355 500 произведений, 25 200 авторов.

Электронная библиотека книг » Вадим Мужчинкин » Морские львы и котики » Текст книги (страница 4)
Морские львы и котики
  • Текст добавлен: 12 апреля 2017, 20:00

Текст книги "Морские львы и котики"


Автор книги: Вадим Мужчинкин



сообщить о нарушении

Текущая страница: 4 (всего у книги 12 страниц)

В отличие от возрастных половые различия захватывают в основном два первых и два последних блока. Контур черепа секача больше похож на щенячий, чем на самочий, хотя эта псевдоинфантильность достигается скорее за счет надстраивающих череп гребней.

Сохранение неизменных пропорций при явном половом диморфизме у калифорнийского морского льва очень показательно, так как это сходство не искажает даже громадный сагиттальный гребень, позволяющий с первого взгляда опознать череп секача.

У третьей формы – южноамериканского морского льва – после рождения не только меняется форма мозговой коробки, но и сдвигается назад задний край твердого неба, причем у секачей этот сдвиг заметнее и к нему добавляются сдвиг носового отверстия и увеличение высоты нижней челюсти. Гребни и выросты черепа секача как бы компенсируют потери в относительных размерах мозговой коробки при повзрослении. Опять повзросление больше затрагивает средние блоки (третий и четвертый), а половые различия – два передних и два задних.

В общем получается, что размах изменчивости щенячьих пропорций вполне сравним с размахом таковой у самок и секачей, и с учетом всех этих трех групп детали конструкции черепа могут ходить у одного вида, например у северных морских котов, уже в пределах 15–20 % кондилобазальной длины. Но таких зон повышенной подвижности немного – передний край орбиты, профиль крыши черепа и сосцевидных отростков (позади слухового прохода).

К тем же результатам можно прийти, строя составной портрет другим способом. Возьмем по одному щенку каждого рода семейства ушастых тюленей, потом отдельно по одной самке каждого рода, затем по одному секачу (вместо того чтобы брать по десятку из каждой группы, но в пределах только одного вида). И при таком раскладе различия полов оказываются связанными не столько с разными пропорциями, сколько с разными размерами. Локальными особенностями пропорций секачи могут больше походить на щенков, чем на взрослых самок. Никто из щенков в семействе никакими деталями своего черепа не отстоит от соответствующих деталей никого из секачей этого семейства больше чем на 20 % кондилобазальной длины черепа. То есть размах изменчивости в пределах всего семейства не выше, чем в пределах любого таксона этого семейства, по крайней мере, когда речь идет о пропорциях (см. рис. 2).

Насколько универсален способ, которым достигается половой диморфизм черепа ушастых тюленей, судить пока нельзя, но показательно, что и в другом семействе ластоногих, у настоящих тюленей, при высоком сходстве пропорций самцов и самок самцовый череп все же имеет более инфантильную форму крыши черепа и более сдвинутые назад носовое отверстие и задний край твердого неба (как у ушастых тюленей).

Стратегия преобразований на протяжении жизни особи может предполагать либо сохранение пропорций неизменными на протяжении значительного отрезка времени, либо непрерывность изменений. Осуществленный первый вариант дает морской кот, у которого после рождения меняются лишь относительные размеры мозговой коробки, что к тому же частично компенсируется развитием в местах ее сжатия надстраивающих гребней и отростков. Более подвижный вариант дает южноамериканец, у которого к сжатию (с возрастом) черепной коробки добавляются сползание назад носового отверстия и заднего края твердого неба, а кроме того, значительно увеличиваются размеры (но только в высоту) нижней челюсти.

Совсем текучим кажется вариант, используемый близкой родней ушастых тюленей – моржами, где к перечисленному для морского льва добавляется значительное расширение предглазничной части черепа и смещение назад постепенно уменьшающейся в относительных размерах глазницы. В первом варианте возрастные изменения захватывают лишь третий и четвертый блоки черепа, во втором – уже блоки с первого по четвертый, а в третьем – все шесть блоков. Хотя во всех случаях набор стабильных деталей, не меняющих своего местоположения в конструкции после появления владельца конструкции на свет, значительно превышает число заметно перемещающихся деталей. Расстояние между младенческими и взрослыми контурами лишь в немногих участках достигает 15 % кондилобазальной длины черепа, во всех же прочих сдвиг меньше.

