355 500 произведений, 25 200 авторов.

Электронная библиотека книг » В. Федченко » ...И до 1990 года » Текст книги (страница 6)
...И до 1990 года
  • Текст добавлен: 26 октября 2016, 22:30

Текст книги "...И до 1990 года"


Автор книги: В. Федченко



сообщить о нарушении

Текущая страница: 6 (всего у книги 13 страниц)

В этой связи большой интерес представляет прибор «Морфоквант», который создали советские ученые совместно со специалистами предприятия «Карл Цейс Иена» (ГДР). Он позволяет в течение 20 минут построить карту набора хромосом растений и животных. Сейчас идут работы над более простой и дешевой модификацией прибора.

Есть целый ряд новых направлений, опытно-лабораторные исследования которых сегодня, может быть, еще не закончены, но уже видна возможность резкого повышения продуктивности животноводства. Это работы эмбриологов, связанные с новейшими достижениями в этой области и одновременно в молекулярной генетике. В частности, специалисты разработали новые методы воспроизводства животных, основанные на манипулировании с яйцеклетками и эмбрионами. Такие методы позволяют в принципе в короткие сроки увеличить поголовье ценных пород сельскохозяйственных животных.

Суть технологии в том, что с помощью гормональной обработки от одной высокопородистой самки удается получить до 60 эмбрионов в год (вместо одного-двух). Их можно потом имплантировать (пересаживать) низкопородным самкам, получая таким образом от одной коровы 20—30 телят за сезон. Все это в целом создало базу, с одной стороны, для резкого повышения эффективности и темпов племенной работы, с другой – для дальнейших, более тонких манипуляций с эмбрионами сельскохозяйственных животных, их генетическим аппаратом. Хотя сегодняшние достижения в этой области лишь начало и речь пока идет об относительно простых манипуляциях, исследования развиваются очень быстро, и их внедрение в практику животноводства обещает дать огромный экономический эффект.

Большие возможности и здесь таят в себе методы генной инженерии. Воздействие на тонкую структуру нуклеиновых кислот, замена одних генов другими прокладывают путь к программированному изменению физиологических особенностей растений и животных. На очереди такие эксперименты, как перестройка генетического аппарата путем «перемещения» генов из одних организмов в другие подобно тому, как это делается сейчас с микроорганизмами.

Я назвал лишь несколько направлений. Их значительно больше. Исследования ученых охватывают самый широкий круг вопросов, с которыми связано решение многих важнейших народнохозяйственных задач.

...Иногда, когда я рассказываю об этом, журналисты задают мне вопрос: курс на эффективность научных исследований – не означает ли он явный приоритет прикладных разработок и не наносит ли это ущерба фундаментальным исследованиям, которые не связаны непосредственно с потребностями людей и эффект которых нередко трудно предвидеть?

Должен сказать, что наука исторически возникла именно из потребностей человеческого общества. И какую область исследований ни возьми, все они направлены в нашей стране на удовлетворение запросов и потребностей человека. В этом смысле само деление науки на фундаментальную и прикладную мне кажется очень условным.

Но мы разделяем категории науки, ее направления, имея в виду временной фактор, то есть то, что используется сегодня, в исторически очень короткий срок, и то, что рассчитано на длительную перспективу и сегодня вообще не оценивается с точки зрения использования, потому что прямо не видно, как это можно использовать. В этом плане мы говорим – прикладные и фундаментальные исследования.

Наша страна в этом отношении, мне кажется, ведет очень дальновидную политику. С момента организации Советского государства был создан такой мощнейший институт, специально предназначенный для развития фундаментальных исследований, как Академия наук СССР, у которой нет аналогов в мире. И благодаря такой дальновидности по очень многим направлениям науки мы сейчас занимаем ведущие позиции в мире.

Фундаментальная наука в нашей стране в большом почете. Есть традиционный «вкус» к развитию фундаментальных исследований. Высокий авторитет Академии наук, концентрация крупных ученых в этом учреждении стимулируют и вузы, и отраслевые институты принимать активное участие в научной деятельности.

