Текст книги "Гайд по астрономии. Путешествие к границам безграничного космоса"
Автор книги: Уильям Уоллер
Жанр:
Астрономия и Космос
сообщить о нарушении
Текущая страница: 7 (всего у книги 13 страниц)
Соотношение массы, светимости и времени жизни
Если учесть все требования и сложности, связанные с определением звездных масс, вы, возможно, не удивитесь, узнав, что сколь-либо точно нам удалось «оценить» лишь пару сотен звезд. Эти драгоценные светила позволили выявить критически важную взаимосвязь между светимостью звезды главной последовательности и ее массой (рис. 6.3). По мере увеличения массы звезды наблюдаемая светимость стремительно возрастает. Более того, соотношение массы и светимости для звезд главной последовательности можно выразить формулой, имеющей вид степенного закона: L / LSun = (m / mSun)n, где показатель степени (n) составляет около 4 как для звезд солнечной массы, так и для более массивных. При столь высоком показателе степени простое удвоение массы звезды приведет к шестнадцатикратному увеличению ее светимости. Рассмотрим звезду главной последовательности класса О массой 30 M⊙. Ее светимость превысит солнечную более чем в 100 000 раз. Почему это соотношение массы и светимости столь велико и каковы последствия?

Рис. 6.3. Для соотношения массы и светимости, установленного для звезд главной последовательности, характерна резкая зависимость, при этом небольшое увеличение массы ведет к огромному увеличению светимости. (Материалы любезно предоставлены O. Y. Malkov, со ссылкой на O. Y. Malkov, “Mass-Luminosity Relation of Intermediate-mass Stars”, Monthly Notices of the Royal Astronomical Society 2007, vol. 382, pp. 1073–1086.)
Определение давления, температуры и светимости внутри звездного ядра, где проходят термоядерные реакции, выходит за рамки данного путеводителя для начинающих. Достаточно сказать, что добавление массы создает соразмерно большее давление в ядре, вызванное тяжестью вышележащих слоев. Уравнение состояния идеального газа гласит, что температура напрямую связана с давлением и поэтому будет повышаться с любым увеличением массы звезды. Мы уже видели, что светимость зависит от четвертой степени температуры, и поэтому нетрудно представить, что она будет зависеть от чего-то близкого к четвертой степени звездной массы. И этот правдоподобный аргумент ведет к вопросу: «Как долго звезда может излучать энергию при подобной светимости?»
Можно подойти к этой проблеме, сравнив доступное «топливо» (которое составляет некоторую долю массы звезды [m]) с уровнем его расхода или «горением» (которое можно отождествить со светимостью звезды [L]). Оценить, как долго будет светить звезда, мы сумеем, разделив доступное «топливо» на «горение». При привязке к Солнцу приблизительное время жизни звезды (τ) составляет: τ / τSun = (m / MSun) / (L / LSun).
Если светимость (L) заменить на ее эквивалент по массе, то в со ответствии с зависимостью «масса – светимость» это соотношение, призванное установить время жизни звезды, сведется к формуле: τ / τSun = (m / MSun)–3,0.
Здесь перед нами еще один экстремальный степенной закон. На этот раз он ясно показывает, что возрастание массы приводит к значительному сокращению времени жизни звезды. Общую продолжительность термоядерных реакций в недрах Солнца можно рассчитать исходя из его массы (MSun = 2 ^ 1030 кг), массы солнечного ядра (примерно 10 % от общей массы), доли этой массы, которая подвергается термоядерному синтезу (около 0,007 массы ядра), соответствующей энергии, которая высвобождается за время жизни Солнца и определяется согласно знаменитому уравнению Альберта Эйнштейна Е = mc2 и измеренной светимости Солнца (LSun = 4 ∙ 1026 Вт). Все это сводится к общей продолжительности термоядерных реакций в ядре Солнца, выражаемой в виде следующей формулы: τSun = ESun / LSun = (0,007 ∙ 0,1 ∙ mSun) c2 / LSun.
