412 000 произведений, 108 200 авторов.

Электронная библиотека книг » Уильям Уоллер » Гайд по астрономии. Путешествие к границам безграничного космоса » Текст книги (страница 4)
Гайд по астрономии. Путешествие к границам безграничного космоса
  • Текст добавлен: 1 июля 2025, 14:44

Текст книги "Гайд по астрономии. Путешествие к границам безграничного космоса"


Автор книги: Уильям Уоллер



сообщить о нарушении

Текущая страница: 4 (всего у книги 13 страниц)

• Луна в 400 раз ближе к Земле, чем Солнце, и в 400 раз меньше Солнца. Две этих счастливых случайности приводят к тому, что Луна и Солнце имеют одинаковый угловой диаметр (0,5°, или 30′), и поэтому, когда наш спутник проходит по солнечному диску, мы видим такие идеальные солнечные затмения.

• Юпитер в 10 раз больше Земли, в 10 раз меньше Солнца и располагается в 5,2 а. е. от него. Сатурн почти вдвое дальше, в 9,5 а. е. от Солнца, Уран – еще примерно в два раза дальше, в 19,2 а. е. Нептун нарушает традицию и располагается чуть ближе к Солнцу, всего в 30 а. е., а Плутон – почти рядом, в 39 а. е. от нашей звезды. Приблизительное удвоение расстояний от планеты к планете составляет часть правила Тициуса – Боде, которое количественно определяет относительные расстояния между планетами (вместе с поясом астероидов) и Солнцем, причем протяженность большой полуоси их орбит, выраженная в а. е., рассчитывается по формуле: a = 0,4 + (0,3 ∙ 2n), где n – это номер планеты, возрастающий от внутренних планет к внешним, при этом n (Меркурий) = —∞, n (Венера) = 0, n (Земля) = 1, n (Марс) = 2, n (астероиды) = 3, n (Юпитер) = 4, n (Сатурн) = 5, n (Уран) = 6, и вроде бы дальше должен идти Нептун, но в его случае закономерность не соблюдается, и приходится производить замену, так что n («Плутон») = 7 (в данном случае с правилом все в порядке). Это тайное правило остается необъясненным. Некоторые ученые расценивают его как числовое совпадение, а другие полагают, что оно согласуется с орбитальными резонансами, которые, по всей вероятности, свойственны такой эволюционирующей планетной системе, как наша.

Окрестности Солнца и Сириус

Мы уделили немало страниц «переломным моментам» в истории астрономии, благодаря которым нам удалось получить истинное представление о Солнечной системе. Чтобы выйти за ее пределы, пришлось думать над тем, как измерять расстояния до ближайших звезд. Более того, сама идея, согласно которой звезды считались далекими солнцами, а Солнце – нашей родной звездой, во многом зависела именно от определения этих расстояний. Эта задача возникла во времена Галилея, когда ученые пытались понять, что находится в центре известной Вселенной – Земля или Солнце. Если бы в центре всего сущего пребывала Земля, она оставалась бы неподвижной, а Солнце, Луна, планеты и звезды вращались бы вокруг нее – и мы, взглянув на звезды из этого фиксированного положения, не смогли бы увидеть никаких движений, совершаемых ими относительно друг друга. Но если бы Земля обращалась вокруг Солнца, то мы заметили бы, как ближайшие звезды раз в полгода меняют свое положение по отношению к более удаленным. Это смещение видимых положений звезд носит название геометрического параллакса (рис. 3.8).

Вы можете воспроизвести этот эффект, если поднесете большой палец к лицу и посмотрите на дальнюю стену одним глазом. Теперь закройте этот глаз и откройте другой, и вам покажется, что ваш палец сместился по отношению к объектам на стене. Сдвиг окажется тем больше, чем ближе к лицу вы поднесете палец, а чем дальше вы будете его отодвигать, тем заметнее будет уменьшаться угловое смещение. Так и движение Земли вокруг Солнца приводит к тому, что ближайшие звезды кажутся нам смещенными относительно более удаленных – и степень смещения уменьшается по мере того, как увеличивается расстояние до ближайшей звезды.