Задача фундаментальной науки заключается в том, чтобы развиваться во всех возможных направлениях, потому что трудно себе представить заранее, где именно произойдет «всплеск». И Академия наук оказывается всегда готовой к развитию самого неожиданного направления. Пример? Та же генетическая инженерия. Шесть лет назад ее просто не существовало. Это было одно из направлений изучения нуклеиновых кислот. Некоторые даже считали, что им можно пренебречь. Но сегодня мы видим, что уровень фундаментальных работ здесь достаточно высок, он и позволил быстро выйти на технологические рельсы.

Если опять же обратиться к близкой мне области физико-химической биологии, то на целом ряде примеров можно показать, какие советские фундаментальные работы выполняются на мировом уровне. Среди них изучение генома высших организмов (работы члена-корреспондента АН СССР Г. Георгиева), исследования процессов, связанных с молекулярными аспектами биосинтеза белка на рибосомах (работы академика А. Спирина), исследования биоэнергетических процессов, механизмов воспроизводства энергии в митохондриях – своего рода энергетических фабриках в клетке (работы члена-корреспондента В. Скулачева). Очень интенсивно развиваются у нас сейчас исследования биологических мембран, которые, окружая клетку, создают в ней свой климат, пропуская одни вещества и задерживая другие (работы члена-корреспондента В. Иванова). В исследованиях транспорта ионов кальция через мембраны (академик П. Костюк), вообще в исследованиях транспорта ионов через мембраны и использовании различных регуляторов, действие которых направлено на увеличение потоков металлов в биологических и искусственных мембранах, работы советских ученых пионерские в мире.

Биотехнология ближайших лет

Я хотел бы подчеркнуть также резкое возрастание мощи наших исследований в изучении структуры биополимеров, особенно таких, как белки, нуклеиновые кислоты, полисахариды. За последние годы получены важные результаты, приведшие к расшифровке первичной структуры многих сложных белков. Следующий уровень изучения белков – исследования пространственной структуры белковых молекул (пепсина, леггемоглобина). На этой основе мы подходим к расшифровке механизма действия трансаминазы – ключевого фермента, ответственного за азотистый обмен в живых клетках (работы академиков А. Браунштейна и Б. Ванштейна).

Для изучения структуры биополимеров у нас успешно используются синхротронное излучение, ядерный магнитный резонанс, мэсбауэровская спектроскопия. И это тоже работы высокого мирового класса (академик В. Гольданский, член-корреспондент АН СССР В, Быстров, профессор М. Мокульский и другие).

Необходимо отметить высокий уровень вирусологических исследований. В области структуры и репродукции вирусов получены результаты, не только имеющие большое фундаментальное значение, но и помогающие решению практических вопросов, профилактике и лечению вирусных заболевании!

Упомяну еще об одной работе, связанной с возможным использованием биологических систем в качестве источников энергии. У нас в стране эта научная программа получила название «Родопсин» – по имени белка, который входит в зрительный аппарат глаза и отвечает за превращение световых сигналов. Подобный же белок, как оказалось, входит и в состав бактерий, живущих в соленой воде, обеспечивая их жизнедеятельность за счет энергии солнца. Поглощение одного кванта света одной молекулой родопсина вызывает появление электрического сигнала, который усиливается за тысячные доли секунды в миллион раз.

Сложилось так, что эти исследования проводились в условиях очень жесткой конкуренции с нашими американскими коллегами. И все же в изучении родопсинов советские ученые сумели выйти в короткое время на самые передовые позиции в мире. В частности, удалось практически полностью расшифровать структуру этих двух родопсинов, их топографию, расположение в мембране, получить представление о том, как они работают.

Сейчас в мире идет много разговоров о том, как такие системы, изящные и эффективные, могут использоваться в будущем для утилизации солнечной энергии в промышленном масштабе. Обсуждаемые расчеты и предположения обнадеживают, так что и в энергетику биология, несомненно, может внести свой вклад.

Вопрос об эффективности научных исследований в системе Академии наук ставится так: каким образом быстрее использовать в народном хозяйстве переходящие в разряд прикладных фундаментальные работы? Этот вопрос сложный, и у нас он не всегда еще решается так, как хотелось бы. Нам нельзя закрывать глаза на те трудности, которые у нас имеются. Действительно, мы порой: чересчур медленно внедряем то, что совершенно очевидно. Кстати, это происходит в немалой степени и из-за нашей нерасторопности: нельзя просто написать на бумаге результат и апеллировать к промышленности, чтобы она его внедряла.