Подставив значения для mSun и LSun, мы получим ожидаемую продолжительность термоядерных реакций в ядре Солнца примерно в 10 млрд лет (1010 лет), так что сейчас мы находимся примерно на полпути. Если подставить эту приблизительную цифру в предыдущее соотношение, по которому мы высчитывали относительное время жизни звезды, то расчетная продолжительность жизни звезды главной последовательности выразится так: τ = 1010 (m / MSun)–3,0 лет, и это оказывается достаточным приближением к тому, что показывают более сложно устроенные звездные модели (табл. 6.2). Например, расчетное время жизни звезды главной последовательности класса В3 массой 10 M⊙ составляет всего 10 млн лет, в то время как звезда класса К5 массой 0,7 M⊙ должна просуществовать около 30 млрд лет – это намного дольше, чем нынешний возраст самой Вселенной в 13,8 млрд лет.
Таблица 6.2
Физические свойства ближайших звезд главной последовательности
Спектральный класс
Масса (солнечная масса, m
Sun
)
Светимость (солнечная светимость, L
Sun
)
Время жизни, лет
Относительная распространенность, %
O
> 16 m Sun
> 30,000 L Sun
< 5 млн
0,00003
B
16–2,1 m Sun
30 000–25 L
5–840 млн
0,13
Sun
A
2,1–1,4 m Sun
25–5 L
0,84–2,8 млрд
0,6
Sun
F
1,4–1,0 m Sun
5–1,5 L
2,8–6,9 млрд
3,0
Sun
G
1,0–0,8 m Sun
1,5–0,6 L
6,9–13 млрд лет
7,6 %
Sun
K
0,8–0,5 m Sun
0,6–0,1 L
13–56 млрд лет
12,1 %
Sun
M
0,5–0,1 m Sun
< 0,1 L
> 56 млрд лет
76,5 %
Sun
(Массы, светимости и относительные величины даются согласно значениям, приведенным по адресу: en.wikipedia.org/ wiki/Stellar_classification. Время жизни в миллионах и миллиардах лет рассчитывается исходя из формулы: τ = 1010 (m / MSun) / (L / LSun); результат выражается в годах. В радиусе 100 световых лет от Солнца находятся четыре звезды класса В. Ближайшая звезда класса О – ζ Змееносца – находится примерно в 400 световых годах от нас, далеко за пределами рассматриваемых здесь окрестностей Солнца.)
Что же тогда станет с окрестностями Солнца? Еще через миллиард лет или около того исчезнет Сириус. Через 5 млрд лет погибнет Солнце. Между тем каждая красная тусклая звезда класса М, когда бы она ни возникла, – даже если это произошло примерно 12 млрд лет назад, при рождении Млечного Пути, – продолжит свое существование и будет отличительным признаком наших небольших галактических владений. Звездообразующие газопылевые облака могут появляться и исчезать, но преобладать будут крошечные карлики спектрального класса М.
Экзопланеты, ваш выход!
Новости о планетах, найденных за пределами Солнечной системы, становятся все более удивительными. Недавно «Энциклопедия внесолнечных планет» перечислила более 4500 подтвержденных экзопланет в более чем 3200 систем. К тому времени, когда вы прочтете этот раздел, список может ощутимо пополниться. Все эти научные открытия происходят с 1992 года, когда за пределами Солнца удалось обнаружить первую планету, и, представьте себе, она вращалась вокруг нейтронной звезды. До этого были десятилетия ложных тревог и несбывшихся надежд. Я прекрасно помню, как преподавал астрономию в 1980-х годах и с энтузиазмом объявил об открытии первой экзопланеты только для того, чтобы опровергнуть эту новость на следующем уроке. Познакомьтесь с историей открытия экзопланет, и вы, возможно, проникнетесь волнением и восторгом, связанными с этой стремительно развивающейся областью астрономии.