И Тихо Браге, и Галилей, и другие ученые эпохи Возрождения знали об эффекте параллакса и искали его, отслеживая положение ярких звезд, считавшихся ближайшими, относительно более тусклых – и, предположительно, более удаленных. Однако их попытки ни к чему не привели, как и усилия Роберта Гука, Джеймса Брэдли, Уильяма Гершеля и многих других последующих наблюдателей. Наконец, в 1838 году, успеха достиг немецкий астроном Фридрих Бессель, который использовал самый лучший телескоп-рефрактор, доступный в то время. На протяжении года он наблюдал за звездой 61 Лебедя и заметил мельчайшие угловые смещения, составившие всего 0,3″ (1/12 000°). В сочетании с базисной линией Земля – Солнце столь малый параллактический угол позволил установить, что геометрическое расстояние до 61 Лебедя составляет 3,3 парсека (10,9 светового года) и в 690 000 раз превышает расстояние от Земли до Солнца (в данном случае парсек определяется как расстояние, приводящее к параллактическому смещению в одну угловую секунду). Так он сразу и окончательно подтвердил, что Земля обращается вокруг Солнца и что даже ближайшие звезды находятся невероятно далеко. И хотя они кажутся намного тусклее, на самом деле они представляют собой далекие солнца и испускают излучение с сопоставимой светимостью.

Рис. 3.8. Наблюдения за ближайшей звездой с противоположных точек земной орбиты показывают, что видимое положение этой звезды смещается относительно более удаленных звезд. При помощи этого эффекта параллакса можно определять геометрические расстояния до ближайших звезд.

С тех пор метод геометрического параллакса позволил вычислить расстояния до многих тысяч звезд. Благодаря ему мы создали полную трехмерную карту всех звезд в радиусе 100 световых лет от Земли и Солнечной системы (рис. 3.9). Свет распространяется со скоростью 300 000 км/с, и, таким образом, за один год он преодолевает 10 трлн км. Окрестности Солнца простираются примерно в 200 раз дальше – это поистине большие владения. Подробности мы обсудим в последующих главах, но пока отметим, что большая часть этих просторов состоит из очень-очень пустого пространства. Как правило, расстояния между звездами в 50–100 миллионов раз больше самих звезд. Можно представить автострады в Западном Техасе или австралийскую глушь, но даже эти бескрайние земли бледнеют в сравнении с межзвездной пустотой, присущей окрестностям Солнца.

Рис. 3.9. Схема внутренней области окрестностей Солнца; в центре – наша звезда. Первую звезду, расстояние до которой удалось успешно измерить, 61 Лебедя, можно увидеть примерно в десяти световых годах справа от Солнца. (Материалы любезно предоставлены R. Powell, An Atlas of the Universe.)

Кроме того, космическое пространство в окрестностях Солнца, по большей части, едва освещено, поскольку местные звезды – это, в основном, тусклые «лампочки», и в плане «выходной мощности» они намного слабее нашего Солнца. Заметное исключение – Сириус, ярчайшая звезда ночного неба. Он находится в 8,7 световых годах от нас, в созвездии Большого Пса, и его светимость превышает солнечную в 22 раза. Если бы странники с далеких звезд спросили бы у вас, как найти дорогу к вашему дому в Солнечной системе, разумно было бы посоветовать им сперва достичь Сириуса, а затем поискать в окрестностях гораздо более тусклую желтую звезду. Они увидели бы две такие звезды – α Центавра А и Солнце. Затем их требовалось бы направить к желтой звезде, которую не сопровождает никакая другая, поскольку α Центавра А – это часть тройной звездной системы, в которую входят чуть более тусклая оранжевая звезда, α Центавра В, и более удаленная и намного более тусклая красная звезда – Проксима Центавра.