Ученый, который провел результативное исследование, должен довести его до такого состояния, чтобы оно было готово для практического использования. Нужен не рыхлый результат, а гарантированный, отработанный опыт, отработанная методика, которая была бы понятна людям практики. В то же время промышленность должна иметь соответствующие возможности для внедрения, определенный стимул. У нас эта цепочка часто не срабатывала. В текущем пятилетии эффективность работы промышленности в смысле внедрения будет возрастать в связи с созданием целевых комплексных программ по ведущим направлениям научно-технического прогресса, что специально было отмечено на XXVI съезде КПСС.

Очень важно, чтобы перспективные труды с самого начала были согласованы с промышленностью в рамках общих программ. У нас сейчас работа по таким программам занимает центральное место.

Когда научное исследование, выходящее в прикладные, сразу планируется как согласованная система, в которой участвуют уже на первых этапах, скажем, отраслевые институты, тогда сам термин «внедрение» оказывается ненужным, потому что идет плановый переход, шаг за шагом, к производству. Работа перемещается постепенно в заводскую лабораторию, где проверяются результаты, рассчитывается увеличение масштаба или пропускной способности производства. И последний этап – завод или фабрика.

Мне представляется очень важным, чтобы исследователь владел экономикой производства. Иногда результат, достигнутый в науке, интересен, оригинален. Но не всегда еще это означает, что он экономичен для данной отрасли промышленности. В химии, например, можно получить какое-то вещество с большим практическим выходом, но в промышленности для него нет исходного материала; получение же этого «исходного» может «съесть» всю рентабельность, и оказывается, что внедрение такого результата заведомо неэкономично.

Если говорить о биологии, то здесь проработка результатов должна быть особенно тщательной еще и потому, что они имеют прямое отношение к живому, к человеку.

Наша страна является в данном случае наиболее строгим судьей: критерии для применения нового лекарства или пестицида у нас наиболее жесткие. Скажем, чтобы лекарственный препарат был одобрен и принят Фармакологическим комитетом, он должен удовлетворить такую массу требований, что порою кажется, что дело безнадежно. И это правильно; мы хорошо знаем, какие тяжелые последствия ждут человека, представителей флоры и фауны в результате недостаточно серьезной проверки новых препаратов перед их внедрением, как это порой бывает на Западе.

Решая проблему эффективности при создании препаратов и основ биотехнологии в интересах медицины, мы сейчас делаем упор на опытные производства в академических учреждениях. Медицинские препараты меняются часто (грубо говоря, каждая неделя приносит мировой медицине новый антибиотик, новый сердечный стимулятор и т. п.), и большим предприятиям бывает нелегко перестраиваться с одного технологического процесса на другой. В этом случае рентабельнее небольшие мобильные производства с современным, легко перестраивающимся оборудованием, с высококвалифицированным составом технологов, инженеров, научных работников, что подтверждается опытом.

Институт органического синтеза АН Латвийской ССР в Риге, например, на экспериментальном заводе ведет промышленный выпуск препаратов, в частности, такого важного природного биорегулятора, как окситоцин, широко используемый в сельском хозяйстве и медидине. Здесь производится около двух килограммов этого препарата в год, что во многом покрывает нужды страны. Я уже не говорю о широко известном в мире противораковом препарате фторафуре, созданном в этом институте и выпускаемом им в виде готовых форм. Больших успехов добились и в Институте тонкой органической химии АН Армянской ССР, в Физико-химическом институте АН УССР и в ряде других институтов.

Так оно и должно быть – опытные предприятия должны не только вырабатывать какие-то количества препарата, но и делать готовые формы, потому что пока их нет, нет и серьезного испытания, нельзя судить об эффективности препарата. При необходимости готовые формы могут передаваться на выпуск крупными сериями в медицинскую промышленность. Это как раз тот путь, который ведет прямо к внедрению в производство.