До 2010 года подавляющее большинство открытий совершалось благодаря пристальному наблюдению за спектрами звезд-хозяек. Астрономы получали спектры с высоким разрешением, измеряли мельчайшие доплеровские смещения в длинах волн спектральных линий звезд и начали обнаруживать случаи периодического неравномерного движения звезд. Доплеровские смещения составляли менее 1/10 миллиона от номинальных длин волн, но этого хватало, чтобы сделать вывод о колебаниях звезды в несколько метров в секунду (скорость ходьбы). Подобные вращения звезд вокруг неподвижного центра указывали на гравитационное присутствие одной или нескольких ближайших планет. Преимущество такого метода для поиска экзопланет заключается в том, что астрономы могут определить как период обращения планеты, так и ее орбитальную скорость (с учетом наклона орбиты), что позволяет впоследствии вычислить гравитационную массу любой планеты, а также расстояние до планеты от ее звезды-хозяйки.
С 2010 года большинство открытий, связанных с планетами, было сделано с помощью космического телескопа «Кеплер». Этот солнечный орбитальный аппарат, запущенный в марте 2009 года, обнаружил множество планет, и некоторые из них размером не превышали Землю. «Кеплер» был специально настроен на то, чтобы непрерывно снимать один участок неба, охвативший созвездия Лебедя и Лиры. В этой области находится примерно 150 000 звезд, и телескоп мог отслеживать их свет с невероятной точностью. «Кеплер» не только наблюдал за естественными переменами блеска звезды, но и фиксировал любые временные спады в световом потоке, которые могли быть вызваны планетой, проходящей по звездному диску. При помощи этих световых профилей астрономы смогли определить как периоды обращения, так и размеры транзитных экзопланет. Однако для того чтобы высчитать их массы, необходимы и спектроскопические наблюдения, которые покажут, с какой скоростью планеты обращаются вокруг своих звезд-хозяек. Результаты, полученные благодаря «Кеплеру» и другим специализированным наземным телескопам, произвели революцию в том, что мы знаем о внесолнечных планетах.
Если ограничиться лишь теми планетами, что находятся от нас в пределах 100 световых лет, то нам известно примерно 650. В их число входят планеты, обращающиеся вокруг наших ближайших соседей – Проксимы Центавра и α Центавра В, а также вокруг других звезд, видимых невооруженным глазом. Для некоторых систем нам даже удалось получить изображения планет, которые движутся по орбите вокруг своих звезд-хозяек.
ПРОКСИМА ЦЕНТАВРА
24 августа 2016 года европейские астрономы сообщили об открытии планеты, двигавшейся по орбите вокруг Проксимы Центавра, звезды, ближайшей к нашей Солнечной системе. Этот тусклый красный карлик – отдаленный участник тройной звездной системы α Центавра. Доказательства существования планеты были получены с использованием метода радиальных скоростей (или доплеровской спектроскопии), при котором в спектре центральной звезды наблюдалось незначительное смещение длины волны с периодом в 11,2 дня. По оценкам, масса планеты, названной Проксима Центавра b, эквивалентна по меньшей мере 1,27 массы Земли, а протяженность большой полуоси ее орбиты составляет всего 0,05 а. е. Но насколько бы поразительной нам ни казалась близость планеты к ее звезде-хозяйке, считается, что по температуре ее поверхность близка к поверхности Марса (–39 °C) из-за очень низких показателей температуры и светимости самой звезды. Возможно, здесь важнее всего то, что планетные системы Проксима Центавра и α Центавра B наиболее близки к нашей Солнечной системе – и предоставляют наилучшие перспективы для исследования экзопланет с помощью автоматизированных космических аппаратов.
