катастрофе и, к сожалению, уже не смог более вернуться к активной научной деятельности. П.Л. Капица, открывший явление сверхтекучести, получил Нобелевскую премию лишь в 1978 г. вместе с радиоастрономами Пензиасом и Вильсоном, открывшими фоновое микроволновое излучение. Несмотря на свой преклонный возраст, ученый энергично руководил коллективом, занимавшимся, в частности проблемами термоядерного синтеза. Свою Нобелевскую лекцию он посвятил главным образом этому вопросу. Прожив долгую жизнь, полную напряженного творческого труда, П.Л. Капица умер 8 апреля 1984 г.
Сверхпроводимость
Исследования в области низких температур, первоначально преследовавшие сугубо практические цели, а за тем проводившиеся для получения газов в чистое виде и изучения фазовых переходов вещества, в наш век привели к крупным научным открытиям. В 1908 г. нидерландский физик Хейке Камерлинг-Оннес получил жидкий гелий, приблизившись к температуре лишь на 1 градус выше абсолютного нуля. Располагая такой техникой, он задумал провести серию обычных физических экспериментов, связанных с изучением свойств вещества. Прежде всего он решил проверить замеченный ранее эффект увеличения электропроводности с понижением температуры. В 1911 г. Камерлинг-Оннес совершенно неожиданно обнаружил, что при температуре жидкого гелия сопротивление ртутного проводника внезапно снижается в миллионы раз и практически исчезает. Это странное явление получило название «сверхпроводимость». Открытие Камерлинг-Оннеса произвело большое впечатление на ученых, и уже в 1913 г. ему была присуждена Нобелевская премия по физике.
Открытие явления сверхпроводимости было с энтузиазмом воспринято электротехниками, ибо вселяло надежды на создание высокоэффективных электрических машин. Однако довольно скоро выяснилось, что восторги были преждевременными. Проблема заключалась не только в сложности охлаждения проводника до сверхнизких температур, но и в том обстоятельстве, что сильные магнитные поля приводили к исчезновению сверхпроводимости. Лишь в начале 30-х годов были открыты сплавы, на которые магнитные поля не оказывали влияния.
В это время Вальтер Мёйснер и Р. Оксенфельд обнаружили явление «выталкивания» магнитного поля сверхпроводником. Этот интересный факт послужил основой для создания теории сверхпроводимости. Первые успехи в этом направлении принадлежат братьям Фрицу и Гейнцу Лондон.
Как и многие представители немецкой интеллигенции, братья Лондон в годы фашизма эмигрировали из Германии в Англию. В 1935 г., работая в Оксфордском университете, они создали феноменологическую теорию сверхпроводимости, предложив уравнения, описывающие поведение сверхпроводников в слабых магнитных полях.
Но лишь через 20 лет был сделан следующий, решающий шаг. В 1957 г. американские физики Джон Бардин, Леон Купер и Джон Роберт Шриффер построили микроскопическую теорию сверхпроводимости [9]9
Большой вклад в создание теории сверхпроводимости и сверхтекучести внес видный советский физик академик Николай Николаевич Боголюбов. – Прим. ред.
[Закрыть], где это явление описывалось с точки зрения квантовых представлений.
Еще в 1950 г. английский физик Герберт Фрёлих, также эмигрировавший из Германии в 30-е годы, разработал теорию сверхпроводимости, связав ее с так называемым электронно-фононным взаимодействием. В это же время аналогичные идеи высказывал Дж. Бардин из Иллинойсского университета. Согласно этим представлениям, электроны взаимодействуют между собой через колебания кристаллической решетки. При сверхнизких температурах тепловое движение в веществе практически исчезает, и тогда проявляются слабые колебания атомов, вызываемые электронами. Эти колебания подобны звуковым волнам, но вместе с тем имеют квантовый характер; в связи с этим советский ученый Игорь. Евгеньевич Тамм назвал их в 1930 г. фононами.
Следующий шаг в исследовании явления сверхпроводимости был сделан в 1956 г. Леоном Купером также из Иллинойсского университета. Он установил, что при сильном охлаждении вещества электроны в результате обмена фононами объединяются в пары. Эта сила связи очень слаба, и до Купера никто не предполагал, что она может играть сколько-нибудь существенную роль.