Пояс Гулда

За пределами окрестностей Солнца нас окружит блистающий звездный венец. Здесь можно встретить некоторые из самых ярких звезд небесной сферы. Британский астроном Джон Гершель (1792–1871) впервые обратил на это внимание, когда был в Южной Африке, отметив в 1847 году «зону крупных звезд, в которой выделяются блистающее созвездие Ориона, яркие звезды Большого Пса и почти все наиболее заметные звезды таких созвездий, как Арго [современные Корма, Паруса и Киль], Южный Крест, Центавр, Волк и Скорпион». Бенджамин Гулд (1824–1896) первым проследил это явление во всей полноте и в Северном, и в Южном полушарии и в 1874 году написал: «…создается впечатление, словно огромный круг или зона ярких звезд опоясывает небо, пересекаясь с Млечным Путем в Южном Кресте, и проявляется в любое время года».

Пояс Гулда, наклоненный к Млечному Пути примерно на 20°, пересекает газовый диск нашей Галактики в Южном полушарии вблизи Южного Креста, а в Северном – неподалеку от Лебедя. К нему можно отнести почти половину всех ярких звезд небесной сферы. В их числе – красный сверхгигант Антарес и несколько других юных и «дерзких» звезд, составляющих змеевидное созвездие Скорпиона; «Гранатовая звезда Гершеля» (μ Цефея) – одна из крупнейших и ярчайших звезд в нашей Галактике; желтоватобелый сверхгигант Мирфак (α Персея), указывающий путь к нескольким ближайшим ассоциациям новорожденных горячих звезд в созвездии Персея; а также голубой сверхгигант Ригель и другие блистающие голубые звезды, которые украшают прекрасно знакомое нам созвездие Ориона.

Большинство звезд, составляющих пояс Гулда, находятся слишком далеко, чтобы расстояния до них можно было определить с помощью метода геометрического параллакса; даже сегодня параллактические углы слишком малы, какие бы техники измерения мы ни использовали. Но астрономы пошли другим путем: они тщательно изучили звезды в окрестностях Солнца, где метод параллакса работает, и воспользовались обретенными знаниями при наблюдениях за более удаленными звездами. (О том, как определяются цвета, температуры, размеры, светимость и массы звезд, мы узнаем в шестой главе.) Сравнив предполагаемую светимость этих звезд с их видимым блеском, астрономы высчитали расстояния до них с точностью до нескольких десятков процентов. Оказывается, пояс Гулда представляет собой не идеальный круг, а скорее эллипс протяженностью примерно 2400 ^ 1500 световых лет. Центр этого эллипса находится на расстоянии в 500 световых лет от Солнечной системы, направлен к созвездию Тельца и примерно совпадает с областью звездного скопления Плеяды. Таким образом, Солнце находится на полпути от центра эллипса к яркой звездной окраине пояса Гулда. Среди звездных светил в этом небесном венце блуждают пылевые облака, состоящие из атомарного и молекулярного газов. Эти гиганты станут родиной нового поколения звезд – и предвещают ближайшее будущее окрестностей нашей Галактики.

Есть и еще одна причина, по которой пояс Гулда достоин войти в наш космический адрес. Это первая структура с поистине галактическими размерами. Диаметр диска Млечного Пути составляет примерно 100 000 световых лет. Пояс Гулда занимает 2 % от этой протяженности – а это немалая величина. Представьте, что эта страница – диск Млечного Пути. Пояс Гулда был бы размером с этот 0 (ноль), окрестности Солнца – примерно с точку, а Солнечная система стала бы субмикроскопической пылинкой, не больше обычных атомов. И если бы кто-то наблюдал за нашей Галактикой извне, им пришлось бы хорошенько присмотреться в свои лучшие космические телескопы. Впрочем, опознать пояс Гулда они бы смогли.

Более поздний расчет расстояний до звезд в поясе Гулда, выполненный космическим телескопом Gaia [2], помог ограничить расстояния до ассоциируемых с этой областью облаков, в которых рождаются новые звезды. Здесь пояс Гулда сливается с гораздо более крупной змеевидной галактической нитью, которая, в свою очередь, заключает в себе Рукав Ориона – спиральную ветвь Млечного Пути. Впрочем, это заявление спорно, и нам придется подождать его подтверждения.