Реальное количество планет, распределенных по типам, остается неопределенным. Это связано с тем, что наиболее эффективные методы поиска планет – метод радиальных скоростей (он же метод Доплера) и метод транзитов – ориентированы на обнаружение крупных планет вблизи звезд-хозяек. Первый метод основан на том, что притяжение планеты вызывает возмущения в орбитальном движении звезды. Планеты с большей массой и/или те, что расположены ближе к своей звезде, будут вызывать самые заметные колебания. В основе второго метода – то, что планета, проходя на фоне звезды, значительно заслоняет свет последней. Чем больше планета, тем более резким будет итоговый спад общего блеска во время ее транзита. И чем ближе планета к своей звезде, тем больше вероятность того, что мы увидим, как она пройдет по диску звезды в своем истинном виде. Поэтому в текущем «урожае» экзопланет очень много планет размером с Юпитер, находящихся в пределах орбиты, эквивалентной орбите Земли.
Несмотря на эти погрешности наблюдений, астрономы нашли довольно много других планет, не столь массивных и достаточно далеких от своих звезд, что позволяет предположить наличие жидкой воды на их поверхности. Более того, полученные массы и размеры планет позволили ученым высказать догадки об их общем строении – иными словами, о том, являются ли они в основном газообразными, жидкими/ледяными или каменистыми. У нас уже есть и наглядные примеры «суперземель» с глубокими океанами, расположенными в пределах так называемой обитаемой зоны, и маленькая группа каменистых планет, подобных Земле. Между тем количество звезд с обнаруженными планетами, по-видимому, указывает на то, что почти у всех звезд должна быть хотя бы одна планета. Учитывая, сколько звезд могут странствовать по диску нашей Галактики, эта оценка предполагает, что где-то там, в космических безднах, находится от 100 до 400 миллиардов планет.
Исполняя свою миссию, «Кеплер», как мы уже упоминали, досконально исследовал весьма удаленные звезды на небольшом участке неба, устремив свои телескопы к созвездиям Лебедя и Лиры. Новая миссия с космическим телескопом TESS, запущенная в апреле 2018 года, исследует звезды, расположенные ближе к нам, – но по всему небосводу. Она уже собирает свой «урожай» в нескольких новых экзопланетных системах, которые именно по причине их близости к нам можно точнее распознать в ходе спектроскопических наблюдений, осуществляемых при помощи наземных телескопов, а теперь и космического телескопа «Джеймс Уэбб».
Чтобы узнать о звездах и их планетах более подробно, нам нужно будет расширить наши горизонты далеко за пределы того, что мы исследовали в этой главе, и рассмотреть весь Млечный Путь. В следующей главе мы постараемся выполнить эту задачу – и познакомимся с разнообразным звездным, туманным и темным содержимым нашей Галактики, а также с ее изумительной структурой и движущими силами.
7. Галактика Млечный Путь
Предметом нашего наблюдения была сущность или материя Млечного Пути. При помощи зрительной трубы ее можно настолько ощутительно наблюдать, что все споры, которые в течение стольких веков мучили философов, уничтожаются наглядным свидетельством, и мы избавимся от многословных диспутов. Действительно, Галаксия является не чем иным, как собранием многочисленных звезд, расположенных группами. В какую бы его область ни направить зрительную трубу, сейчас же взгляду представляется громадное множество звезд, многие из которых кажутся достаточно большими и хорошо заметными. Множество же более мелких не поддается исследованию [5].
Галилео Галилей. Звездный вестник
Млечный Путь с самых давних времен поражал и пленял нас своей красотой. В ясные безлунные ночи наши восхищенные прародители поднимали взгляд к небесам и любовались блистающей призрачной лентой. Несомненно, их влекла эта изумительная картина. Неоднородный облик Млечного Пути, что раскинулся по небу от края до края, лег в основу бесчисленных мифов о происхождении нашего мира. В них Млечный Путь становился и тропой, по которой путешествуют бессмертные; и рекой, разделившей влюбленных; и шествием темных существ на светлом фоне; и молоком, пролившимся из груди богини-кормилицы.