Современная теория сверхпроводимости (известная под названием «БКШ-теория») в ее окончательном виде была опубликована в 1957 г. Бардином, Купером и Шриффером, также сотрудником Иллинойсского университета. Она объясняет данное явление как движение Электронов через кристаллическую решетку; это весьма напоминает процесс, который был предложен в 1940 г. Л.Д. Ландау для объяснения явления сверхтекучести. В БКШ-теории исследуются также электро– и термодинамические свойства сверхпроводников. За выдающийся вклад в понимание столь сложного явления, как сверхпроводимость, три исследователя были удостоены в 1972 г. Нобелевской премии по физике. Для Джона Бардина это была вторая поездка в Стокгольм, так как в 1956 г. он уже получил Нобелевскую премию (вместе с Шокли и Браттейном) за создание первого полупроводникового прибора – транзистора.
Фазовые переходы
Перевоплощения жидкого гелия (переход в сверхтекучее состояние) и сверхпроводников – лишь единичные примеры фазовых переходов веществ. К такого рода явлениям относятся испарение и конденсация, плавление и затвердевание, изменение магнетизма при нагревании и т. д. Критические состояния вещества и переходы его из одной фазы в другую наблюдаются довольно часто, и ученые давно интересуются этими процессами. В 30-е годы некоторые ученые пытались выяснить общие закономерности таких критических явлений и объяснить их с термодинамической точки зрения. Особых успехов добился здесь Л.Д. Ландау. В 1937 г. в возрасте 29 лет он разработал общую теорию фазовых переходов второго рода, при которых не происходит резких изменений плотности вещества, концентрации компонентов и теплоты перехода. К такого рода переходам относятся: переход парамагнетик – ферромагнетик; переход парамагнетик – антиферромагнетик; переход металлов и сплавов из нормального в сверхпроводящее состояние; переход гелия в сверхтекучее состояние и т. д. Ландау рассматривал фазовые переходы второго рода как точки изменения симметрии: выше точки перехода система, как правило, обладает более высокой симметрией, чем ниже точки перехода. Например, в магнетике выше точки перехода спиновые магнитные моменты частиц ориентированы хаотически и одновременное вращение всех спинов вокруг одной и той же оси на одинаковый угол не меняет физических свойств системы. Ниже точки перехода спины имеют некоторую преимущественную ориентацию, и одновременный их поворот меняет направление магнитного момента системы.
При математическом описании подобных систем частиц с интенсивным взаимодействием за. основу берется упрощенная модель – двумерная решетка (так называемая решетка Изинга), в которой учитываются взаимодействия только между соседними частицами. Но, несмотря на все упрощения и отклонения от физической реальности, далеко не всегда удавалось получить аналитическое описание поведения системы при фазовом переходе. Экспериментальные данные свидетельствовали о том, что в поведении таких систем, по-видимому, существует ряд общих закономерностей и что не имеет значения, исследуются магниты или жидкости. Не располагая сколько-нибудь точными и надежными методами описания фазовых переходов, специалисты постепенно потеряли интерес к этой области исследований. Застой продолжался несколько десятилетий.
Новая эпоха в исследованиях фазовых переходов наступила в 1971 г., когда молодой сотрудник Корнеллского университета Кеннет Вильсон решил использовать для этой цели принципиально новый математический аппарат: он предложил применить к системам частиц – каковыми и являются тела – квантовую теорию поля. Разработанный им метод ренормализационной группы, или так называемая решеточная теория (система рассматривалась как «решетка»), позволил широко использовать для расчетов критических явлений современные ЭВМ. Постепенно уменьшая шаг «решетки», можно было повышать точность вычисления и тем самым все более приближаться в описании к реальной системе.
Теоретические работы Вильсона привели к качественному скачку в исследовании фазовых переходов и быстрому развитию этой обширной области знаний. Еще более эффективным оказалось применение решеточной теории Вильсона в квантовой механике. В конечном счете Кеннет Вильсон как бы перебросил мостик между статистической и квантовой механикой. Его работы, имевшие вначале чисто теоретический характер и относившиеся к области науки, которая долгое время оставалась в тени, теперь находят применение повсюду – от изучения процессов горения и электронной промышленности до описания ядерных взаимодействий и космических явлений. Выдающийся научный вклад Кеннета Вильсона был оценен и профессорами Шведской академии наук: в 1982 г. он был удостоен Нобелевской премии по физике за работы, связанные с исследованием критических явлений, и созданную им теорию фазовых переходов II рода.