Главное в деятельности любого научного коллектива – качество работ. Мне кажется, невозможно представить настоящего ученого, который не требовал бы от себя и своих коллег, чтобы сделанное ими отвечало новейшим мировым достижениям и открытиям. Поэтому трудится ли ученый в области прикладных разработок или занимается фундаментальными исследованиями, он все равно должен чувствовать пульс времени. Вопрос мирового уровня для нас повседневный, и это закон работы любого научного учреждения...

Я постарался вкратце рассказать о тех задачах и проблемах, которые стоят перед биологией сегодня. Что хотелось бы пожелать тем, кто думает связать свою судьбу с этой наукой?

Обычно когда обращаются к молодежи, говорят, что в ее руках будущее, что молодежь – основной двигатель прогресса, в том числе науки. Больше половины научных разработок в целом по стране принадлежит молодым ученым. Молодежь – это наша надежда. И от ее умения и труда зависит очень многое.

Иногда приходится слышать – молодой ученый долгое время остается младшим научным сотрудником, не занимается крупными проблемами. Почему? Чаще всего это связано с тем, как человек работает и как он понимает свою задачу. Конечно, я не отрицаю, что в каком-то отдельном случае могут сложиться неблагоприятные обстоятельства. Но если говорить принципиально о возможностях каждого научного работника, то тут главное его личные деловые качества. Современная наука развивается чрезвычайно интенсивно, темпы работы научных лабораторий и центров высоки. Чтобы сказать свое слово в науке, нужны титанические усилия. И очень часто человек останавливается на полпути, даже если он способен творчески мыслить. Ему не хватает организованности, умения сконцентрировать свое внимание на том, чтобы не только обдумать результат, но и реализовать его.

Я хочу сказать, что наука требует определенных свойств характера. И с этим связаны самые главныо трудности, потому что все остальное можно преодолеть. Если сотрудник намечает план исследований, с которым не согласен его руководитель, но сам он абсолютно убежден в необходимости этих исследований, то он имеет все возможности отстаивать свою позицию и добиваться цели.

Чтобы успеть сделать что-то полезное в науке, необходимо как можно раньше начинать. Время очень дорого ценится в нашей стремительной жизни, и, теряя минуты и часы, порой не успеваешь заметить, как проносятся годы. Следовательно (и в этом я вижу задачу молодого поколения в науке), нужно быстро овладевать знаниями, быстро и достойно вставать в ряды тех, кто прорубает дорогу в неизведанное, работать самостоятельно, уверенно и надежно, чтобы на тебя могли положиться и тебе поверить твои коллеги по труду, твои старшие товарищи. Если честно относиться к труду, если настойчиво трудиться и ясно видеть цель, в любой науке можно достигнуть успеха.

Скорость сегодняшней жизни требует от молодого поколения зрелых решений, полной самоотдачи, желания и умения принять участие в самых важных делах, быть в курсе самых бурных событий. А этого достичь непросто. Нужны настойчивость, самопожертвование, постоянное совершенствование своего мастерства, широкий кругозор и развитая интуиция. Нужно осознание того, что ты несешь главную ответственность за дело, которым занимаешься, и должен решить поставленную задачу во что бы то ни стало. Тогда не будет просто отбывания часов в лаборатории, состояния апатии и безразличия, не будет потребительского отношения к своему труду, своему месту. Жизнь сложна, она не всегда романтична и требует от человека будничной работы, напряжения, сосредоточенности, мужества, силы воли.

Но природа так долго и так искусно пестовала это свое чудесное детище, что каждый из нас должен оказаться достойным великого удела – стоять на вершине жизни, быть человеком. Особенно человеком самого прогрессивного и гуманного общества на Земле.

Ведущая роль (Академик Патов Б.)

Воспользуемся ставшим уже почти хрестоматийным в популярной литературе и особенно в фантастической мысленным экспериментом, который можно было бы назвать «исчезло вдруг».

Рассказывает академик Борис Евгеньевич Патон

Итак, представим себе такую картину. Не стало заклепок, сварных швов, мест пайки, болтов, гвоздей, словом, всего того, что соединяет детали, изделия, конструкции. Последствия этого невероятного события очевидны. Развалилось, рассыпалось, рухнуло, перестало бы работать практически все созданное человеком. А он, умеющий запускать космические корабли, строить роботов, использовать атомную энергию, синтезировать белки, конструировать электронно-вычислительные машины» снова оказался бы где-то там, на первых ступенях многовековой лестницы эволюции, беспомощный, беззащитный. Единственным утешением ему, возможно, служило бы то, что теперь в честь его знаний этот первобытный век назывался, скажем, атомным или космические.