В наши дни трудно воссоздать те чувства, которые, должно быть, испытывали наши далекие предки, глядя на Млечный Путь. Искусственное освещение почти полностью скрыло от нас величественные панорамы ночного неба. И даже в моем родном Рокпорте, штат Массачусетс, в доме, который находится на побережье и с трех сторон окружен океаном, приходится бороться со световым загрязнением от ближайших южных городов.
Границы Галактики
Со времен «звездных собраний», о которых писал Галилей, мы уже узнали, что Млечный Путь – это наш «внутренний» взгляд на сплюснутую звездную систему. Общий план нашей Галактики и та точка, с которой на нее смотрим мы, показаны на рис. 7.1. Если последовать от внутренних пределов наружу, то в строении Млечного Пути выделяются балдж, диск и гало. Солнце и Солнечная система пребывают в диске, примерно на отметке в две трети пути от балджа, расположенного в центре, к внешним областям. Плоский диск содержит почти все звезды, заметные на ночном небе; что же касается невидимых объектов, то их в нем намного больше.
Затемняющий эффект межзвездной пыли, которой заполнен диск, скрывает от нашего взгляда все, что происходит за пределами горизонта в несколько тысяч световых лет, если смотреть в направлении центра Галактики, – а он еще на 27 000 световых лет дальше. Эта пыль состоит из микроскопических крупиц ледяных силикатов и графитов, которые соседствуют со сгустками водорода и гелия, имеющими вид гигантских темных звездообразующих облаков. Свет, проходя сквозь них, теряет яркость, – и тем самым именно они в ответе за неоднородный облик Млечного Пути. По всей видимости, и сами эти облака, и звезды, рожденные в них, располагаются вдоль спиральных рукавов, хотя астрономы до сих пор не уверены, в форме какого узора должны предстать эти рукава на самом деле. Массивные облака, перемещаясь вокруг центра Млечного Пути по орбитам протяженностью в сотни миллионов лет, олицетворяют будущее нашей Галактики.

Рис. 7.1. Схематичные изображения Млечного Пути в том виде, в каком он предстает перед наблюдателями, находящимися далеко за его пределами. Эти виды основаны на сочетании наблюдений и последующих объяснительных моделей. Вверху: Млечный Путь, вид сверху. Заметны центральный балдж и звездный бар (перемычка), окруженные диском из звезд и газа, а также спиральные рукава в диске – недавние свидетельства звездообразующей активности. Также представлено расположение галактических долгот с началом отсчета в Солнце. Внизу: Млечный Путь, вид сбоку. Заметны центральный балдж / звездный бар, тонкий диск из звезд и газа, а также гало, содержащее шаровые звездные скопления (показаны) и значительное количество темной материи (не показана). Также представлено расположение галактических широт с началом отсчета в Солнце. (Источник: The Milky Way, W. H. Waller.)
Следующий компонент Млечного Пути – балдж – заметен невооруженным глазом. Он простирается поверх темного диска и под ним к созвездиям Стрельца, Змееносца и Скорпиона. В бинокль можно увидеть, как «звездные облака» очерчивают в пыльной дымке границы «окошек», сквозь которые просматриваются звезды бал– джа. Как и у других галактик, в балдже Млечного Пути присутствуют в основном желтые, оранжевые и красные звезды. Эта ограниченная палитра контрастирует с полным диапазоном звездных цветов, видимых на диске. Насколько можно судить, балдж содержит в основном старые холодные звезды, а диск по-прежнему остается родным домом для молодых горячих голубых звезд и для богатого наследия из более старых звезд с красноватым оттенком.
Форма балджа остается спорной. По крайней мере одна его часть выглядит явно вытянутой, в виде бара (перемычки), наклоненного примерно на 45° к нашему лучу зрения. Другие галактики, имеющие тонкие диски и спиральные рукава, тоже содержат подобные центральные бары (см. гл. 8). Если смотреть издалека, Млечный Путь был бы сочтен спиральной галактикой с баром. Галактика М109, расположенная в созвездии Большой Медведицы и отдаленная от нас на 46 млн световых лет – это близкая аналогия к тому, как мог бы выглядеть наш Млечный Путь (рис. 7.2).