Интересно, возможны ли еще более радикальные изменения пропорций после рождения, чем у моржа. Однако трудно представить полный отказ от сохранения хоть какого-то костяка неменяющихся с возрастом признаков конструкции.

После составных портретов индивидуальной и возрастной изменчивости посмотрим, чем оперирует разнообразие самостоятельных родственных форм, заключенных в одно семейство. Три составных портрета семейства ушастых тюленей (для одного взяли по щенку каждого рода, для другого – по взрослой самке каждого рода, для третьего – по секачу каждого из семи признаваемых сегодняшними систематиками родов семейства) показывают тот же размах изменчивости межродовых отличий пропорций черепа в пределах семейства, что и размах различий особей соответствующей возрастно-половой группы в пределах одного вида того же семейства. Но у самок и щенков межтаксоновое разнообразие в отличие от индивидуального захватывает и изменения положения заднего края твердого неба. У самцов же всего семейства число изменчивых локусов больше, чем у самок и щенков, и больше, чем у секачей внутри какого-либо вида.

Поблочное сравнение форм ушастых тюленей друг с другом выявляет лишь разнобой. Зато целые контуры у щенков объединяют северного морского кота с калифорнийцем, оставляя прочих равноудаленными от них и друг от друга. У самок (рис. 12) по целым контурам сходны южный и северный коты с калифорнийцем при равной удаленности всех остальных друг от друга и от этой компании. Среди секачей (рис. 13) оказывается по крайней мере две пары (калифорниец с южным морским котом и австралийский морской лев с новозеландским) со сходными контурами черепов. Но хотя отец похож на одного, мать – на другого, а детеныш – на третьего, в целом каждый из родов семейства представляется равноудаленным от любого другого.

Так же как и при портретах индивидуальной изменчивости, в портрете всего семейства каждая из форм ушастых тюленей разными частями своего контура выходит на оба предела изменчивости, участвует в построении и робустного, и грацильного контуров, обнаруживая те же блоки, что и индивидуальная изменчивость.

Число локальных очагов повышенной изменчивости у секачей достигает семи (против щенячьих одного-двух) рассредоточенных по всем шести блокам черепа.

При всем том виден достаточно жесткий каркас конструкции, мало подверженной внутривидовым и надвидовым преобразованиям. Вся конструкция, к тому же, вписывается в параллелепипед с постоянным соотношением высоты, длины и ширины для любого черепа ушастого тюленя.

Рис. 12. Размещение отдельных таксонов в пределах составного портрета семейства ушастых тюленей (штриховка показывает размах изменчивости)

Портрет построен по семи самкам семи современных родов, но прекрасно вмещает череп миоценовой имаготарии (сплошная толстая линия). Прерывистая линия – самка северного морского кота, пунктир – сивучиха, чередующиеся точки и тире – самка южноамериканского морского льва


Рис. 13. Размещение отдельных таксонов в пределах составного портрета семейства ушастых тюленей

Портрет построен по семи секачам семи современных родов. Сплошная толстая линия – миоценовый талассолеон и современный южный морской кот, прерывистая – северный морской кот, пунктир – калифорнийский морской лев, точки и тире – южноамериканский морской лев

То, что расстояние между грацильной и робустной рамками семейства не случайно и не в первую очередь зависит от числа взятых в работу таксонов, показывают две пробы. Убрав двух или даже трех участников сборного портрета, нельзя существенно сузить размах изменчивости, можно лишь уменьшить число очагов высокой изменчивости. Также не заузит рамок и замена одиночек из разных таксонов группой особей одного таксона. Другое подтверждение – найденные в последние десятилетия несколько ископаемых форм, причисляемых к ушастым тюленям и имеющих возраст 15–20 миллионов лет (см. рис. 12 и 13). Палеонтологи спорят об их таксономическом статусе. Но сами звери, даже те, в которых хотят видеть близкую родню современных моржей, прекрасно вписываются в рамки сегодняшнего семейства, не выходя за пределы ни сегодняшнего робустного контура, ни сегодняшнего грацильного контура. То есть для такой четко очерченной группы, как современные ушастые тюлени, размах изменчивости выявляется уже немногими членами данной группы.