Местный пузырь

Местный пузырь, ассоциируемый с яркими звездами пояса Гулда, представляет собой лишь один из тысяч пузырьков, которые, как полагают, распространяются по всему диску Млечного Пути. Как и его собратья, Местный пузырь содержит горячий газ, возникший после взрыва массивных звезд. Область, занимаемая им в диске нашей Галактики, меньше, чем у пояса Гулда, а значит, он мог появиться только после одного особенно активного объединения звезд, которое когда-то случилось в поясе. В наше время некоторые астрономы указывают на группу светящихся звезд, расположенных в направлении созвездий Скорпиона и Центавра, как на место недавнего взрыва одной или нескольких сверхновых, которые могли раздуть Местный пузырь. Астрономы, проводящие наблюдения в радио-, ультрафиолетовой и рентгеновской областях электромагнитного спектра, выяснили, что пузырь состоит из очень разреженного и горячего газа. По-видимому, этот газ температурой в миллион градусов выходит из диска Млечного Пути в так называемое галактическое гало (рис. 3.10). Так что он вполне мог бы предстать перед взглядом любого внегалактического наблюдателя, которому посчастливилось бы отчетливо рассмотреть сбоку наш галактический диск.

Рис. 3.10. Местный пузырь, впервые обнаруженный в 1970-х годах благодаря радиоволновому излучению, содержит горячий газ, который вытягивается от диска нашей Галактики внутрь галактического гало. Верхнее изображение – инфракрасный снимок диска Млечного Пути, а на нижнем крупным планом показан радиоизлучающий газ, расположенный вблизи Солнца. Обозначения относятся к созвездиям, по направлению к которым нанесены на карту молекулярные облака. Диагональ показывает направление газовых потоков. (На основе пресс-релиза: www.berkeley.edu/news/media/releases/2003/05/29_space.shtml, авторы оригинального исследования: B. Y. Welsh et al.)

Рукав Ориона

Возраст нашей Солнечной системы составляет 4,6 млрд лет, в то время как блистающий пояс Гулда и Местный пузырь из раскаленного газа гораздо младше – им всего несколько десятков миллионов лет. Мы странствуем среди этих «младенцев», как дедушки и бабушки, зашедшие в ясли. По всему диску нашей Галактики копится туманное вещество, в котором рождаются новые звезды, а затем извергается газ. По большей части это изначальное вещество структурировано в виде обширных спиральных ветвей, или рукавов. Мы находимся между двумя из них, довольно крупными, в так называемом рукаве Ориона (рис. 3.11). Астрономы впервые сумели его отследить в 1960-х годах по радиоизлучению, которое испускают его облака, состоящие из холодного атомарного водорода. В дальнейшем на его характерные черты указывали и другие индикаторы недавнего звездообразования, в том числе голубые звезды и розовые туманности, получающие энергию от самых горячих из этих звезд. Считается, что рукав Ориона простирается на 10 000 световых лет в длину и на 3500 в толщину. Но стоит сразу предупредить, что определить расстояния до гигантских газопылевых облаков, заполонивших диск нашей Галактики, очень трудно, и к этому нужно подходить с осторожностью. Мы еще увидим, что светимость некоторых звезд приведена к стандарту, и у нас есть возможность, сравнив ее с их видимым блеском, определить их строение и расстояния до них. Однако с газовыми облаками все иначе.

Рис. 3.11. Схема Млечного Пути, основанная на наблюдениях в оптическом, инфракрасном и радиоволновом диапазонах. На этой карте Солнце находится внутри рукава Ориона, между спиральными рукавами Персея и Центавра. На других изображениях получается спиральный узор из четырех рукавов. (Материалы любезно предоставлены R. Hurt, Spitzer Science Center, Caltech/JPL, NASA.)