VIII. ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА
Одним из крупных достижений в теоретической химии XIX в. явилось выяснение закономерностей течения химических реакций. Опыты свидетельствовали о том, что вещества обладают различным химическим сродством: одни из них вступают во взаимодействие, а другие – нет. Химические реакции могут протекать с различной скоростью, происходить с выделением или с поглощением тепла, быть обратимыми и необратимыми и т. д. Многие известные ученые уделяли внимание этим вопросам. Химическое сродство исследовали Анри Ле Шателье, Като Максимилиан Гульдберг, Петер Вааге и Многие другие химики, которые открыли эмпирические законы его зависимости от условий протекания реакций. Этими вопросами занимался нидерландский физико-химик Якоб Хендрик Вант-Гофф, разносторонний исследователь, который в 1901 г. первым был удостоен Нобелевской премии по химии; свои исследования он проводил, основываясь на законах термодинамики.
Термодинамика как наука сформировалась в первой половине XIX в. Как видно из ее названия, она изучает тепловое движение и связанные с ним процессы и явления. Разработанная вначале для объяснения различных физических процессов, термодинамика вскоре нашла применение и в химии. Многие химические реакции Связаны с тепловыми эффектами, и ученые сначала считали, что их исследование может послужить ключом к раскрытию тайн химического сродства элементов – свойства, которым обусловлена способность атомов и молекул соединяться между собой в различные комбинации.
Действительно, при взаимодействии веществ с большим химическим сродством реакции протекают бурно и сопровождаются выделением большого количества тепла.
Измерение этого тепла служит указанием на степень химического сродства элементов. Не все реакции, однако, протекают таким образом. Иногда вместо выделения тепла происходит его поглощение; это указывает на то, что вопрос не так прост. Положение решительно изменилось, когда Джозайя Уиллард Гиббс, один из крупнейших ученых XIX в., ввел в химическую термодинамику понятие энтропии.
Коротко говоря, энтропия характеризует степень неупорядоченности физической системы. Изменение этой термодинамической величины определяется сравнительно просто: она равна отношению изменения количества теплоты, выделяющейся в реакции, к температуре (выраженной в Кельвинах – градусах по абсолютной шкале). Одно из основных свойств энтропии состоит в том, что она может только возрастать. Например, кусок сахара без труда растворяется в воде, но невозможно молекулы растворившегося сахара собрать снова в кусок. Применительно к химическим реакциям это означает, что осуществимы лишь такие процессы, при которых энтропия системы увеличивается.
Любое вещество характеризуется определенной энтропией. Она выражается конкретной величиной и измеряется в калориях. При изменении состояния вещества его энтропия также изменяется. Рассмотрим в качестве примера воду. При таянии льда энтропия системы возрастает в 1,5 раза, а при превращении воды в пар – в 4 раза. В водяном паре молекулы движутся хаотически, тогда как в куске льда они строго фиксированы; это показывает, что энтропия действительно служит мерой неупорядоченности.
Если знать величины энтропии веществ, то определение условий, при которых возможно протекание химической реакции, становится совершенно реальным. Можно написать уравнения любых химических реакций, но на практике реализуются только те их них, в которых энтропия увеличивается. Если в принципе реакция возможна, но идет медленно, то можно подобрать подходящий катализатор, ускоряющий течение реакции. Но никакой катализатор не в состоянии «запустить» реакцию, которая в принципе невозможна.
Из сказанного видно, сколь велико значение понятия энтропии как для теоретического объяснения химических процессов, так и для их практического осуществления.
Многие пытались применить эти представления, но впервые удалось достигнуть цели видному немецкому физико-химику Вальтеру Иеристу. Он пришел к выводу, что соответствующие измерения необходимо проводить при температуре, возможно более близкой к абсолютному нулю. Тогда тепловые эффекты, связанные с состоянием вещества, становятся независимыми от температуры; в равной мере это относится и к химическому сродству элементов. Подобный подход позволяет путем точных измерений теплоемкости, а также теплоты и температуры фазовых переходов определить энтропию вещества.