Попытка извлечь новые сведения об отариидах из их составных портретов неизбежно ведет к необходимости взглянуть и на их ближайших соседей по системе млекопитающих. С одного бока – это настоящие тюлени, четко оформленное семейство ластоногих, с другого – разнообразные наземные хищные, и в первую очередь близкое по крови (в прямом смысле – по сывороточным пробам) семейство медведей.

Построив портрет настоящих тюленей отдельно по самкам (13 особей 13 родов) и по самцам, также по одному из каждого рода, найдем, что межродовые отличия пропорций нигде не выходят за пределы 7—10 % кондилобазальной длины черепа, кроме нескольких локальных участков, где размах достигает 20 % (затылочные гребни и местоположение переднего края орбиты и заднего края твердого неба). В то время как у отариид и моржей стойко выдерживается неизменность относительных размеров носового отверстия (даже в перекореженном по сравнению с ушастыми тюленями моржовом черепе), у настоящих тюленей оно меняет размеры в очень широких пределах (15 % кондилобазальной длины), особенно у самцов. Каждая особь, как и у ушастых тюленей, выходит на оба предела данной группы, но сами пределы, грацильный и робустный, не реализованы никем из выборки. Половой диморфизм, по-видимому, сводится к возможности укрупнить носовое отверстие и увеличить за счет гребней выпуклость крыши черепа у самцов. Сравнение целых контуров четко объединяет в одну группу хохлачей Северной Атлантики и морских слонов Южного полушария, противопоставляя эту группу как целое всем остальным настоящим тюленям (рис. 14). Если бы убрать, вычленив в самостоятельную группу, хохлача и морского слона, оставшиеся 11 современных родов дали бы такую же однородную и с примерно таким же размахом изменчивости группу, как современные отарииды.

Рис. 14. Размещение отдельных таксонов в пределах принимаемого систематиками современного семейства настоящих тюленей

Составной портрет семейства отчетливо двоится на пару хохлач – морской слон (сплошная толстая линия) и группу из восьми родов, заключенную между тонкими линиями под штриховкой. Три рода стоят несколько особняком, но явно тяготеют к большей группе (прерывистая линия – тюлень Росса, пунктир – монах, точки и тире – тевяк)


Рис. 15. Составной портрет девяти форм плейстоценово-голоценовых медведей (штриховка между тонкими линиями) без затруднений принимает в себя раннемиоценового эналиарктоса (сплошная толстая линия), прочимого в ближайшую родню ушастых тюленей

Прерывистая линия – бурый медведь, пунктир – очковый медведь. Компактность семейства и размах изменчивости вполне сравнимы и с семейством ушастых тюленей, и с усеченным семейством настоящих тюленей (без морских слонов)

Внутри такого усеченного семейства по контурам черепа заметно выделяются тевяк (увеличенным носовым отверстием), тюлень Росса (увеличенной глазницей) и тюлень-монах (развитием затылочных гребней), а остальные мало отличимы друг от друга (особенно трудно различимы гренландский, обыкновенный и каспийский тюлени). Ясно, что один признак, даже такой жесткий, как пропорции черепа или набор зубов (а он-то как раз подкачал у ластоногих), не позволяет перекраивать систему зверей, но может быть добавочным аргументом при сравнении разных вариантов системы. Имея распространенный вариант разбивки настоящих тюленей на три подсемейства: десятирезцовых (нерпы и настоящие тюлени), восьмирезцовых (монахи и антарктические тюлени) и шестирезцовых (хохлач и слон), можно считать, что составной портрет семейства не противоречит еще большему обособлению третьей группы, но сглаживает несходство первых двух.

