355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Валерий Чолаков » Нобелевские премии. Ученые и открытия » Текст книги (страница 11)
Нобелевские премии. Ученые и открытия
  • Текст добавлен: 15 сентября 2016, 00:04

Текст книги "Нобелевские премии. Ученые и открытия"


Автор книги: Валерий Чолаков


Жанр:

   

Научпоп


сообщить о нарушении

Текущая страница: 11 (всего у книги 29 страниц)

VII. МАГНИТНЫЕ ЯВЛЕНИЯ

В истории физики важное место занимают исследования магнетизма. Это известное с древнейших времен явление стало объектом научных экспериментов еще в XVII в. За два последних столетия явление магнетизма было изучено достаточно полно и всесторонне, в частности, была выявлена связь магнетизма и электричества. Полученные данные и легли в основу созданной Максвеллом в 1865 г. теории электромагнитного поля.

Новый этап в исследовании магнитных явлений наступил после того, как в 1880 г. нидерландский физик Хендрик Антон Лоренц создал электронную теорию. На основе этой теории он объяснил целый ряд физических явлений и предсказал новые. В частности, он предсказал явление расщепления спектральных линий в сильном магнитном поле. И когда в 1896 г. нидерландский физик Питер Зееман открыл такой эффект (названный в дальнейшем его именем), это означало огромный успех теории Лоренца. Лоренц разработал и теорию этого эффекта. В 1902 г. Лоренц и Зееман были удостоены Нобелевской премии по физике.

Дальнейшее развитие теории магнетизма связано с именем французского физика Поля Ланжевена. В 1905 г. он, основываясь на представлениях электронной теории, разработал термодинамическую и статистическую теорию диа– и парамагнетизма. Эти два понятия были введены еще в 1845 г. Майклом Фарадеем. Говоря кратко, диамагнетизм – это свойство вещества намагничиваться во внешнем магнитном поле в направлении, противоположном направлению поля, а парамагнетизм – свойство вещества намагничиваться в направлении поля. Теория Ланжевена связывала диамагнетизм с особенностями движения электронов по орбитам вокруг ядра, а парамагнетизм – с ориентацией собстственных магнитных моментов атомов и молекул. Впоследствии оказалось, что источником магнитного поля атома является не только движение электрона вокруг атомного ядра, но и спин электрона. В сущности, спин, который сначала связывали с вращением частицы вокруг собственной оси, был открыт при исследовании магнитных явлений, в частности эффекта Зеемана. Эксперименты указали и третий источник магнетизма – само ядро атома. Первые исследования магнетизма проводились с обладающими магнитными свойствами природными материалами. Еще с давних времен была известна железная руда под названием «магнитный железняк» (от которого, собственно, и происходит термин «магнетизм»), которая создает достаточно сильное магнитное поле. Вся совокупность этих свойств железа получила название «ферромагнетизм». Вначале считалось, что ферромагнетизм – просто одна из форм парамагнетизма. Позднее выяснилось, что механизм этих явлений различен. Среди первых попыток создать теорию ферромагнетизма особо следует отметить работы французского физика Пьера Эрнеста Вейса. В 1907 г. он высказал гипотезу о существовании в ферромагнетиках внутреннего магнитного поля и областей самопроизвольной намагниченности (участки Вейса). Магнитные моменты атомов в ферромагнетиках ориентированы параллельно, поэтому материал обнаруживает магнитные свойства и в отсутствие внешнего магнитного поля.

У французских физиков существуют богатые традиции исследований в области магнетизма. Одним из носителей этих традиций является Луи Эжен Феликс Неель. Как Пьер Вейс и Поль Ланжевен, он также избран членом Парижской академии наук. В 1930 г., работая в Страсбургском университете, Неель открыл явление антиферромагнетизма. Если в ферромагнетиках магнитные моменты атомов ориентированы в одном направлении, то в антиферромагнетиках они ориентированы навстречу друг другу (антипараллельно) и взаимно компенсируют друг друга, поэтому в отсутствие магнитного поля намагниченность тела в целом равна нулю.