Млечный Путь

Астрономам больше повезло с оценкой расстояния от нас до центра Млечного Пути. О том, что Солнечная система находится на «периферии» нашей Галактики, впервые заговорил в 1920-х годах гарвардский астроном Харлоу Шепли (1885–1972), когда определил расстояние до шаровых звездных скоплений в галактическом гало. Свои расчеты Шепли основывал на блеске переменных звезд, которые он мог опознать в скоплениях. Переменные типа RR Лиры имели постоянную среднюю светимость, которая могла послужить ему в качестве «стандартной свечи» для нахождения расстояний, в то время как у гораздо более ярких звезд– сверхгигантов, так называемых цефеид, просматривалась четкая связь между светимостью и периодами пульсации. Ее впервые обнаружила Генриетта Ливитт (1868–1921), астроном из Гарвардской обсерватории, и это позволило рассчитать расстояния лишь на основе наблюдений за изменением светового потока цефеид (к которым мы вскоре вернемся). Измеряя космические глубины, Шепли выяснил, что сами скопления «копятся» в направлении созвездия Стрельца. Он верно предположил, что ядро их распределения прослеживалось до истинного центра Млечного Пути, но рассчитанное им расстояние более чем вдвое превышало то, которое мы допускаем сегодня.

После Второй мировой войны, с улучшением технологий, радиоастрономы смогли уточнить расчеты Шепли. Наблюдая за движением облаков из газообразного водорода в пределах прямой видимости, они обнаружили точку симметрии в созвездии Стрельца. С одной стороны от этой точки газовые облака приближались к нам, с другой – удалялись. Хотя оптика не позволит увидеть центр Галактики – его скрывают многочисленные газопылевые облака, – за ним легко наблюдать на радиоволнах. Пристальное изучение радиоизлучающего газа, обходящего по орбите точку симметрии, показало, что удаленность объекта от нас составляет около 28 000 световых лет. Расстояния до звезд, формирующих галактический балдж, дали аналогичные значения. В последнее время радиоастрономы склоняются к мысли, что расстояние от нас до центра Галактики (наш галактоцентрический радиус) меньше и ближе к 26 000 световых лет.

Узнав это главное расстояние с определенной степенью точности, астрономы смогли свести фрагментированный облик Млечного Пути в единую картину. Как и у других подобных галактик, у него есть балдж, диск и гало, а также бар – центральная перемычка – и множество спиральных рукавов, украшающих диск. Самые современные представления о его структуре показаны на рис. 3.11. К сожалению, мы до сих пор не можем понять, как располагается вещество в диске, – сделать это нам мешают пронизывающие его газопылевые облака. Может быть, предстоящие космические миссии сумеют разрешить этот познавательный тупик, так что следите за новостями.

На рис. 3.11 не показано расширенное гало темной материи, которое, как считается, полностью пронизывает и обволакивает Млечный Путь. Это скрытое гало призвано объяснить, почему газ во внешнем диске нашей Галактики движется с загадочно высокой орбитальной скоростью. Должно быть, что-то силой своего притяжения удерживает этот стремительный газ и не дает ему улетучиться. Природа этого «нечто» совершенно неизвестна. И еще сильнее приводит в замешательство тот факт, что доля этого невидимого вещества, как полагают, составляет более 85 % от общей массы Млечного Пути!

Местная группа галактик

Наш Млечный Путь не одинок (рис. 3.12). Его спутники, имеющие неправильную форму, – Большое и Малое Магеллановы Облака – были заметны на южном небе еще задолго до кругосветного путешествия Фернана Магеллана (1519–1522). Но огромные расстояния до этих галактик удалось рассчитать только тогда, когда появились гигантские телескопы-рефлекторы и фотографические технологии, позволившие отображать отдельные звезды в Магеллановых Облаках. На снимках Малого Магелланова Облака, которые делались на длинной выдержке на протяжении многих дней, Генриетта Ливитт в 1908 году опознала несколько цефеид – особенно ярких переменных звезд. Блеск этих сверхгигантов менялся с четкой периодичностью от нескольких дней до недель, благодаря чему удалось установить взаимосвязь между периодом пульсации каждой звезды и ее абсолютной светимостью. Сравнив их с цефеидами в Млечном Пути, Ливитт и шведский астроном Эйнар Герцшпрунг получили расстояние до Малого Магелланова Облака, которое действительно оказалось внегалактическим. Сегодня считается, что от нас до него 200 000 световых лет, а до Большого Магелланова Облака – 160 000 и эти галактики находятся на самом краю обширного гало темной материи, пронизывающей Млечный Путь.