И вряд ли человеку удалось бы повторить многотрудное восхождение к достигнутому, не изобрети он снова надежные способы неразъемного соединения, от которых во многом зависит реальность всех замыслов техники.

Сегодня главную роль среди таких способов играет сварка. Но не сразу удалось ей завоевать эти позиции.

Начав в далекие, первобытные времена мастерить орудия труда и охоты, человек должен был придумать и способ скрепления отдельных частей своих нехитрых приспособлений. Сперва господствовала самая примитивная технология – связывание. Но когда наступил век металлов – бронзы, а затем железа, – на смену связыванию пришла и новая технология соединения. Края заготовок заформовывали и заливали перегретым жидким металлом либо заготовки нагревали и совместно проковывали, а металлы пластичные сковывали и без подогрева, вхолодную.

Это и были первые способы сварки. Но сварки несовершенной. Маломощные источники тепла, необходимого для оплавления соединяемых деталей, ограничивали возможности литейной и кузнечной сварки. Уже в бронзовом веке с ними стала соперничать клепка, которая царила в машиностроении почти до конца прошлого века.

И все-таки именно сварке суждено было стать главным способом неразъемного соединения деталей. Oднако не той, которую человек применял на заре своей истории, а сварке, созданной в 1881 году нашим соотечественником, талантливым изобретателем Николаем Николаевичем Бенардосом.

Свой способ соединения металлов с помощью электрической дуги он назвал «электрогефест» по имени Гефеста – бога огня и кузнечного ремесла в древнегреческой мифологии. В этой символике можно усмотреть и историческую преемственность нового способа (вспомните – кузнечная сварка), и как бы принятую им эстафету самой замечательной из когда-либо созданных технологий – овладение огнем, которое, по словам Энгельса, «впервые доставило человеку господство над определенной силой природы и тем окончательно отделило человека от животного царства».

Про необычность способа получения огня говорила первая часть названия. Oгонь рождала электрическая дуга, с которой не мог сравниться по силе ни один источник тепла. И теперь, чтобы сварить детали, уже не требовалось нагревать их целиком – в необходимом месте дуга оставляла за собой прочный и плотный шов.

На старт вышла технология больших возможностей, рожденная союзом металлургии и электротехники.

Тогда, сто лет назад, дуговая сварка появилась как вспомогательная операция соединения металлических деталей и средство их ремонта. Но благодаря богатству содержания эта гениальная своей изначальной простотой технология стала изобретением века. Более того, сегодня мы знаем: сварка – это изобретение на века.

По решению ЮНЕСКО мировая научно-техническая общественность отметила в прошлом году столетие рождения электрической дуговой сварки. Не много найдется изобретений, которые удостоены столь высокой чести.

Внедрение нового способа сварки, обогащенного впоследствии трудами русского электротехника Н. Славянова и других изобретателей, буквально преображало промышленное производство, оказывало решающее влияние на весь ход развития техники.

Электрическая дуговая сварка постепенно наращивала мощь своих методов. Она уверенно захватила лидерство в машиностроении, в производстве металлических конструкций, но не осталась одинокой.

Немыслимо создать универсальный способ, которому под силу было бы соединять и гигантские слитки, и микроскопические изделия, сваривать любую сталь, любой цветной металл и всевозможные неметаллические материалы, делать это под открытым небом и в вакууме.

Успехи электросварки послужили как бы катализатором в рождении и развитии многих других способов сварки, каждый из которых позволяет наиболее эффективно решать определенный круг задач.

Опираясь на достижения фундаментальных наук, и прежде всего физики, в последнее десятилетие создали и стали широко применять в промышленности ряд новых процессов, в том числе такой весьма перспективный, как электронно-лучевая сварка.

Сегодня она широко используется в различных отраслях техники. Мощные электронно-лучевые пушки позволяют сваривать металлы очень большой толщины. Объем вакуумной камеры исчисляется многими десятками кубометров. В такой камере можно сваривать, например, плоскость самолета и другие крупные изделия ответственного назначения.