В 1948 г. Неель, будучи уже профессором Гренобльского университета, занялся ферритами – одним из видов химических соединений окислов переходных металлов с окисью железа, обладающих специфической структурой и магнитными свойствами. Французский ученый дал объяснение сильному магнетизму ферритов, показав, что в их кристаллах атомные магнитные моменты ориентированы, как у. антиферромагнетиков, но по величине противоположно направленные магнитные моменты различны, и поэтому не происходит их взаимной компенсации.

Исходя из своей теории, Неель описал поведение новых синтетических магнитных материалов. За фундаментальные работы по магнетизму Луи Неель был удостоен в 1970 г. звания лауреата Нобелевской премии по физике, разделив эту награду с Ханнесом Альфвеном.

Одним из создателей современных представлений о магнетизме вещества является американский физик Джон Хансбрук Ван Флек. В период 1926—1928 гг., работая в Миннесотском университете, он разработал квантовомеханическую теорию диа– и парамагнетизма. Первоначально теория касалась только газов и неметаллических соединений, но впоследствии была распространена и на кристаллы. В 1932 г. Ван Флек опубликовал обширную монографию, посвященную проблемам магнетизма, которая приобрела широкую известность в научных кругах. В 30-е годы эта и другие работы Ван Флека сыграли большую роль в развитии квантовой теории химических связей. Пройдя долгий плодотворный путь и сохранив работоспособность до преклонного возраста, этот ученый стал лауреатом Нобелевской премии по физике лишь в 1977 г. – в возрасте 88 лет. Ван Флек получил это высокое признание за исследования магнетизма вещества, в частности за работы в области упорядоченных магнитных систем, каковыми являются кристаллы.

Вместе с Ван Флеком Нобелевской премии были удостоены Филип Андерсон, его ученик из Гарвардского университета, и английский физик Невилл Мотт. Андерсон известен своими работами по магнетизму и сверхпроводимости, а Мотт – множеством исследований в различных областях физики твердого тела, которые он проводил на протяжении почти четырех десятилетий. Однако эти два ученых, по существу, были награждены за исследования локализации электронных состояний в неупорядоченных системах, к которым относятся жидкие, аморфные и стекловидные вещества.

В современной науке неупорядоченные системы – одно из особенно бурно развивающихся и перспективных направлений исследования. С аморфными полупроводниками, например, связываются надежды на дальнейшее развитие микроэлектроники. Признанием заслуг в этой области исследований и явилось присуждение в 1977 г. Нобелевской премии Филипу Андерсону и Невиллу Мотту.

Важное место в исследовании магнетизма занимают эксперименты, связанные с измерением магнитных моментов атомов и элементарных частиц. В 1922 г. Отто Штерн и Вальтер Герлах из Франкфуртского университета поставили опыт, доказывающий наличие у атома магнитного момента. Они пропускали поток атомов серебра между полюсами магнита в вакуумной камере. Как и ожидалось, поток разделился на два и на экране образовались два серебряных пятнышка. Это подтвердило, что атомы можно рассматривать как миниатюрные магнитики с магнитной осью, с северным и южным магнитными полюсами, которые соответствующим образом ориентируются в пространстве относительно внешнего магнитного поля.

В 1933 г. Отто Штерн вместе с Отто Фришем в опытах, проведенных в Гамбургском университете, впервые измерили магнитный момент протона в молекуле водорода, пропуская поток молекул через магнитное поле. Однако их метод был довольно груб, и для получения более точных результатов нуждался в усовершенствовании. Это и осуществил в 1937 г. Изидор Айзек Раби, работавший в Колумбийском университете. Для определения ядерных магнитных моментов он использовал разработанный им метод магнитного резонанса атомных ядер в молекулярных пучках, действуя на них одновременно магнитным полем и высокочастотным излучением. Это позволило во сто крат увеличить точность измерений.

Исследования магнитных свойств атомов имели важное значение для изучения их структуры. За развитие молекулярно-лучевого метода и открытие магнитного момента протона Отто Штерн получил в 1943 г. Нобелевскую премию по физике. В 1944 г. Нобелевской премии был удостоен Изидор Раби – за разработку метода магнитного резонанса в молекулярных пучках и исследование магнитных свойств в атомах ядер.