Рис. 3.12. Вокруг Млечного Пути располагаются Магеллановы Облака – Большое и Малое – и примерно десять карликовых галактик, которые гораздо меньше. (Материалы любезно предоставлены R. Powell, An Atlas of the Universe.)

Сверхчеткие снимки, полученные с помощью мощнейших телескопов, позволили обнаружить более десяти галактик, связанных с «большим» Млечным Путем. Большинство из них – маловажные «карлики» неправильной или эллипсоидной формы. Считается, что они остались от изначального периода, когда Млечный Путь сгущался из плотного роя подобных галактик. Еще пример но десять «карликов» снуют вокруг гигантской спиральной галактики Андромеды (М31) – следующей из тех, что ближе всего к нам. Сейчас от нас до нее 2,5 млн световых лет, но ожидается, что через 3–5 млрд лет она и Млечный Путь сольются. Помимо Млечного Пути и М31, досье Местной группы дополняют еще несколько обособившихся небесных объектов. К ним относятся спиральная галактика Треугольника (М33) в одноименном созвездии – небольшая, но поразительно активная «звездная колыбель»; и IC10 – ближайшая к нам галактика со вспышкой звездообразования, где безудержно рождаются и умирают звезды, отчего по всей ее ширине протянулся филигранный узор ионизированного газа.

Сверхскопление Девы

Телескопические исследования космической бездны выявляют одну галактику за другой, и часто они располагаются в пределах широких областей, похожих на Местную группу. Иногда галактик в таких областях довольно много, и их совокупность называют «скоплением». Ближе всего к нам скопление Девы – россыпь галактик, охватившая все одноименное созвездие. Определить расстояния до них до недавнего времени было непросто. Крупнейшие наземные телескопы не могли различить цефеиды на фоне других звезд, поэтому приходилось задействовать вспомогательные индикаторы, указывающие на светимость и расстояние. В их числе были ярчайшие звездообразующие туманности и шаровые звездные скопления, заметные на фотографиях с длинной выдержкой. Начиная с 1990-х годов космический телескоп «Хаббл» делал снимки галактик и в скоплении Девы, и вне его. Превосходная резкость телескопа позволила найти в этих галактиках цефеиды, пронаблюдать периодические изменения их блеска – и астрономы смогли определить расстояния до них. Согласно недавним расчетам, центр скопления Девы находится от нас на расстоянии в 54 млн световых лет, но в самом скоплении есть и галактики, которые на целых 7 млн световых лет отклоняются от центра. Скопление Девы, содержащее более 1300 ярких галактик и неведомо сколько гораздо более тусклых «карликов», – это прекрасный пример того, что может произойти, когда галактики развиваются в непосредственной близости друг от друга. Во внешней области скопления есть несколько гигантских спиральных галактик, похожих на Млечный Путь. По мере приближения к ядру, границы которого определены очень смутно, галактики уже напоминают не спирали, окружающие диск, а скорее звездные рои, имеющие форму эллипса. Астрономы полагают, что звездные нагромождения, лишенные сколь-либо выразительных черт, возникли после столкновений галактик, которые изменили галактические орбиты звезд и – в некоторых случаях – повлекли за собой крупные слияния.