Электронно-лучевая сварка развивается весьма бурно, и если вначале она применялась лишь для так называемых экзотических материалов, то сейчас уже – и для ряда легированных сталей и сплавов.

Развивается и лазерная сварка, причем именно в тех областях техники, где другие методы сварки недостаточно эффективны.

Проиллюстрирую возможности современной сварочной техники только тремя примерами.

Первый относится к энергетическому машиностроению. Единичная мощность электрогенераторов возросла сейчас до 1 миллиона киловатт (полтора довоенных Днепрогэса в одном агрегате!) и более. Вал ротора для такого сверхмощного генератора вытачивают из поковки массой 230—350 тонн, длиной 10 метров и диаметром более 2 метров. А чтобы отковать такую громадину, по условиям технологии нужен слиток-гигант массой до 500 тонн.

Нетрудно себе представить, с какими затратами связана организация выплавки и разливки такого огромного количества жидкой стали, ее нагрева, термической обработки и т. д.

Мы предложили иной путь: изготавливать отдельные слитки методом электрошлакового переплава, сваривать их между собой, а затем подвергать ковке цельную заготовку, имея в виду, что малотоннажные слитки всегда превосходят по качеству сверхкрупные слитки и поковки. Но этим дело не ограничивается. В сварном исполнении заготовки по своим размерам и форме наиболее близки к конфигурации будущих деталей, а это значит, что и потери стали при последующей обработке уменьшатся, то есть более высоким будет коэффициент использования металла.

С помощью этой схемы удалось решить совместно с металлургами и машиностроителями сложную задачу создания роторов крупнейших турбогенераторов.

Примерно такая же технология использована при изготовлении валков крупнолистового сверхмощного прокатного стана – 4500. Применяется она также и для других целей.

Второй пример относится к строительству магистральных газопроводов. Как известно, XXVI съезд КПСС наметил грандиозную программу освоения газовых месторождений Западной Сибири. Газопроводы сегодня работают при давлении 75 атмосфер, а завтра – 100—120 атмосфер; они тянутся на многие тысячи километров. И от того, как сварены стыки между отдельными трубами, зависит надежность снабжения потребителей голубым топливом.

Нелегок труд строителей газопроводов в суровых северных условиях. Но теперь на смену ручной сварке пришла автоматизированная контактная. Электрический агрегат, который осуществляет процесс сварки, движется внутри труб. Таким образом, сварку можно вести при любых погодных условиях, что важно для Крайнего Севера. Производительность труда увеличивается в 6—8 раз. Сегодня агрегат «Север» (он создан Институтом электросварки имени Е. О. Патона Академии наук УССР совместно с организациями Миннефтегазстроя) работает с производительностью шесть стыков в час. При сварке трубы диаметром 1420 миллиметров весь цикл составляет 8—10 минут. Не случаен повышенный интерес, проявляемый к нашему агрегату за рубежом. Лицензии на советскую технологию и оборудование для контактной сварки стыков трубопроводов приобрели крупные западные фирмы, в том числе фирмы США.

Наконец, третий пример – искусственный клапан человеческого сердца. Он тоже выполнен сваркой, на этот раз микроплазменной.

Эти примеры, иллюстрирующие громадный диапазон возможностей сварки, говорят и о том, что современные конструкции, современные машины просто невозможно создавать без ее применения. Ныне она шагнула и в океан и в космос.

Мы располагаем сейчас всем необходимым для выполнения сварки под водой, разделительной резки и наплавки металлических конструкций. Созданные у нас в последние годы технология и оборудование позволяют проводить механизированные сварочные работы на глубинах 100 и более метров. Это становится особенно важным в связи с освоением богатств континентального шельфа.

Относительно сварки в космосе скажу лишь, что мы ушли далеко вперед с того времени, когда осенью 1969 года первый в мире сварщик-космонавт В. Кубасов проводил с участием нашего института свои широко известные первые технологические опыты на космическом корабле «Союз-6» с помощью установки «Вулкан». Давая это название (Вулкан тоже бог огня и покровитель кузнечного ремесла, но у древних римлян), мы как бы свидетельствовали: советские ученые приняли эстафету своего замечательного соотечественника, изобретателя электродуговой сварки. Сейчас на станции «Салют-6», помимо сварки, освоено электронно-лучевое напыление металлов, а также их плавка. Эти процессы необходимы при создании в космосе уникальных производств.