В 1946 г. швейцарец Феликс Блох, работавший в Станфордском университете, и американец Эдвард Миле Парселл из Гарвардского университета независимо друг от друга создали точные методы измерения магнитных моментов ядер и элементарных частиц. Магнитное поле ядра примерно в тысячу раз меньше магнитного поля электрона, поэтому для его исследования требовалась исключительно чувствительная аппаратура. В экспериментах Раби были измерены магнитные моменты протона, дейтрона и некоторых других легких атомных ядер. Были получены очень точные результаты, достигнутые, однако, ценой большой сложности опытной установки. Взаимодействие магнитных моментов ядер с высокочастотным излучением исследовалось по отклонению пучков молекул в магнитном поле.

Метод ядерного магнитного резонанса, предложенный Парселлом и Блохом, позволял исследовать вещество в любом состоянии: в твердом, жидком и газообразном. Взаимодействие ядерных моментов с высокочастотным полем наблюдается как магнитный эффект, который легко регистрируется аппаратурой. Короче говоря, при этом измеряется поглощение энергии радиочастотного поля или определяется электромагнитная индукция в образце.

Ядерный магнитный резонанс оказался сравнительно легко реализуемым методом исследования магнитных моментов ядра. После того как он впервые был применен в 1946 г., им стали широко пользоваться для изучения изотопов химических элементов. Дальнейшее усовершенствование метода дало возможность исследовать строение электронных оболочек атомов и молекул и на этой основе – структуру вещества. Метод исследования, созданный Фелликсом Блохом и Эдвардом Парселлом, нашел широкое применение в современной науке и принес этим двум ученым в 1952 г. Нобелевскую премию по физике.

В 1947 г. два молодых физика из лаборатории Изидора Раби сделали важные открытия, касающиеся воздействия электромагнитного поля на электроны в атоме. Поликарп Каш занимался исследованием магнитного момента электрона, а Уиллис Юджин Лэмб изучал тонкую структуру спектра водорода. Их исследования сыграли большую роль в окончательном становлении квантовой электродинамики, основы которой заложили Ричард Фейнман, Джулиус Швингер и Синьитиро Томонага – лауреаты Нобелевской премии 1965 г.

Результаты спектральных исследований Уиллиса Лэмба показали, что электрон в атоме водорода не движется точно по орбитам, предписанным теорией. Он как будто непрерывно колеблется, отклоняясь то в одну, то в другую сторону. Согласно квантовой электродинамике, этот эффект обусловлен взаимодействием между электроном и вакуумом.

В современной физике все более утверждается мнение, что вакуум – это отнюдь не «пустота», вакуум имеет свою микроструктуру. Так, под действием электромагнитного поля в вакууме непрерывно происходит процесс рождения и аннигиляции электрон-позитронных пар. Именно эти так называемые виртуальные частицы нарушают движение электрона по орбите, что и обнаруживается по спектральным линиям излучения.

В опытах Поликарпа Каша с использованием метода молекулярных пучков определялось отношение магнитного момента протона к орбитальному магнитному моменту электрона в атоме водорода. Оказалось, что магнитный момент электрона больше, чем это следовало из теории Дирака. Как и результаты Лэмба, это объяснялось тем, что электрон не является «голым», а окружен виртуальными частицами-призраками, рождающимися в вакууме.

Точнейшие исследования, проведенные в конце 40-х годов, приоткрыли завесу и над тайнами других, более фундаментальных свойств материи, поставив принципиальный вопрос о структуре вакуума и вообще о существовании «абсолютного» вакуума. В последнее время стали даже поговаривать о возврате к представлениям об эфире, столь распространенным вплоть до конца XIX в., но, разумеется, на качественно новом уровне. Большой научный вклад Уиллиса Лэмба и Поликарпа Каша довольно скоро получил и официальное признание – в 1955 г. они были удостоены Нобелевской премии по физике.

Туннельный эффект

Согласно представлениям классической физики, чтобы перейти из одного энергетического состояния в другое, частица должна преодолеть так называемый потенциальный барьер, т. е. должна обладать достаточной. энергией, чтобы «оторваться» от системы, в которой находится. Однако в странном мире квантовых явлений частицы свободны от. этих ограничений. Они как бы используют некий «туннель», который позволяет им проникать через потенциальный барьер. Это довольно странное на первый взгляд явление вытекает из принципа неопределенности Гейзенберга.