Скопление Девы – всего лишь одна из ста с лишним галактических групп и скоплений, формирующих сверхскопление Девы. Млечный Путь и его собратья по Местной группе – отдаленные представители этого сверхскопления. Его масштабы огромны, и большинство галактик в нем слишком далеки друг от друга, чтобы выделить в них отдельные звезды и измерить расстояния до них. Астрономы поступили иначе: они воспользовались непрестанным расширением Вселенной, чтобы оценить, насколько сильно растянулись световые волны, излученные этими галактиками с самого начала их существования. Согласно закону расширения Вселенной, впервые сформулированному Джорджем Леме– тром в 1927 году, а в 1929 году подтвержденному наблюдениями калифорнийского астронома Эдвина Хаббла, степень растяжения длины световых волн, исходящих от излучающей галактики (часто называемая галактическим красным смещением), прямо пропорциональна расстоянию от нее до Земли. Применив это соотношение для галактик, расстояние до которых уже было известно (благодаря расчетам, проведенным на основе периодов пульсации их переменных-цефеид), астрономы постепенно уточнили закон Хаббла, чтобы измерять расстояния до галактик по всему сверхскоплению Девы и за его пределами.

Им удалось обнаружить слабо связанную совокупность галактических групп и скоплений с условным центром в скоплении Девы. Она простирается примерно на 110 млн световых лет. Тысячи ярких галактик сияют, как 3 трлн солнц, а что касается общей массы, то подавляющее обилие темной материи может увеличить ее до эквивалента примерно 1000 трлн солнц. Относительные скорости различных галактических компонентов составляют порядка 500 км/с. При таких темпах время, за которое галактика пройдет сверхскопление Девы, составит 66 млрд лет – а это в пять раз больше возраста нашей Вселенной. Так что этому сверхскоплению предстоит долгий путь, прежде чем оно отреагирует на собственную гравитацию. Другими словами, эта структура первозданна и все еще остывает после Большого взрыва.

Галактическая нить сверхскоплений Девы – Гидры – Центавра


Начиная с 1980-х годов астрономы-оптики на протяжении тысяч ночей смотрели в телескопы, чтобы определить спектроскопические красные смещения бесчисленного множества галактик по всему небу – и соответствующие расстояния до них. Сначала необходимые спектрографические наблюдения проводились над одной галактикой за раз, но со временем появились новые технологии, позволявшие одновременно рассеять свет, исходящий от сотен галактик в скоплении, по отдельным спектрам и в полной мере запечатлеть его на электронных матричных детекторах. В итоге мы сумели распределить галактики на трехмерной карте и взглянуть на крупномасштабное строение Вселенной – и то, что мы увидели, поражает и манит, но в то же время приводит в замешательство.

Некоторые астрономы видят обширные галактические поверхности, похожие на пузыри. Другие говорят, что крупномасштабная структура галактик и связанной с ними темной материи подобна космической паутине, которая состоит из тонких «нитей», сходящихся к более плотным «узлам», где и располагаются сверхскопления. Наш Млечный Путь, по-видимому, является частью нити сверхскоплений Девы – Центавра – Гидры. Помимо галактик и неуловимой темной материи, нити содержат сгустки горячего газа, на что намекают результаты наблюдений неба в ультрафиолетовом и рентгеновском диапазонах. На данный момент мы не знаем, какой смысл в подобном устроении, но нас воодушевляет тот факт, что оно согласуется с расстоянием между пятнами, заметным на недавних картах космического микроволнового фона – послесвечения Большого взрыва. Такое впечатление, что распределение галактик в огромнейших масштабах указывает нам на то, как организовалась материя в мельчайших масштабах в первые наносекунды после возникновения нашей Вселенной.

Ланиакея и запределье

Самая большая структура, к которой мы принадлежим, известна как Ланиакея, в переводе с гавайского – «необъятные небеса». Она охватывает сверхскопления Девы – Гидры – Центавра, Печи – Эридана и Павлина – Индейца. Огромное пустое пространство отделяет Ланиакею от следующей крупной галактической системы, центром которой является сверхскопление Персея – Рыб. Вместе они простираются более чем на миллиард световых лет. Помимо этих структур, наша выборка галактик слишком мала, чтобы делать какие-то выводы. Мы можем видеть несколько галактик, в которых наблюдаются яркие квазары и гамма-всплески, и немного первозданных «звездных колыбелей» с красным смещением, которое отдаляет их на расстояние до 10 млрд световых лет от нас, – но, конечно, этих «чудовищ» недостаточно для создания подробных трехмерных карт. Впрочем, новые возможности телескопических наблюдений и методов съемки могут восполнить этот пробел в нашей галактической переписи, что позволит нам проследить как структуру, так и эволюцию материи во всей наблюдаемой Вселенной.