Теперь о медведях, с которыми нет таких таксономических трудностей, как с настоящими тюленями. Составной портрет, построенный по семи современным формам, свободно включает в свои рамки и евразийского пещерного медведя, и две плейстоценовые североамериканские формы (рис. 15). Расстояние между пределами лишь в одном месте превышает 10 % кондилобазальной длины черепа. Это – местоположение переднего края орбиты, где межтаксоновые отличия достигают 15 % кондилобазальной длины. Каждая форма касается разными участками своего черепа обоих предельных для семейства поверхностей, выявляя знакомые шесть блоков в конструкции черепа. Поблочный анализ дает ту же на вид неупорядоченную пестроту в чередовании минимальных и максимальных блоков. Сравнение целых контуров выявляет три группы, несколько неожиданные по составу: бурый, пещерный и барибал; тибетский и белый; губач и малайский медведи. Особняком остаются южноамериканский очковый медведь и один из плейстоценовых североамериканцев (арктодус). Зато сходство пропорций пещерного медведя и его сегодняшнего бурого собрата не вызывает сомнений. Еще любопытнее, что в узкие рамки современного семейства, тесно примыкая к современным мелким южноазиатским формам, хорошо вписывается мелкая околоводная или водная раннемиоценовая форма не то медведей, не то ушастых тюленей, обитавшая двадцать с лишним миллионов лет назад по обеим сторонам Северной Пацифики (эналиарктос).

Рассмотрев составные портреты черепов трех семейств, хоть и с малым числом форм в каждом и принадлежащих к связанным друг с другом арктоидным хищным млекопитающим, можно найти некоторые общие закономерности в характере межродовых отличий пропорций.

Размах изменчивости пропорций внутри одного вида оказывается сравнимым с тем размахом, который обеспечивает межродовые отличия внутри одного семейства (т. е. группы отчетливо сходных форм). Межродовые отличия так же локальны, как и внутривидовые, и так же скованы жестким шестичленным каркасом, но лишены намечавшейся на внутривидовом уровне упорядоченности в чередовании минимальных и максимальных блоков. Представитель каждого рода данного семейства участвует в построении обоих пределов изменчивости. При этом создается впечатление, что уже пять родов данного семейства очерчивают границы, за которые не выйдут и следующие пять родов того же семейства. Дальнейшее увеличение числа родов в семействе (например, 13 у настоящих тюленей) сочетается уже с неоднородностью группы и выпадением нескольких форм из однородной массы прочих.

Хорошо бы проверить эти наметки на других отрядах и на более многочисленных по числу форм семействах. Правомочно, однако, предположение о наличии жесткой постройки, допускающей лишь ограниченное количество строго локальных изменений и соответственно ограниченное число моделей данной конструкции.

Может ли составной портрет сказать что-либо об отличиях следующего ранга, отделяющих семейство от семейства. Например, у семейства моржей (рис. 16) по сравнению с семейством ушастых тюленей резко увеличена преорбитальная часть черепа (при тех же относительных размерах носового отверстия). Увеличение захватывает и переднюю часть нижней челюсти, увеличены и сосцевидные отростки, но зато уменьшена глазница. При этом последних двух отличительных признаков еще нет у новорожденного моржонка. Если теперь примерить недавно описанных миоценовых ластоногих (айвукус и имаготария) к этим двум группам, то они, вопреки своей причисленности к семейству моржей, хорошо уложатся не среди них, а среди современных ушастых тюленей, порождая сомнение в надежности их пристежки к моржам. Другая пара миоценовых родственников современных ушастых тюленей (аллодесмус и десматофока) почти реализует условную поверхность одного из пределов изменчивости современных отариид. Это ожившая в миоцене максимально грацильная модель, что как раз и противопоставляет ее владельцев ушастым тюленям, так как нарушается многократно подтвержденное правило – каждый член группы участвует в построении обеих предельных для данной группы поверхностей (рис. 17). При хорошем перекрывании портретов настоящих и ушастых тюленей их различают уменьшенные сосцевидные отростки и больший размах изменчивости размеров орбиты и носового отверстия у настоящих тюленей. Медведей можно было бы вписать в отариидный портрет, уменьшив носовые кости и сосцевидные отростки черепа и вдобавок уменьшив и сдвинув назад глазницы.