Рассмотрим в качестве примера альфа-частицу. Она состоит из двух протонов и двух нейтронов, находящихся в атомном ядре. Если альфа-частица получает достаточно большую энергию, то она, преодолев ядерные силы, покидает ядро – тогда-то и наблюдается альфа-излучение. Однако, как указывает соотношение неопределенностей, обычно невозможно одновременно определить координату и импульс микрочастицы. Этим и объясняется следующее парадоксальное явление: частицы с энергией меньшей, чем необходимо для преодоления потенциального барьера, могут пройти сквозь него.

Представление о туннельном эффекте было применено для объяснения не только альфа-распада, но и ряда других явлений. В 1957 г. японский физик Лео Эсаки, работавший в компании «Сони», открыл экспериментально подобный эффект у полупроводников и создал первый туннельный диод. В те годы исследование туннельного эффекта было новостью в науке, и им занимались многие ученые.

В 1960 г. норвежский физик Айвар Джайевер из «Дженерал, электрик» провел первые наблюдения туннельного эффекта в сверхпроводниках, в которых электроны туннелировали из одного сверхпроводника в другой, и изучил закономерности этого явления. Он, в частности, высказал мысль о возможности использования туннельного эффекта для измерения температуры. В 1962 г. английский физик Брайан Джозефсон, лишь два года назад закончивший Кембриджский университет, предсказал новый вид туннелирования, который действительно вскоре был открыт; он получил название «эффект Джозефсона».

Этот эффект наблюдается при протекании сверхпроводящего тока через очень тонкий слой диэлектрика, разделяющий два сверхпроводника (так называемый контакт Джозефсона). Если ток через контакт Джозефсона не превышает определенного значения, то падение напряжения на контакте отсутствует (так называемый стационарный эффект Джозефсона). Если же через контакт протекает ток больше критического, то возникает падение напряжения и контакт, излучает высокочастотные электромагнитные волны. Это нестационарный эффект Джозефсона, который был открыт в 1965 г. Джайевером.

Туннельный эффект дал возможность поставить различные точные эксперименты и построить высокочувствительные приборы для физических исследований. Кроме чисто научного интереса этот эффект в последние годы приобретает широкое практическое значение.

Трое ученых, внесших наибольший вклад в эти исследования, Лео Эсаки, Айвар Джайевер и Брайан Джозефсон, были удостоены в 1973 г. Нобелевской премии по физике.

Технические достижения

Альфред Нобель, инженер, связанный прежде всего с практикой, несомненно, хорошо знал, что он имел в виду, когда написал в своем завещании о награждении за открытия, приносящие наибольшую пользу человечеству. Однако уже с самого начала Нобелевские комитеты стали трактовать эту формулировку более широко. Тем не менее были случаи, когда исследования приводили к открытиям и разработкам, которые в буквальном смысле соответствуют формулировке Нобеля.

К числу таких чисто инженерных работ относится автоматическое устройство для зажигания и гашения морских маяков, созданное шведским инженером Иильсом Густавом Даленом. Действие устройства основано на использовании эффекта теплового расширения металлов. После захода солнца механическая конструкция охлаждается и приводится в действие, включая маяк. Для побережья Швеции, с его многочисленными островами и заливами, такое устройство чрезвычайно важно. Оно позволило построить множество маяков, работающих автоматически и не нуждающихся в обслуживающем персонале.

Открытие инженера Далена, несомненно, принесло большую практическую пользу человечеству, так как его автоматические маяки спасли жизнь многим людям и повысили безопасность мореплавания. По этим соображениям шведскому изобретателю в 1912 г. была присуждена Нобелевская премия по физике.

Исследования механических свойств металлов увенчались в 1920 г. еще одним награждением. Швейцарский физик Шарль Эдуард Гильом был удостоен Нобелевской премии за создание сплавов, нашедших широкое применение в метрологии, прецизионной технике, при изготовлении высокоточных инструментов и измерительных стандартов.

Гильом был известным метрологом конца прошлого века. Он один из специалистов, создавших платино-иридиевые эталоны метра. Эти металлические стержни перестали применять после того, как в 1890 г. Альберт Майкельсон, сконструировав свой интерферометр, создал тем самым новый эталон метра – на оптической основе. Однако эталоны других единиц измерения остались в виде металлических образцов.