Еще один компонент Млечного Пути – гало – был бы невидим, если бы не шаровые звездные скопления, которых в нем очень много. Эти плотные группы, насчитывающие от тысяч до миллионов звезд, восходят к древнейшим временам, когда Млечный Путь еще формировался из хаоса сталкивающейся и сливающейся материи, наступившего вслед за Большим взрывом. Сегодня шаровые скопления «населены» только долгоживущими звездами с малой массой. Более массивные недолговечные звезды давным-давно исчезли, оставив лишь напоминание о том, как, должно быть, выглядели скопления в далеком прошлом. И все же они даже сейчас выглядят потрясающе – словно броши с драгоценными камнями на черном бархате. Хороший любительский телескоп позволит вам в полной мере впечатлиться красотой этих звездных «елочных игрушек».

Рис. 7.2. Вероятно, если смотреть издалека, Млечный Путь напоминал бы спиральную галактику М109, показанную на снимке. (Материалы любезно предоставлены: S. Swanson and A. Block. Источник: Национальная обсерватория оптической астрономии, Ассоциация университетов по исследованию в области астрономии, Национальный научный фонд.)
Гало и балдж в совокупности составляют сфероидальный компонент Галактики. В них есть старые звезды, у которых не хватает тяжелых элементов (хотя в балдже присутствуют и богатые металлом звезды разного возраста). Стремительные движения звезд и газа в диске навели астрономов на мысль о том, что сфероидальный компонент «населен» чем-то еще. Это невыразимое «нечто», наделенное невероятно огромной массой, своим притяжением удерживает в диске подвижные звезды и газ и тем самым защищает нашу Галактику от рассеивания в небытие. Астрономам еще не удалось даже мельком увидеть это гравитирующее вещество, и поэтому его окрестили «темной материей». Поиски различных экзотических частиц, которые, согласно предположениям ученых, составляют эту темную материю, ведутся и сегодня. Пока что убедительных кандидатов нет (см. гл. 13). Но астрономы, несмотря на неудачу, по-прежнему считают, что галактики состоят в основном из гало темной материи и небольшой доли обычной материи, сосредоточенной в их «густонаселенных» балджах и вращающихся дисках, свет которых рассеивает тьму и – в случае Млечного Пути – оберегает наше наследие.
Компоненты Галактики
Многое из того, что мы знаем о компонентах Млечного Пути – диске, балдже и гало, – стало известным в ходе кропотливой работы, направленной на установление точных расстояний. В третьей и шестой главах мы говорили о том, что определять расстояния до звезд в окрестностях Солнца нам прежде всего помогал метод геометрического параллакса. Как мы помним, он зависит от орбиты, по которой Земля движется вокруг Солнца, – она становится базисной линией для триангулирования расстояний до ближайших звезд. Однако, чтобы эффективно исследовать Вселенную за пределами окрестностей Солнца, астрономам пришлось обратиться к другим методам, подходящим для иных, более обширных протяженностей. В масштабах Млечного Пути лучшими ориентирами оказались звездные скопления.
Звездные скопления
Некоторые звездные скопления можно увидеть невооруженным глазом. К ним относятся Плеяды («Семь Сестер»), расположенные в созвездии Тельца (рис. 7.3); Гиады, составляющие морду быка в этом же созвездии; и двойное скопление в созвездии Персея. Если рассмотреть Млечный Путь в бинокль, вы обнаружите множество других размытых объектов, в которых при ближайшем рассмотрении в телескоп можно распознать звездные скопления. Их много в созвездиях Близнецов и Возничего, расположенных неподалеку друг от друга, и за ними легко наблюдать в бинокль и небольшие телескопы. Как и другие 110 нечетких объектов, впервые внесенные в каталог Шарля Мессье в 1784 году, эти звездные скопления обозначаются литерой M (Messier); в таких созвездиях, как Близнецы и Возничий, наиболее заметны скопления М35, М36, М37 и М38.