Космические масштабы

Почти всю эту главу мы посвятили пространственной иерархии космических «вложений» и тому, как астрономы начали ее измерять. В каком-то смысле сведений слишком много, чтобы обдумать все сразу. Тут нам и поможет математика. Удобный способ разобраться с невероятным диапазоном размеров и расстояний во Вселенной – начать с какого-нибудь легко измеряемого масштаба (скажем, метра), умножить его на десять – и повторить этот шаг еще много-много раз. Так мы пройдем всю Вселенную, как в фильме «Степени десяти», и придем к границе всего пространства (и времени) всего за двадцать пять шагов.

105 м = 102 км (штат Массачусетс [с севера на юг], большая часть известных астероидов, спутник Урана Миранда);

106 м = 103 км (Мексиканский залив, крупнейший астероид Церера, Луна);

107 м = 104 км (Земля, белый карлик Сириус В);

108 м = 105 км (расстояние от Земли до Луны [4 105 км], Юпитер);

109 м = 106 км (Солнце, Сириус А и другие «обычные» звезды, сжигающие водород, кома кометы);

1010 м = 107 км (водородное гало кометы, голубая звезда-сверхгигант Ригель);

1011 м = 108 км (хвост кометы, красная звезда-сверхгигант Бетельгейзе, расстояние от Земли до Солнца [1,5 108 км] = 1 а. е.);

1012 м = 109 км ~ 10 а. е. (расстояние от Солнца до Сатурна: 9,2 а. е.);

1013 м = 10[3] км ~ 102 а. е. (диаметр орбиты Плутона ~ 80 а. е.)

1014 м = 1011 км ~ 103 а. е. (остаточный диск около звезды β Живописца);

1015 м = 1012 км ~ 104 а. е. (расстояние от Солнца до кометного облака Оорта: 5000–50 000 а. е.);

1016 м = 1013 км ~ 105 а. е. (расстояние, которое свет проходит за один год: 1 световой год [св. год] = 9,5 1015 м = 9,5 1012 км = 6,3 104 а. е., расстояние до Проксимы Центавра = 4,2 св. года = 2,6 105 а. е.);

1017 м ~ 10 св. лет (расстояние до ближайших тридцати звезд в окрестностях Солнца, размер ядра молекулярного облака, размер туманности Ориона);

1018 м ~ 102 св. лет (радиус окрестностей Солнца, расстояние до ближайшего молекулярного облака [4 102 св. лет], размер гигантского молекулярного облака);

1019 м ~ 103 св. лет (расстояние до ближайшего гигантского молекулярного облака [1,5 103 св. лет], толщина диска Млечного Пути);

1020 м ~ 104 св. лет (ширина спирального рукава Млечного Пути);

1021 м ~ 105 св. лет (размер Млечного Пути);

1022 м ~ 106 св. лет (расстояние до галактики Андромеды [2,5 106 св. лет]);

1023 м ~ 107 св. лет (расстояние до большинства других галактик в локальной Вселенной);

1024 м ~ 108 св. лет (размер сверхскопления Девы);

1025 м ~ 109 св. лет (расстояние до квазаров и первозданных галактик);

1026 м ~ 1010 св. лет (расстояние до видимого «края» Вселенной… до эпохи Большого взрыва).

Иногда передать космические масштабы помогала видеоанимация. Хорошими примерами станут новаторское путешествие по макроскопической и микроскопической Вселенной под названием «Степени десяти» – фильм, который сняли Чарльз и Рэй Имз; интерактивная веб-страница «Масштабы Вселенной»; эпизод из «Симпсонов» и фантастическая концовка первой части «Людей в черном».


    Ваша оценка произведения:

Популярные книги за неделю