Рис. 16. Возрастные преобразования пропорций в семействе моржей и степень их сходства с ушастыми тюленями

Возможности обобщенной модели видны при совмещении выравненных по длине черепа новорожденного моржонка (сплошная толстая линия), взрослого моржа (прерывистая линия) и составного портрета семейства ушастых тюленей по щенкам (штриховка между тонкими линиями)


Рис. 17. Результаты наложения составных портретов трех семейств, признаваемых родственными

Семейство ушастых тюленей (редкая штриховка между тонкими сплошными линиями), семейство медведей (густая штриховка между прерывистыми линиями) и выпадающее из обоих семейство миоценового аллодесмуса (сплошная толстая линия). Даны все пять проекций черепа (детали, как на рис. 10)

Повторим теперь прежний опыт соотнесения изменчивости в пределах одного таксона с изменчивостью в пределах одной из составляющих его единиц (прежде – межродовую с внутривидовой, теперь – межсемейственную с внутрисемейственной). Межвидовые отличия в семействе медведей сильно затрагивают (размах в 15 % кондилобазальной длины) лишь один локус черепа – местоположение орбиты. В отличиях же; семейств хищных друг от друга тот же размах (15 % кондилобазальной длины) достигается уже в трех локусах: местоположение орбиты, местоположение заднего края твердого неба, местоположение заднего края носовых костей. Отличия от семейства медведей в кошачьем семействе сосредоточены локально, но во всех блоках: в гиеновом – в средних и задних блоках; в собачьем – в передних и задних; в куньем – в средних; в виверровом – в последних; в енотовом семействе – в средних блоках. Моржи, настоящие тюлени и медведи отличаются от ушастых тюленей по локусам, рассредоточенным по всем блокам (см. рис. 8 и 9).

Жесткая конструкция сохраняется общей и у зверей из разных семейств, но число подвижных локусов (при размахе перестроек не больше 15 % длины черепа) растет по мере перехода с уровня на уровень при сохранении размаха изменений постоянным, и внутри вида их меньше, чем внутри семейства, а между семействами больше, чем внутри семейства, так что в группе близких семейств локальные отличия в пропорциях расползаются уже по всем блокам черепа. Но при этом, вопреки общепринятым представлениям о родстве, вдруг обнаруживаются варианты – дубли, например помещаемые в разные семейства бамбуковый медведь и гиена (рис. 18).

Рис. 18. Три пары внешне несходных, но одинаковых по пропорциям черепов

Результаты наложения выравненных по длине черепов (вид сбоку и вид снизу): А – рогатый благородный олень (прерывистая линия) и безрогая кабарга (сплошная); Б – бамбуковый медведь (прерывистая линия) и гиена (сплошная); В – зубатый кит (прерывистая линия) и утконос (сплошная)

Локальны межгрупповые отличия не только среди наземных и водных хищных зверей. Локальные перестройки в предглазничной части черепа позволили хоботным дать поразительный набор вариантов (два верхних и два нижних бивня, только верхние бивни, только нижние бивни, передняя часть нижней челюсти превращена в выдвинутую вперед длинную ложку и т. д.), не затрагивая всю конструкцию. Еще удивительнее сходство пропорций у рогатых и безрогих копытных, когда локальные выросты громадных рогов оленя не требуют каких-либо сопряженных перестроек пропорций черепа. По удачному выражению одного эмбриолога, рога проходят по другому ведомству.

Сходство пропорций у бамбукового медведя и гиены еще можно списать на близкое родство всех наземных хищных, хотя зубы уж больно различны. Но как быть со сходством пропорций черепа у мелких клоачных млекопитающих и громадных китообразных. Даже беглый осмотр различных групп млекопитающих показывает как наличие конструкций, явно несхожих с на шей модельной отариидной (у копытных, китообразных и других форм с далеко отставленной назад глазницей), так и удивительно похожих – у форм с укороченной предглазничной областью и увеличенной орбитой. Так, ленивец и лемур, несмотря на редукцию у первого предчелюстных костей и замкнутую орбиту второго, так же как и маленькая рукокрылая летучая лисица, разделяют с ушастыми тюленями общую по соотношению основных деталей конструкцию черепа. И это – при анатомических различиях, разной биологии и экологии, большой удаленности друг от друга в системе млекопитающих.

Правомерны два предположения: либо общепринятые представления о таксономической близости нуждаются в пересмотре и можно всех владельцев данной конструкции черепа рассматривать как близких родственников, т. е. делать то, что гласно или негласно делается в отношении владельцев сходного набора зубов, либо общего варианта конструкции можно достигать независимо от родственников как одного из ограниченного набора возможных моделей. Но принятие второго предположения ведет дальше. Если сходны неродственные морские львы и ленивцы, то так ли уж обязательно принимать родство разнообразных сходных с ушастыми тюленями ископаемых, не проверив детально, не втерлась ли среди них какая-нибудь неродная летучая лисица или ленивец? И дальше: так ли родственны все те, кого принято считать родственниками?