Рис. 7.3.Вверху: звездная карта скопления Плеяд (М45), составленная Галилеем и основанная на его новаторских телескопических наблюдениях. Внизу: современное сравнение показателей звездных цветов (B – V) и видимых звездных величин (m) в скоплении Плеяд, представленных извилистой линией, по сравнению с калиброванными цветами и абсолютными звездными величинами (M), установленными для звезд главной последовательности. Разница между видимой и абсолютной звездными величинами (m – M) известна как модуль расстояния, по которому можно рассчитать отдаленность скопления. В данном случае этот модуль равен 5,6 звездной величины, а значит, скопление отдалено на 132 парсека (475 световых лет). (Вверху: По источнику Siderius Nuncius [ «Звездный вестник»], G. Galilei, Venice, Italy, 1610. Изображение любезно предоставлено: History of Science Collections, University of Oklahoma Libraries. Внизу: на основе интерактивной программы, применимой для звездных скоплений, автор: K. Lee. Источник: Университет Небраски в Линкольне.)
Звездные скопления настолько хорошо помогают нам измерять космическую протяженность в первую очередь потому, что каждая из их звезд отдалена от нас примерно на одно и то же расстояние. А значит, изменения блеска от звезды к звезде можно рассматривать как реальные различия в их светимости. Аккуратно измерив поток света от каждой звезды, входящей в скопление, астрономы смогли построить диаграммы «цвет – звездная величина», на которых показаны звезды главной последовательности (рис. 7.3). Сравнив их с «аналогами» из полностью откалиброванной подборки ближайших звезд, можно определить модуль расстояния того или иного скопления (m – M) и его соответствующую отдаленность (см. подпись к рис. 7.3). Этот важный метод известен как подгонка к главной последовательности.
Начав с ближайших скоплений, таких как Плеяды и Гиады, астрономы применили аналогичный подход к определению расстояний до звездных скоплений на значительной части диска, а также в пределах гало. Эти оценки стали важнейшим «каркасом», на основе которого были построены модели, уточняющие общее строение Млечного Пути (как показано на рис. 7.1).
И природа, и облик звездных скоплений рождают в душе восторг. Одни из них обладают полной палитрой спектральных цветов: в них есть голубые, желтые, красные звезды; в других – только желтые и красные. Подробный анализ диаграмм «цвет – звездная величина», характеризующих скопления, позволил показать, что различное звездное население можно описать в показателях соответствующего возраста звезд (рис. 7.4). Ключ к такому описанию – определить цвет и светимость в той точке, где обрывается главная последовательность, образованная звездами скопления. Эта область на диаграмме называется точкой поворота главной последовательности; ее занимают звезды, уже близкие к тому, чтобы закончить свою нормальную жизнь и стать красными гигантами. Если в скоплении с такой точкой есть горячие голубые звезды, значит, оно относительно молодо, поскольку им еще предстоит эволюционировать, покинуть главную последовательность и в конечном счете исчезнуть. Однако, если скопление с такой точкой «населено» желтыми или красными звездами, значит, свои более горячие, голубые, яркие и массивные звезды оно уже утратило. Видя точку поворота главной последовательности, характерную для скопления, и зная установленные соотношениям цвета, светимости и времени жизни звезд – о последних мы говорили в шестой главе, – астрономы могут рассчитать, как долго живут звезды главной последовательности, совершающие этот переход, и благодаря этому вычислить возраст всего скопления. Как оказалось, большинству звездных скоплений в диске не более нескольких миллиардов лет.