Выводы Нернста о том, что энтропия химически однородного твердого или жидкого тела при абсолютном нуле температуры равна нулю, обычно называют третьим началом термодинамики пли тепловой теоремой Нернста. Макс Планк показал, что третье начало термодинамики равносильно условию: энтропия всех тел в состоянии равновесия стремится к нулю по мере приближения температуры к абсолютному нулю. Так как энтропия не может исчезнуть, это означает, что абсолютный нуль недостижим, но можно все более приближаться к нему.
Эти фундаментальные открытия позволили решить ряд теоретических проблем и довольно быстро нашли применение в химической промышленности, в частности сделали возможным создание технологии производства аммиака и других соединений при высоких температурах и давлении. За свои работы в области термодинамики Вальтер Нернст был удостоен в 1920 г. Нобелевской премии по химии.
Дальнейшие исследования энтропии при сверхнизких температурах связаны с экспериментами американского ученого Уильяма Фрэнсиса Джиока. До него самая низкая температура, которой удалось достигнуть, составляла 1 К. Джиок сумел довести это значение до 0,01 К. Это имело огромное значение для научных исследований, так как в этой температурной области тепловое движение атомов практически отсутствует.
Успех Уильяма Джиока был достигнут благодаря созданному им совместно с Д. Мак-Дугласом в 1927 г. оригинальному методу получения сверхнизких температур – методу адиабатического размагничивания.
Эксперименты Джиока, задуманные в 1924 г. и осуществленные в течение следующего десятилетия, дали возможность в 10 раз повысить точность измерения энтропии. Благодаря им физики смогли еще глубже проникнуть в мир сверхнизких температур, где столь сильно изменяются свойства вещества. За свой вклад в развитие химической термодинамики, и особенно за исследования при сверхнизких температурах, Уильям Джиок был удостоен в 1949 г. Нобелевской премии по химии.
В химии классическая термодинамика исследует химическое равновесие и вообще равновесные процессы. Однако уже в 20-е годы появились первые работы по термодинамике неравновесных процессов.
В 1929 г. на встрече скандинавских ученых в Копенгагене молодой американский исследователь Ларе Онсагер (норвежец по происхождению) сообщил о полученных им соотношениях, выражающих зависимость электропроводности, активности и некоторых других характеристик электролита от его концентрации (уравнения Онсагера). В 1931 г. в известном журнале Physical Review им была опубликована статья, в которой рассматривались различные термодинамические процессы, такие, как перенос теплоты, диффузия, смешение, растворение веществ и т. д. Описывающие эти процессы уравнения имеют определенные коэффициенты, между которыми существует взаимозависимость. Это и есть теорема Онсагера – основа феноменологической термодинамики неравновесных процессов.
Работы Онсагера далеко опередили свое время. Лишь в конце 40-х годов начал проявляться интерес к термодинамике необратимых процессов, и это в значительной степени связано с исследованиями бельгийского ученого Ильи Пригожина.
Он родился в Москве в 1917 г., но вскоре семья переехала в Бельгию. Закончил Брюссельский университет и с 1947 г. заведует там кафедрой химической физики. В том же году он опубликовал свою первую монографию по термодинамике необратимых процессов, которая сыграла огромную роль в дальнейшем развитии этой области науки.
Пригожий выдвинул ряд оригинальных идей, в том числе принцип локального равновесия. Согласно этому принципу, в неравновесной системе могут быть области, находящиеся в квазиравновесном состоянии. Другое положение, получившее название теоремы Пригожина, гласит, что в стационарном состоянии при фиксированных внешних параметрах скорость производства энтропии в термодинамической системе Минимальна. Этот вывод очень важен для биологии.
Принцип локального равновесия, теорема Пригожина и соотношение взаимности Онсагера положены в основу современной термодинамики необратимых процессов. Значение этой науки особенно возросло в 60-е годы. С учетом этого Ларе Онсагер был удостоен Нобелевской премии по химии в 1968 г., а его коллега Илья Пригожий стал лауреатом этой премии в 1977 г.