Велик послужной список сварки, представляющей собой сегодня целую сумму технологий. В нем крупнейший в Европе цельносварной автодорожный мост имени Е. О. Патона через Днепр в Киеве, корпуса атомных ледоколов «Ленин», «Арктика», «Сибирь», цельносварные телевизионные башни высотой 316 метров в Ленинграде и 300 метров в Киеве, самый мощный в мире газопровод «Дружба» (Оренбург – Западная граница) протяженностью 2750 километров, кожухи домен-гигантов объемом 5 тысяч кубометров, воздушные лайнеры и космические корабли, цехи КамАЗа, тяжелые металлургические краны, поднимающие до 350 тонн, колеса и валы мощнейших гидротурбин...

Здесь названы лишь некоторые уникальные сооружения, созданные с помощью сварки. Перечисление всего того, что делается с ее участием, составило бы целую книгу.

Триумф сварки несомненен: невозможно, наверное, назвать отрасль промышленности, которая обходится без нее. Трудно даже представить себе, что совсем, в сущности, недавно человечество не владело такой технологией.

Но этим не исчерпывается исключительное значение сварки в развитии техники. Как всякая фундаментальная технология, она замечательна еще и тем, что положила начало целому ряду новых прогрессивных процессов.

О двух технологиях, рожденных на основе сварки и играющих революционную роль в развитии нашей экономики, в ускорении научно-технического прогресса, и пойдет речь.

Стремясь подчеркнуть значение наиболее выдающихся достижений человеческого разума, XX век называют и атомным, и космическим, и веком полимеров, веком автоматизации, веком электроники... Но если характеризовать эпоху по главному ее материалу (начало этой традиции положил около 150 лет назад датский археолог К. Томсен; вспомните – каменный век, бронзовый, железный), то наше время, бесспорно, следует именовать веком металла. Ведь именно он, и в первую очередь сталь, остается важнейшим конструкционным материалом техники. Видимо, и в обозримом будущем первенство останется за ним.

Производство металла все время увеличивается. Показательно, например, что в последний довоенный год у нас выплавили 18 миллионов тонн стали, а за прошлый год – свыше 150 миллионов тонн.

Но еще быстрее растет потребность в металле, и при этом непрерывно ужесточаются требования к его качеству. Конструкторам будущих машин и механизмов нужны не просто миллионы тонн стали. Для новой техники, новых технологических процессов необходимы только высококачественные материалы с заранее заданными свойствами.

Диалектика развития техники такова, что спрос на качество металла всегда опережает возможности металлургии, и это один из главных стимулов ее прогресса. Вообще история металлургии прежде всего история борьбы за чистоту металла, за улучшение его структуры, ведь именно эти два фактора в конечном счете и определяют качество металла, а следовательно, реальность всех замыслов техники, эффективность, надежность и долговечность создаваемых машин, приборов, механизмов, сооружений.

Требование повышения чистоты и качества металлических материалов – веление времени. Чем чище сталь, чем однороднее ее структура, тем выше стойкость подшипников, больше ресурс авиационных двигателей и летательных аппаратов, дальше пробег локомотивов, надежнее гироскопы и электронные приборы, дольше срок службы буровых долот и режущего инструмента, лучше полирование нержавеющей стали, выше стойкость валиков прокатных станов и штампов и т. д. и т. п.

Чтобы сделать металл как можно чище, металлурги, кроме всех тех ухищрений, к которым они прибегают в процессе его непосредственного приготовления в самой печи, скажем, в дуговой индукционной или в конвертере, широко используют еще и различные способы вторичного рафинирования металла. Уже вне печи, как правило, в ковше, жидкий металл перед разливкой вакуумируют, обрабатывают синтетическими шлаками, продувают нейтральными газами. Это, естественно, позволяет значительно уменьшить содержание в нем газов, вредных примесей, посторонних неметаллических включений.


    Ваша оценка произведения:

Популярные книги за неделю