Рис. 7.4. Составная диаграмма «цвет – звездная величина» для заметных звездных скоплений в диске Галактики. Для двойного звездного скопления в созвездии Персея характерна «густонаселенная» главная последовательность; в ней есть и горячие недолговечные звезды класса В, что указывает на молодой возраст скопления – около 107 лет. А вот в главной последовательности Плеяд уже нет столь горячих звезд с высокой светимостью, значит, скопление старше – ему 108 лет. У Гиад главная последовательность усечена еще сильнее, а возраст скопления – 109 лет. (По источнику: The Milky Way, B. J. Bok and P. F. Bok, 5th edition, Harvard University Press [1981], со ссылкой на источник: H. L. Johnson and A. R. Sandage, Astrophysical Journal, vol. 121 [1955], pp. 616–627.)
Такое впечатление, что условия в диске неблагоприятны для сохранения целостности звездных скоплений. Вероятно, рассеяние их родительских облаков и сближение с другими звездными скоплениями и газовыми облаками привело к тому, что большинство этих звездных коллективов подверглись гравитационным возмущениям и, в конечном итоге, рассеялись. Многие астрономы считают, что Солнце и Солнечная система родились как часть довольно большого скопления, однако за 4,6 млрд лет, прошедших с момента его образования, оно распалось. И сейчас мы, по всей видимости, живем в одной из многих осиротевших солнечных систем, скитающихся по диску, – и живем, как странники среди других странников.
Условия в гало гораздо более благоприятны для пребывающих там шаровых звездных скоплений. Их орбиты, по большей части, проходят вдали от переполненного диска, и шаровые скопления могут находиться в гало гораздо дольше без каких-либо провокаций. Аналогичные методы датирования показали, что шаровые скопления очень древние: их возраст составляет 11–13 млрд лет. Это нижний предел возраста самого Млечного Пути и всей галактической Вселенной.
Суперзвезды
В шестой главе мы упоминали, что в окрестностях Солнца преобладают тусклые красные звезды, которые можно увидеть только в телескоп. А вот на ночном небе, видимом невооруженным глазом, господствуют суперзвезды – светила настолько яркие, что их можно наблюдать с больших расстояний. Посмотрим на созвездие Ориона. Все его заметные звезды необычайно далеки от нас и ярки. Самая яркая из них – Ригель (β Ориона А) – голубой сверхгигант, отдаленный от нас примерно на 900 световых лет. Он в 79 раз больше Солнца и светит в 120 000 раз сильнее. Бетельгейзе (α Ориона) – красный сверхгигант, который, как считается, находится от нас в 520 световых годах. Хотя эта суперзвезда намного холоднее Ригеля, она настолько огромна, что ее поверхность излучает свет, как 120 000 солнц, только на более длинных волнах. Ее прямое изображение показало размер, способный вместить тысячу солнц. И более того, если бы она заменила Солнце, расположившись в центре Солнечной системы, то поглотила бы все планеты вплоть до Юпитера. Диапазон звездных размеров показан на рис. 7.5.
В отличие от ситуации со звездными скоплениями, расстояния, размеры и светимость этих отдельных суперзвезд гораздо менее определенны. Анализ звездных спектров позволил астрономам обнаружить характерные признаки, связанные со степенью «распухания» звезды. Например, у относительно компактной звезды главной последовательности имеется плотная излучающая атмосфера, давление которой ведет к формированию стремительного «роя» атомов и к соответствующему доплеровскому уширению спектральных линий поглощения. А у красного сверхгиганта, подобного Бетельгейзе, атмосфера более разрежена, и давление в ней низкое, отчего спектральные линии поглощения будут намного более узкими, чем у звезды главной последовательности с аналогичными показателями. При помощи таких спектральных характеристик астрономы распределили звезды главной последовательности, гигантов и сверхгигантов по классам светимости – таким сверхгигантам, как Бетельгейзе, был присвоен класс светимости I, а звездам главной последовательности, подобным Солнцу, – класс светимости V. Эти классификации и дополнительные сведения о том, какие наблюдаемые свойства проявляются в скоплениях у звезд эквивалентного типа, помогли оценить размеры излучающей поверхности и светимость отдельных звезд-гигантов и сверхгигантов, а также установить расстояние до них с погрешностью около 25 %.