В любом случае нужно представлять реальное разнообразие вариантов конструкции черепа, реализованных двумя-тремя сотнями семейств современных и ископаемых млекопитающих. Пока неизвестно, кто еще владеет отариидной моделью, остается единственное, что объединяет этих океанских, древесных и летающих зверей – совладельцев, – жизнь в трехмерном пространстве, которая, однако, не обеспечила китообразным сходной модели черепа.

Пока не решен вопрос о существовании (или несуществовании) гомологичных рядов для моделей черепа и сохраняется более или менее неизменной система класса млекопитающих, трудно удержаться от попытки сравнить два составных портрета: всех современных ластоногих (три семейства) и всех современных наземных хищных (7 семейств).

Размах изменчивости сходен у обоих отрядов и достигает 15 % кондилобазальной длины черепа (у ластоногих – в преорбитальной части черепа, в скулах и сосцевидных отростках, а у хищных – в скулах и местоположении заднего края носовых костей, заднего края твердого неба и переднего края орбиты). То есть удвоение числа семейств тоже не сопровождается заметным увеличением размаха изменчивости и в обоих случаях он имеет максимальные величины, которых достигали и роды одного семейства, и разновозрастные особи одного вида.

В пределах отряда оказывается еще больше локальных участков повышенной изменчивости, чем в пределах семейства. При совмещении портретов двух отрядов малоизменчивыми (размах меньше 10 % кондилобазальной длины) остаются лишь несколько локусов: межглазничная ширина, высота скуловой дуги, высота заднего отдела нижней челюсти, профиль участка заднего отдела крыши черепа. Добавить еще несколько отрядов – и их составной портрет превратится в туманное пятно, заключенное в одну лишь наружную оболочку. Надежды найти внутри этой оболочки (бесформенной поверхности условного робустного черепа) какие-нибудь стабильные локусы мало. То есть жесткий каркас стабильных элементов конструкции черепа хорошо прослеживается у групп особей одного вида, у видов одного рода, у родов одного семейства и даже у некоторых групп семейств.

Рис. 19. Возможности увеличения разнообразия пропорций в пределах близкородственной группы

Совмещенные на одном рисунке породы домашних собак (вид сбоку и снизу выравненных по длине черепов). Сплошная линия – неотличимые по пропорциям друг от друга дог, борзая и волк; прерывистая линия – болонка; пунктир – декоративная японская тама

Насколько же жесток этот каркас и что может его поломать? Посмотрим на несколько случаев явных поломок конструкции, из тех, что принято с давних пор именовать уродствами. Вспомним сверхкомплектный зуб морского кота, вклинивающийся в зубной ряд, не меняя его длины, или дефект твердого неба («волчья пасть»), который не мешает всем остальным деталям контура черепа владельца вписываться в узкие рамки индивидуальной изменчивости. Или возьмем известные из любого руководства по человеческой анатомии предельно искаженные на первый взгляд черепа «штеттинского ткача», гипсицефала или акромегалика. При сравнении с нормой они показывают, что соответствующие человеческие уродства связаны с одной или несколькими локальными надстройками в рамках стандартной конструкции (как, скажем, у черепа моржа по сравнению с черепом морского льва). Столь же локальны отклонения от стандартных пропорций тела при ахондроплазии[13]13
  Врожденное отставание в росте конечностей при нормальном развитии туловища, шеи, головы.


[Закрыть]
, ужасной у человека, но вполне терпимой у разнообразных домашних животных. Все перечисленные дефекты конструкции строго локальны, не меняют жесткую рамку, но число поврежденных локусов меняется (рис. 19).

Размах локальных повреждений стандартной рамки на первый взгляд не превосходит наблюдаемого в ходе нормальной индивидуальной и групповой изменчивости. Получается, что возникновение уродств (тератогенез) в индивидуальной жизни моделирует то, что в норме реализует только история таксонов (филогенез). Отсюда очевидный параллелизм между локальными перестройками пропорций конечностей при появлении аномальной ахондроплазии и происходящим в различных эволюционных ветвях подобием этого или между локальным изменением относительных размеров нижней челюсти акромегалика и филогенетической судьбой нижней челюсти в ряду морских коров. Остается понять, в чем же разница, что реализует эти потенции в несвойственном месте и с несвойственной скоростью.