В 1899 г. Шарль Гильом начал исследовать сплавы никеля со сталью. В зависимости от относительного содержания компонентов он получал материалы различного качества. Один из таких сплавов практически не испытывал линейного расширения при нагревании. Он был назван «инваром» (от латинского «инвариабилис», что значит «неизменный»). Другой сплав, названный «элинваром», сохранял свою эластичность неизменной в широком интервале температур.

Исследование Гильомом сплавов никеля со сталью явилось большим вкладом в метрологию, и этот вклад был оценен присуждением ученому Нобелевской премии по физике за 1920 г. Но кроме чистой науки они имели важное значение и для практики. Миллионы часов изготовлены из специальных сплавов, созданных швейцарским физиком. Его награждение – хотя и на короткое время – привлекло внимание общественности к области науки, которая не пользовалась особой популярностью.

«Наковальни Бриджмена»

Влекомые стремлением познать неизвестное, ученые подвергают вещество сверхсильным воздействиям, пытаясь выяснить, что с ним при этом происходит. Сверхвысокие температуры – это физика плазмы. Сверхнизкие температуры – царство сверхпроводимости и квантовых жидкостей. Существует также физика сверхвысоких давлений. Пионером в этой области по праву считается профессор Гарвардского университета Перси Уильяме Бриджмен. До него исследовались давления до 3 тыс. атм. Он поднял эту цифру до 500 тыс., а сегодня его последователи достигли 6 млн. атм., или 6 мегабар.

Физика сверхвысоких давлений целиком зависит от техники. Обычный поршневой пресс позволяет получать давление максимум в 50 тыс. атм. Выше этого предела самые прочные поршни и цилиндры разрушаются. Принципиальным новшеством стали «наковальни Бриджмена», в которых давление создается в тонком слое вещества, заключенного между коническими поршнями.

Если поршни изготовить из прозрачного материала, например из алмаза, то можно непосредственно наблюдать за тем, что происходит с веществом при сверхвысоких давлениях.

Превысив определенный предел, возрастающее давление приводит к изменению упорядоченной атомной и молекулярной структуры вещества, в результате чего вещество переходит в новые состояния, которые физики называют фазами. В некоторых случаях после охлаждения или снятия давления состояние, достигнутое в весьма специфических условиях, сохраняется. Примером может служить закаленная сталь, которая получается при быстром охлаждении раскаленной докрасна стали, или алмаз, который образуется из графита при давлении в 100 тыс. атм и температуре 2000° С, но сохраняет свои свойства и при нормальных условиях.

С помощью своей аппаратуры Бриджмен получил шесть разновидностей льда. В экстремальных условиях, создаваемых «наковальнями», он осуществил широкие исследования электрической проводимости металлов, фазовых превращений, прочности материалов, вязкости, сжимаемости и других свойств веществ.

Работы Перси Бриджмена получили высокую оценку – в 1946 г. он был удостоен Нобелевской премии за создание аппаратуры для получения сверхвысоких давлений и за открытия в этой области. [8]8
  П. Бриджмен разрабатывал также вопросы методологии измерений и в 1920 г. дал математическое изложение анализа размерностей (метода определения связи между физическими величинами по их размерности). Он стал также основоположником операционализма, создав идеалистическую в целом программу операционного построения языка науки. Так как в своих работах Бриджмен затрагивал фундаментальные проблемы методологии естественных наук, в частности смысла естественнонаучных понятий, связи понятий с экспериментом, существования объектов, к которым эти понятия относятся, и т, д., он получил большую известность и как философ. – Прим. ред.


[Закрыть]

Данная область физики оказалась весьма важной в практическом отношении. Уже в 1955 г. были созданы первые искусственные алмазы, и сегодня существует целая отрасль промышленности, занимающаяся их производством, которая особенно развита в Советском Союзе. Сегодня на повестку дня поставлен вопрос о получении металлического водорода и других экзотических материалов. Техника сверхвысоких давлений дает возможность моделировать различные процессы, которые, как предполагается, происходят в недрах нашей планеты. Вряд ли когда-нибудь ученым удастся достичь «центра» Земли, о чем фантазировал Жюль Верн, но, во всяком случае, «наковальни Бриджмена» помогут нам получить представление о том, что там происходит.


    Ваша оценка произведения:

Популярные книги за неделю