Применительно к изучению механизма возникновения уродств, тератогенеза, графический метод составных портретов позволяет опознать возникновение перестройки, точно установить поврежденный участок и оценить размах новообразований. При знании нормальной изменчивости пропорций соответствующей конструкции можно найти ее наиболее уязвимые места, понять, бьет ли тератогенный фактор по наиболее изменчивым или по стабильным звеньям постройки.

Дальше встает вопрос о пределах прочности самой конструкции: сколько блоков должен тератогенез захватить локальными перестройками, чтобы старый вариант постройки оказался несостоятельным (не достигнут ли этот предел у декоративных собачек?)? Что происходит в такой критической ситуации, если набор конструктивных вариантов ограничен? Если филогенез заменяет исчерпавший свои возможности конструктивный вариант другим из ограниченного набора возможных, то не может ли это быть смоделировано тератогенной ситуацией в индивидуальной жизни? Как видно из перечня проблем, вопросов гораздо больше, чем вразумительных ответов. Но одновременно видны и некоторые возможности в поисках решения. И на этом пути череп млекопитающих представляется хорошей моделью, а сравнение составных портретов сулит определенный успех.

Само по себе расчленение единой конструкции на систему блоков с относительной независимостью событий в каждом из них сразу вовлекает при попытках истолкования более общий вопрос о пространственной локализации признака, т. е. о расчлененности, дискретности фенотипа, который строит дискретный же генотип. С другой стороны, свидетельства того, что конструкция черепа метамерна не только в ранней жизни эмбриона, но и у взрослых особей, заставляет по-новому взглянуть на, казалось бы, хорошо разработанный вопрос о механике работ, производимых черепом позвоночного животного. Эти же свидетельства подводят опять же к общей проблеме причин и механизмов возникновения метамерности в эмбриональной жизни.

События, происходящие с черепом в онто– и филогенезе нескольких групп ластоногих и хищных зверей, заставляют обратить внимание на те признаки конструкции, которые сохраняются неизменными, несмотря на различие биомеханики, размеров и экологии владельцев. Становятся видимыми жесткие рамки, ограничивающие происходящие изменения, например постоянство формы параллелепипеда, в который вписан череп вместе с нижней челюстью, или сохранение неизменного контура свода независимо от того, выполнен ли он стенкой мозговой коробки или дополнительными гребнями и выростами. Локальные подвижки в одну пятую длины возможны без преобразования всей конструкции черепа. Размах локальных подвижек примерно один и тот же, независимо от того, ведет ли он к индивидуальным, межродовым или межсемейственным отличиям. Встает проблема определения потенциальных возможностей конструкции и присущих ей ограничений. Решение сделало бы возможным вычислять неизвестные сейчас, но потенциально возможные формы млекопитающих.

У рассмотренных групп зверей широко распространена стратегия онтогенеза, при которой пропорции почти не меняются после появления зверя на свет из утробы матери (см. рис. 7). Но отсюда – необходимость найти время становления пропорций, понять, что смещает его то в эмбриональную, то во взрослую жизнь.

Анализ возможностей конструкции черепа имеет и очевидный филогенетический аспект, интерес к которому повышается возможностью появления сходных вариантов у систематически далеких форм. Заманчиво было бы представить, какими вариантами оперирует весь класс млекопитающих, и поискать, нет ли подобия гомологичных рядов для моделей звериного черепа.

Еще современник Ф. Гальтона и Д’Арси Томпсона Генри Осборн полагал в начале века, что разнообразие форм среди млекопитающих обязано не столько качественным, сколько количественным отличиям. Отличия к тому же, по его представлениям, мозаичны, локальны. Составные портреты позволяют говорить об этом увереннее и использовать метод для выяснения связей различных групп зверей.

Стабильность пропорций черепа делает этот признак столь же важным при любых ревизиях системы млекопитающих, как и широко используемые признаки строения зубной системы и ушной области черепа. А насколько важно знание структуры нашего собственного класса для представлений о собственном теле, собственном хозяйстве и мире, вряд ли надо дополнительно аргументировать.


    Ваша оценка произведения:

Популярные книги за неделю